English
新闻公告
More
化学进展 2019, Vol. 31 Issue (2/3): 258-274 DOI: 10.7536/PC180631 前一篇   后一篇

• •

四重氢键自组装体系的设计与应用

裴强**(), 丁爱祥   

  1. 1. 信阳师范学院化学化工学院 信阳 464000
  • 收稿日期:2018-06-28 出版日期:2019-02-15 发布日期:2018-12-20
  • 通讯作者: 裴强
  • 基金资助:
    信阳师范学院博士科研启动基金(18077); 信阳师范学院博士科研启动基金(18072); 河南省高等学校重点科研项目计划(19A150042)

The Design and Application of Quadruple Hydrogen Bonded Systems

Qiang Pei**(), Aixiang Ding   

  1. 1. College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
  • Received:2018-06-28 Online:2019-02-15 Published:2018-12-20
  • Contact: Qiang Pei
  • About author:
  • Supported by:
    Doctoral Scientific Research Startup Foundation of Xinyang Normal University(18077); Doctoral Scientific Research Startup Foundation of Xinyang Normal University(18072); Key Scientific Research Project of Henan Provincial Higher Educational Institutions(19A150042)

氢键是自然界中最基本的分子间弱相互作用力之一,是构筑超分子自组装体系的理想推动力。近年来,构筑性能优良的多重氢键组装体系已经成为超分子化学的一个热门研究领域。其中,四重氢键组装体系因具有较强的结合力、合成简单、结构易于修饰以及可预测的识别性能等优点,在构筑超分子组装体方面得到了广泛应用。本文综述了四重氢键组装体系的研究进展,重点介绍了各类四重氢键体系的设计思路及其应用。

Hydrogen bond is one of the most basic weak interaction of natural intermolecular forces and the ideal driving force for constructing supramolecular self-assembly systems. In the past few years, the construction of excellent multiple hydrogen bonded building blocks has become a hot research direction in supramolecular chemistry. Among that, quadruple hydrogen bonded systems are widely used for the construction of supramolecular assemblies due to their several advantages, such as strong binding power, simple synthesis, easily modifiable structure, and predictable recognition performance. In this review, we aim to provide a broad overview of the progress of quadruple hydrogen bonded systems. More specifically, we emphatically elaborate the design principles and applications of various typed quadruple hydrogen bonded systems.

()
图1 不同类型的四重氢键组装体系在氯仿中的结合常数(M-1),以及它们之间的次级静电效应(吸引:绿;排斥:红)[3]
Fig. 1 The stability constants(M-1, in CDCl3) of various typed quadruple hydrogen bonded systems and the secondary interactions between them indicated by double headed arrow(attractive: green; repulsive: red)[3]
图2 基于单酰化2, 4-二氨基嘧啶的同源二聚体系[8]
Fig. 2 Homologous dimer based on mono acylated 2, 4-diaminopyrimidines[8]
图3 (a)双酰化的2, 6-二氨基吡啶的稳定构象;(b)双酰化2, 4-二氨基均三嗪的稳定构象及其同源二聚体[9]
Fig. 3 (a) The stable conformation of 2, 6-bis(carbamoyl) pyridine;(b) the stable conformation of 2, 4-bis(carbamoyl)-s-triazines and its homologous dimer[9]
图4 基于三嗪和嘧啶类化合物的DADA·ADAD型同源二聚体及其二聚常数[10]
Fig. 4 The DADA·ADAD typed homologous dimer based on the compounds of s-triazines and pyrimidines and its dimerization constant[10]
图5 (a)基于酰肼喹啉酮单元的同源二聚体;(b)开链化合物9的构象平衡[11]
Fig. 5 (a) Homologous dimer based on hydrazide-quinolinone unit;(b) conformational equilibrium of open chain compound 9[11]
图6 2, 6-二氨基嘌呤的脲基衍生物在溶液中的构象平衡及其同源二聚体[12]
Fig. 6 The conformational equilibrium of ureido derived 2, 6-diaminopurine in solution and its homologous dimer[12]
图7 基化合物11的同源二聚体[13]
Fig. 7 The homologous dimer of compound 11[13]
图8 UPy衍生物在溶液中的异构及二聚体[17]
Fig. 8 Tautomerism and dimerization of UPy derivatives in solution[17]
图9 基于DeAP衍生物的异构及二聚[23]
Fig. 9 Tautomerism and dimerization of DeAP derivatives in solution[23]
图10 抑制质子互变异构体的策略:简并策略 [25]和N-烷基化策略[28]
Fig. 10 The strategy of restraining proton tautomer: degeneration strategy[25] and N-alkylation strategy[28]
图11 基于UN[29] 和UImp[31] 单元的四重氢键二聚体系
Fig. 11 Quadruple hydrogen-bonded dimer based on UN[29] and UImp[31] units
图12 基于1, 3, 5-三嗪-2, 4(1H, 3H)-二酮的脲基衍生物的四重氢键二聚体系[32]
Fig. 12 Quadruple hydrogen-bonded dimer based on the ureido derivatives of 1, 3, 5-triazine-2, 4(1H, 3H)-dione[32]
图13 基于分子内氢键控制构象的线型化合物的四重氢键二聚体系[33]
Fig. 13 Quadruple hydrogen-bonded dimer based on linear compounds with intramolecular hydrogen bonding controlling conformations[33]
图14 基于化合物25a~d的同源二聚体及二聚常数[34]
Fig. 14 The homologous dimer of compounds 25a~d and their dimerization constant[34]
图15 DeAP和DAN之间的DAAD·ADDA型异源二聚体[23]
Fig. 15 The DAAD·ADDA typed heterodimer between DeAP and DAN[23]
图16 UPy和DAN之间的DAAD·ADDA型异源二聚体[37]
Fig. 16 The DAAD·ADDA typed heterodimer between UPy and DAN[37]
图17 基于UG·DAN和DeUG·DAN的DAAD·ADDA型异源二聚体[38, 39]
Fig. 17 The DAAD·ADDA typed heterodimer based on UG·DAN and DeUG·DAN[38, 39]
图18 基于33·34、35·36和37·38的DAAD·ADDA型异源二聚体[41,42,43,44,45]
Fig. 18 The DAAD·ADDA typed heterodimer based on 33·34, 35·36 and 37·38 [41,42,43,44,45]
图19 基于非杂环类酰肼单元的四氢键异二聚体[46, 47]
Fig. 19 Quadruple hydrogen-bonded heterodimer based on the non heterocyclic hydrazide units [46, 47]
图20 末端取代基对酰肼衍生物异二聚体稳定性的影响[48]
Fig. 20 The effect of different terminal substituents on the stability of heterodimer based on the hydrazide derivatives[48]
图21 基于化合物46和47的AADA·DDAD型异二聚体 [49]
Fig. 21 The AADA·DDAD typed heterodimer between compounds 46 and 47[49]
图22 具有AAAA·DDDD四重氢键序列的异源二聚体 [51, 52]
Fig. 22 The heterodimer with AAAA·DDDD quadruple hydrogen bonding sites [51, 52]
图23 基于寡聚芳酰胺的四重氢键分子拉链 [53]
Fig. 23 Quadruple hydrogen-bonded molecular duplexes based on oligoamides [53]
图24 含2, 7-二取代萘环单元的寡聚酰胺构筑的的四重氢键分子拉链 [60]
Fig. 24 Quadruple hydrogen-bonded molecular duplexes constructed by oligoamides containing 2, 7-disubstituted naphthalene units[60]
图25 氢键键合单元被乙炔基团分离的化合物构筑的四重氢键体系 [62,63,64]
Fig. 25 Quadruple hydrogen-bonded system constructed by the compounds with separated hydrogen bond binding units[62,63,64]
图26 (a)2个氢键结合位点集中于同一个原子的化合物构筑四重氢键体系;(b)结构相似的化合物构筑的两重氢键二聚系[65]
Fig. 26 (a) Quadruple hydrogen-bonded system constructed by the compound with an atom bearing two hydrogen bond sites;(b) dual hydrogen-bonded system constructed by the compound with similar structure to compound 62[65]
图27 化合物64对己二酸的分子识别示意图[66]
Fig. 27 The schematic diagram of molecular recognition of adipic acid by compound 64[66]
图28 分子间四重氢键作用对化合物66分子内Diels-Alder反应的诱导[67]
Fig. 28 The intramolecular Diels-Alder reaction of compound 66 induced by intermolecular quadruple hydrogen-bonded action[67]
图29 四重氢键寡聚酰胺模板诱导的烯烃复分解反应 [68]
Fig. 29 The reaction of olefin metathesis induced by template of quadruple hydrogen-bonded oligoamides [68]
图30 四重氢键寡聚酰胺模板诱导的两组二硫键有序交联反应 [70, 71]
Fig. 30 The ordered cross-linking reaction of dual disulfide bond induced by template of quadruple hydrogen-bonded oligoamides[70, 71]
图31 四重氢键寡聚酰胺模板诱导的肽链反平行β-折叠结构[72, 73]
Fig. 31 The antiparallel β-folding structure of peptide induced by template of quadruple hydrogen-bonded oligoamides [72, 73]
图32 四重氢键模板诱导的β-发卡结构[74]
Fig. 32 The β-hairpin structure induced by quadruple hydrogen-bonded template[74]
图33 基于寡聚芳酰胺的多样化凝胶因子[77, 78]
Fig. 33 Versatile gelators based on oligoamides[77, 78]
图34 基于寡聚对苯乙烯修饰的UPy单元的二聚体[79]
Fig. 34 The dimer of UPy unit modified by oligomerization of p-phenylenevinylene[79]
[1]
Sartorius J, Schneider H J . Chem. Eur. J., 1996,2:1446.
[2]
Schmuck C, Wienand W . Angew. Chem. Int. Ed., 2001,40:4363. https://www.ncbi.nlm.nih.gov/pubmed/12404418

doi: 10.1002/1521-3773(20011203)40:23【-逻*辑*与-】amp;amp;lt;4363::aid-anie4363【-逻*辑*与-】amp;amp;gt;3.0.co;2-8     URL     pmid: 12404418
[3]
Sijbesma R P, Meijer E W . Chem. Commun., 2003,39:5.
[4]
Gong B . Acc. Chem. Res., 2012,45:2077. https://www.ncbi.nlm.nih.gov/pubmed/22578061

doi: 10.1021/ar300007k     URL     pmid: 22578061
[5]
Baruah P K, Khan S . RSC Adv., 2013,3:21202. http://xlink.rsc.org/?DOI=c3ra43814g

doi: 10.1039/c3ra43814g     URL    
[6]
杨勇(Yang Y), 窦丹丹(Dou D D) . 化学进展 (Progress in Chemistry), 2014,26:706.
[7]
裴强(Pei Q) . 信阳师范学院(自然科学版)(Journal of Xinyang Normal University Natural Science Edition), 2018,31:160.
[8]
Griffin R J, Lowe P R . J. Chem. Soc. Perkin Trans. 1, 1992,1811.
[9]
Beijer F H, Sijbesma R P, Vekemans J A J M, Meijer E W, Kooijman H, Spek A L . J. Org. Chem., 1996,61:6371. https://www.ncbi.nlm.nih.gov/pubmed/11667479

doi: 10.1021/jo960612v     URL     pmid: 11667479
[10]
Beijer F H, Kooijman H, Spek A L, Sijbesma R P, Meijer E W . Angew. Chem. Int. Ed., 1998,37:75.
[11]
Yang Y, Yan H J, Chen C F, Wan L J . Org. Lett., 2007,9:4991. https://www.ncbi.nlm.nih.gov/pubmed/17956109

doi: 10.1021/ol702194z     URL     pmid: 17956109
[12]
Martin A M, Butler R S, Ghiviriga I, Giessert R E, Abboud K A, Castellano R K . Chem. Commun., 2006,42:4413.
[13]
Li J, Wisner J A, Jennings M C . Org. Lett., 2007,9:3267. https://www.ncbi.nlm.nih.gov/pubmed/17637028

doi: 10.1021/ol071171c     URL     pmid: 17637028
[14]
Li J, Pandelieva A T, Rowley C N, Woo T K, Wisner J A . Org. Lett., 2012,14:5772. https://www.ncbi.nlm.nih.gov/pubmed/23131112

doi: 10.1021/ol302803j     URL     pmid: 23131112
[15]
Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Lange R F M, Lowe J K L, Meijer E W . Science, 1997,278:1601. https://www.ncbi.nlm.nih.gov/pubmed/9374454

doi: 10.1126/science.278.5343.1601     URL     pmid: 9374454
[16]
Beijer F H, Sijbesma R P, Kooijman H, Spek A L, Meijer E W . J. Am. Chem. Soc., 1998,120:6761.
[17]
Söntjens S H M, Sijbesma R P, van Genderen M H P, Meijer E W . J. Am. Chem. Soc., 2000,122:7487.
[18]
Keizer H M, Sijbesma R P, Meijer E W . Eur. J. Org. Chem., 2004: 2553.
[19]
Lafitte V G H, Aliev A E, Hailes H C, Bala K, Golding P . J. Org. Chem., 2005,70:2701. https://www.ncbi.nlm.nih.gov/pubmed/15787562

doi: 10.1021/jo048223l     URL     pmid: 15787562
[20]
Guo D, Sijbesma R P, Zuilhof H . Org. Lett., 2004,6:3667. https://www.ncbi.nlm.nih.gov/pubmed/15469319

doi: 10.1021/ol048821m     URL     pmid: 15469319
[21]
Chen J S, Zhao F J, Yang Y, Chu T S . RSC Adv., 2015,5:36279.
[22]
Wang Q, Zhang P, Li Y, Tian L, Cheng M, Lu F, Lu X, Fan Q, Huang W . RSC Adv., 2017,7:29364.
[23]
Corbin P S, Zimmerman S C . J. Am. Chem. Soc., 1998,120:9710.
[24]
Corbin P S, Lawless L J, Li Z, Ma Y, Witmer M J, Zimmerman S C . Proc. Natl. Acad. Sci. U. S. A., 2002,99:5099. https://www.ncbi.nlm.nih.gov/pubmed/11917113

doi: 10.1073/pnas.062641199     URL     pmid: 11917113
[25]
Baruah P K, Gonnade R, Phalgune U D, Sanjayan G J . J. Org. Chem., 2005,70:6461. https://www.ncbi.nlm.nih.gov/pubmed/16050710

doi: 10.1021/jo0508705     URL     pmid: 16050710
[26]
Sun H, Steeb J, Kaifer A E . J. Am. Chem. Soc., 2006,128:2820. https://www.ncbi.nlm.nih.gov/pubmed/16506759

doi: 10.1021/ja060386z     URL     pmid: 16506759
[27]
Cui L, Gadde S, Shukla A D, Sun H, Mague J T, Kaifer A E . Chem. Commun., 2008,44:1446.
[28]
Lafitte V G H, Aliev A E, Horton P N, Hursthouse M B, Bala K, Golding P, Hailes H C . J. Am. Chem. Soc., 2006,128:6544. https://www.ncbi.nlm.nih.gov/pubmed/16704239

doi: 10.1021/ja0587289     URL     pmid: 16704239
[29]
Corbin P S, Zimmerman S C . J. Am. Chem. Soc., 2000,122:3779.
[30]
Corbin P S, Zimmerman S C, Thiessen P A, Hawryluk N A, Murray T J . J. Am. Chem. Soc., 2001,123:10475. https://www.ncbi.nlm.nih.gov/pubmed/11673978

doi: 10.1021/ja010638q     URL     pmid: 11673978
[31]
Hisamatsu Y, Shirai N, Ikeda S, Odashima K . Org. Lett., 2009,11:4342. https://www.ncbi.nlm.nih.gov/pubmed/19739613

doi: 10.1021/ol9017084     URL     pmid: 19739613
[32]
Kheria S, Rayavarapu S, Kotmale A S, Gonnade R G, Sanjayan G J . Chem. Eur. J., 2017,23:783. https://www.ncbi.nlm.nih.gov/pubmed/27862470

doi: 10.1002/chem.201605208     URL     pmid: 27862470
[33]
Prabhakaran P, Puranik V G, Sanjayan G J . J. Org. Chem., 2005,70:10067. https://www.ncbi.nlm.nih.gov/pubmed/16292841

doi: 10.1021/jo051768a     URL     pmid: 16292841
[34]
Mudraboyina B P, Wisner J A . Chem. Eur. J., 2012,18:14157. https://www.ncbi.nlm.nih.gov/pubmed/22996084

doi: 10.1002/chem.201201668     URL     pmid: 22996084
[35]
Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W . J. Org. Chem., 2006,71:375. https://www.ncbi.nlm.nih.gov/pubmed/16388663

doi: 10.1021/jo051864b     URL     pmid: 16388663
[36]
Anderson C A, Taylor P G, Zeller M A, Zimmerman S C . J. Org. Chem., 2010,75:4848. https://www.ncbi.nlm.nih.gov/pubmed/20550204

doi: 10.1021/jo100476x     URL     pmid: 20550204
[37]
Li X Q, Jiang X K, Wang X Z, Li Z T . Tetrahedron, 2004,60:2063.
[38]
Park T, Todd E M, Nakashima S, Zimmerman S C . J. Am. Chem. Soc., 2005,127:18133. https://www.ncbi.nlm.nih.gov/pubmed/16366566

doi: 10.1021/ja0545517     URL     pmid: 16366566
[39]
Ong H C, Zimmerman S C . Org. Lett., 2006,8:1589. https://www.ncbi.nlm.nih.gov/pubmed/16597117

doi: 10.1021/ol0601803     URL     pmid: 16597117
[40]
Kuykendall D W, Anderson C A, Zimmerman S C . Org. Lett., 2009,11:61. https://www.ncbi.nlm.nih.gov/pubmed/19049402

doi: 10.1021/ol802344w     URL     pmid: 19049402
[41]
Lüning U, Kühl C . Tetra. Lett., 1998,39:5735.
[42]
Lüning U, Kühl C, Uphoff A . Eur. J. Org. Chem., 2002: 4063.
[43]
Taubitz J, Lüning U, Grotemeyer J . Chem. Commun., 2004,40:2400.
[44]
Hisamatsu Y, Shirai N, Ikeda S, Odashima K . Org. Lett., 2010,12:1776. https://www.ncbi.nlm.nih.gov/pubmed/20232854

doi: 10.1021/ol100385b     URL     pmid: 20232854
[45]
Pellizzaro M L, Barrett S A, Fishera J, Wilson A J . Org. Biomol. Chem., 2012,10:4899. https://www.ncbi.nlm.nih.gov/pubmed/22610090

doi: 10.1039/c2ob25333j     URL     pmid: 22610090
[46]
Zhao X, Wang X Z, Jiang X K, Chen Y Q, Li Z T, Chen G J . J. Am. Chem. Soc., 2003,125:15128.
[47]
Feng D J, Wang P, Li X Q, Li Z T . Chin. J. Chem., 2006,24:1200.
[48]
Yang Y, Yang Z Y, Yi Y P, Xiang J F, Chen C F, Wan L J, Shuai Z G . J. Org. Chem., 2007,72:4936. https://www.ncbi.nlm.nih.gov/pubmed/17530806

doi: 10.1021/jo070525a     URL     pmid: 17530806
[49]
Brammer S, Lüning U, Kühl C . Eur. J. Org. Chem., 2002: 4054.
[50]
Quinn J R, Zimmerman S C . Org. Lett., 2004,6:1649. https://www.ncbi.nlm.nih.gov/pubmed/15128258

doi: 10.1021/ol0495016     URL     pmid: 15128258
[51]
Taubitz J, Lüning U . Aust. J. Chem., 2009,62:1550.
[52]
Leigh D A, Robertson C C, Slawin A M Z, Thomson P I T . J. Am. Chem. Soc., 2013,135:9939. https://www.ncbi.nlm.nih.gov/pubmed/23763627

doi: 10.1021/ja404504m     URL     pmid: 23763627
[53]
Gong B, Yan Y F, Zeng H Q, Skrzypczak-Jankunn E, Kim Y W, Zhu J, Ickes H . J. Am. Chem. Soc., 1999,121:5607.
[54]
Gong B . Synlett, 2001,5:582.
[55]
Sanford A R, Yamato K, Yang X W, Yuan L H, Han Y H, Gong B . Eur. J. Biochem., 2004,271:1416. https://www.ncbi.nlm.nih.gov/pubmed/15066168

doi: 10.1111/j.1432-1033.2004.04062.x     URL     pmid: 15066168
[56]
Zeng H Q, Ickes H, Flowers R A, Gong B . J. Org. Chem., 2001,66:3574. https://www.ncbi.nlm.nih.gov/pubmed/11348147

doi: 10.1021/jo010250d     URL     pmid: 11348147
[57]
Zeng H Q, Yang X W, Brown A L, Martinovic S, Smith R D, Gong B . Chem. Commun., 2003,39:1556
[58]
Yang Q L, Bai L, Zhang Y Q, Zhu F X, Xu Y H, Shao Z F, Shen Y M, Gong B . Macromolecules, 2014,47:7431.
[59]
Yang Q L, He C Y, Xu Y H, Liu B Y, Shao Z F, Zhu Z G, Hou Y T, Gong B, Shen Y M . Polym. Chem., 2015,6:1454.
[60]
Zhang P H, Chu H Z, Li X H, Feng W, Deng P C, Yuan L H, Gong B . Org. Lett., 2011,13:54. https://www.ncbi.nlm.nih.gov/pubmed/21133401

doi: 10.1021/ol102522m     URL     pmid: 21133401
[61]
Li X H, Ji Y M, Ren Y, Wang Y J, Hu J C, Ma T, Feng W, Yuan L H . Org. Biomol. Chem., 2013,11:6975. https://www.ncbi.nlm.nih.gov/pubmed/24057168

doi: 10.1039/c3ob40998h     URL     pmid: 24057168
[62]
Ducharme Y, Wuest J D . J. Org. Chem., 1988,53:5787.
[63]
Wash P L, Maverick E, Chiefari J, Lightner D A . J. Am. Chem. Soc., 1997,119:3802.
[64]
Sessler J L, Wang R . J. Am. Chem. Soc., 1996,118:9808.
[65]
Davis A P, Draper S M, Dunne G, Ashton P . Chem. Commun., 1999,35:2265.
[66]
Garcia-Tellado F, Goswami S, Chang S, Geib S J, Hamilton A D . J. Am. Chem. Soc., 1990,112:7393.
[67]
Hirst S C, Hamilton A D . J. Am. Chem. Soc., 1991,113:382.
[68]
Yang X W, Gong B . Angew. Chem. Int. Ed., 2005,44:1352. https://www.ncbi.nlm.nih.gov/pubmed/15662671

doi: 10.1002/anie.200461777     URL     pmid: 15662671
[69]
Zeng J S, Wang W, Deng P C, Feng W, Zhou J J, Yang Y Y, Yuan L H, Yamato K, Gong B . Org. Lett., 2011,13:3798. https://www.ncbi.nlm.nih.gov/pubmed/21699249

doi: 10.1021/ol201282d     URL     pmid: 21699249
[70]
Li M F, Yamato K, Ferguson J S, Gong B . J. Am. Chem. Soc., 2006,128:12628. https://www.ncbi.nlm.nih.gov/pubmed/17002339

doi: 10.1021/ja064515n     URL     pmid: 17002339
[71]
Li M F, Yamato K, Ferguson J S, Gong B . J. Am. Chem. Soc., 2008,130:491. https://www.ncbi.nlm.nih.gov/pubmed/18092773

doi: 10.1021/ja072567m     URL     pmid: 18092773
[72]
Zeng H Q, Yang X W, Flowers R A, Gong B . J. Am. Chem. Soc., 2002,124:2903. https://www.ncbi.nlm.nih.gov/pubmed/11902880

doi: 10.1021/ja010701b     URL     pmid: 11902880
[73]
Shi Y D, Tang Q, Jiang Y F, Pei Q, Tan H W, Lu Z L, Gong B . Chem. Commun., 2018,54:3719. https://www.ncbi.nlm.nih.gov/pubmed/29583145

doi: 10.1039/c8cc01564c     URL     pmid: 29583145
[74]
Mozhdehi D, Guan Z B . Chem. Commun., 2013,49:9950. https://www.ncbi.nlm.nih.gov/pubmed/24036525

doi: 10.1039/c3cc45419c     URL     pmid: 24036525
[75]
Han J T, Lee D H, Ryu C Y, Cho K . J. Am. Chem. Soc., 2004,126:4796. https://www.ncbi.nlm.nih.gov/pubmed/15080681

doi: 10.1021/ja0499400     URL     pmid: 15080681
[76]
Xu J F, Chen Y Z, Wu D, Wu L Z, Tung C H, Yang Q Z . Angew. Chem. Int. Ed., 2013,52:9738. https://www.ncbi.nlm.nih.gov/pubmed/23868534

doi: 10.1002/anie.201303496     URL     pmid: 23868534
[77]
Cao R K, Zhou J J, Wang W, Feng W, Li X H, Zhang P H, Deng P C, Yuan L H, Gong B . Org. Lett., 2010,12:2958. https://www.ncbi.nlm.nih.gov/pubmed/20536121

doi: 10.1021/ol100953e     URL     pmid: 20536121
[78]
Pei Q, Tang Q, Tan Z L, Lu Z L, He L, Gong B . RSC Adv., 2017,7:22248.
[79]
El-ghayoury A, Peeters E, Schenning A P H J, Meijer E W . Chem. Commun., 2000,36:1969.
[80]
Rispens M T, Sánchez L, Knol J, Hummelen J C . Chem. Commun., 2001,37:161.
[81]
Sánchez L, Rispens M T, Hummelen J C . Angew. Chem. Int. Ed., 2002,41:838. https://www.ncbi.nlm.nih.gov/pubmed/12491353

doi: 10.1002/1521-3773(20020301)41:5【-逻*辑*与-】amp;amp;lt;838::aid-anie838【-逻*辑*与-】amp;amp;gt;3.0.co;2-f     URL     pmid: 12491353
[82]
González J J, González S, Priego E M, Luo C, Guldi D M, de Mendoza J, Martín N . Chem. Commun., 2001,37:163.
[83]
Sánchez L, Martín N, Guldi D M . Angew. Chem. Int. Ed., 2005,44:5374. https://www.ncbi.nlm.nih.gov/pubmed/15997460

doi: 10.1002/anie.200500321     URL     pmid: 15997460
[84]
Zhu B, Feng Z, Zheng Z, Wang X . J. Appl. Polym. Sci., 2012,123:1755. 461129bb-551e-48fa-b09f-86f4f2576f10http://dx.doi.org/10.1002/app.34638

doi: 10.1002/app.34638     URL    
[85]
Chen Y, Jones S T, Hancox I, Beanland R, Tunnah E J, Bon S A F . ACS Macro Lett., 2012,1:603.
[86]
Chen Y, Ballard N Bon S A F . Polym. Chem., 2013,4:387.
[87]
Xiao L, Wei M, Zhan M, Zhang J, Xie H, Deng X, Yang K, Wang Y . Polym. Chem., 2014,5:2231.
[88]
Lange R F M, Van Gurp M, Meijer E W . J. Polym. Sci., Part A: Polym. Chem., 1999,37:3657. https://www.ncbi.nlm.nih.gov/pubmed/31244507

doi: 10.1002/pola.29393     URL     pmid: 31244507
[89]
Hirschberg J H K K, Beijer F H, van Aert H A, Magusin P C M M, Sijbesma R P, Meijer E W . Macromolecules, 1999,32:2696.
[90]
Folmer B J B, Sijbesma R P, Versteegen R M, van der Rijt J A J, Meijer E W . Adv. Mater., 2000,12:874.
[91]
Folmer B J B, Cavini E, Sijbesma R P, Meijer E W . Chem. Commun., 1998,34:1847.
[92]
Peng H Q, Sun C L, Xu J F, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Chem. Eur. J., 2014,20:11699. https://www.ncbi.nlm.nih.gov/pubmed/25056769

doi: 10.1002/chem.201402955     URL     pmid: 25056769
[93]
Xu J F, Niu L Y, Chen Y Z, Wu D, Wu L Z, Tung C H, Yang Q Z . Org. Lett., 2014,16:4016. https://www.ncbi.nlm.nih.gov/pubmed/25035966

doi: 10.1021/ol501841f     URL     pmid: 25035966
[94]
Peng H Q, Xu J F, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Chem. Commun., 2014,50:1334.
[95]
Wang R F, Peng H Q, Chen P Z, Niu L Y, Gao J F, Wu L Z, Tung C H, Chen Y Z, Yang Q Z . Adv. Funct. Mater., 2016,26:5419.
[96]
Peng H Q, Sun C L, Niu L Y, Chen Y Z, Wu L Z, Tung C H, Yang Q Z . Adv. Funct. Mater., 2016,26:5483.
[97]
Park T, Zimmerman S C, Nakashima S . J. Am. Chem. Soc., 2005,127:6520. https://www.ncbi.nlm.nih.gov/pubmed/15869258

doi: 10.1021/ja050996j     URL     pmid: 15869258
[98]
Park T, Zimmerman S C . J. Am. Chem. Soc., 2006,128:11582. https://www.ncbi.nlm.nih.gov/pubmed/16939282

doi: 10.1021/ja0631854     URL     pmid: 16939282
[99]
Park T, Zimmerman S C . J. Am. Chem. Soc., 2006,128:14236. https://www.ncbi.nlm.nih.gov/pubmed/17076479

doi: 10.1021/ja065469u     URL     pmid: 17076479
[100]
Park T, Zimmerman S C . J. Am. Chem. Soc., 2006,128:13986. https://www.ncbi.nlm.nih.gov/pubmed/17061855

doi: 10.1021/ja064116s     URL     pmid: 17061855
[101]
Li Y, Park T, Quansah J K, Zimmerman S C . J. Am. Chem. Soc., 2011,133:17118. https://www.ncbi.nlm.nih.gov/pubmed/21970558

doi: 10.1021/ja2069278     URL     pmid: 21970558
[102]
Zhang Y, Anderson C A, Zimmerman S C . Org. Lett., 2013,15:3506. https://www.ncbi.nlm.nih.gov/pubmed/23815128

doi: 10.1021/ol401035t     URL     pmid: 23815128
[103]
Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C . J. Am. Chem. Soc., 2013,135:7288. https://www.ncbi.nlm.nih.gov/pubmed/23590235

doi: 10.1021/ja4005283     URL     pmid: 23590235
[104]
Hirschberg J H K K, Brunsveld L, Ramzi A, Vekemans J A J M, Sijbesma R P, Meijer E W . Nature, 2000,407:167. https://www.ncbi.nlm.nih.gov/pubmed/11001050

doi: 10.1038/35025027     URL     pmid: 11001050
[105]
Brunsveld L, Vekemans J A J M, Hirschberg J H K K, Sijbesma R P, Meijer E W . Proc. Natl. Acad. Sci. U. S. A., 2002,99:4977. https://www.ncbi.nlm.nih.gov/pubmed/11929978

doi: 10.1073/pnas.072659099     URL     pmid: 11929978
[106]
Yan X, Li S, Pollock J B, Cook T R, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang P J . Proc. Natl. Acad. Sci. U. S. A., 2013,110:15585. https://www.ncbi.nlm.nih.gov/pubmed/24019475

doi: 10.1073/pnas.1307472110     URL     pmid: 24019475
[107]
Yan X, Jiang B, Cook T R, Zhang Y, Li J, Yu Y, Huang F, Yang H, Stang P J . J. Am. Chem. Soc., 2013,135:16813. https://www.ncbi.nlm.nih.gov/pubmed/24187961

doi: 10.1021/ja4092193     URL     pmid: 24187961
[108]
Liu R, Cheng S, Baker E S, Smith R D, Zeng X C, Gong B . Chem. Commun., 2016,52:3773. https://www.ncbi.nlm.nih.gov/pubmed/26830456

doi: 10.1039/c6cc00224b     URL     pmid: 26830456
[1] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[2] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[3] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[4] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[5] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[6] 彭立山, 魏子栋*. 高性能电解水电极催化材料的设计及产品工程[J]. 化学进展, 2018, 30(1): 14-28.
[7] 潘梅, 韦张文, 徐耀维, 苏成勇. 配位超分子自组装[J]. 化学进展, 2017, 29(1): 47-74.
[8] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.
[9] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[10] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[11] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[12] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[13] 许良, 李勇军, 李玉良. 基于π体系的超分子功能材料的制备与应用研究[J]. 化学进展, 2014, 26(04): 487-501.
[14] 杨柳, 雷霆, 裴坚*, 刘晨江* . 有机微纳米材料的设计策略、加工及应用[J]. 化学进展, 2012, 24(12): 2299-2311.
[15] 万鹏博, Hill Eric H., 张希. 界面超分子化学与响应性功能表面[J]. 化学进展, 2012, 24(01): 1-7.