English
新闻公告
More
化学进展 2016, Vol. 28 Issue (12): 1880-1890 DOI: 10.7536/PC160438 前一篇   

• 综述与评论 •

生物质热化学转化过程含N污染物形成研究

詹昊1,2, 张晓鸿1,2, 阴秀丽1, 吴创之1*   

  1. 1. 中国科学院可再生能源重点实验室 广东省新能源和可再生能源重点实验室 中国科学院广州能源研究所 广州 510640;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2016-04-01 修回日期:2016-09-01 出版日期:2016-12-25 发布日期:2016-12-23
  • 通讯作者: 吴创之,e-mail:wucz@ms.giec.ac.cn E-mail:wucz@ms.giec.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.51676195)资助

Formation of Nitrogenous Pollutants during Biomass Thermo-Chemical Conversion

Zhan Hao1,2, Zhang Xiaohong1,2, Yin Xiuli1, Wu Chuangzhi1*   

  1. 1. Key Laboratory of Renewable Energy, CAS, Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2016-04-01 Revised:2016-09-01 Online:2016-12-25 Published:2016-12-23
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51676195).
生物质热化学转化过程(热解与气化)含N污染物是大气PM2.5的重要成因,研究其形成对大气污染防控具有重要意义。本文综述了国内外关于生物质热解与气化含N污染物形成机理及其影响因素的研究进展。现有研究结果表明:热解与气化过程含N污染物形成路径相似,但其种类及含量有明显差异,其中,热解主要为NH3与HCN,气化主要为NH3。从影响因素上看,燃料N赋存、温度、热解升温速率、气化反应气氛、燃料理化特性及反应添加物对含N污染物均有一定影响。升温速率快、燃料含N高、参与反应水蒸气浓度高等,均会造成含N污染物的增加,温度对两过程含N污染物的影响规律具有相似性,高温有利于降低其含量。从含N污染物三相分布特征来看,主要以气相形式存在,热解基本在50%左右,气化可高达90%,因此,控制并降低气相含N污染物形成是生物质热化学转化过程减少污染的重要方向。同时,本文基于研究结论的对比,指出国内外目前研究现状的不足。
To investigate the formation of nitrogenous pollutants (NPs) during biomass thermo-chemical conversion (pyrolysis and gasification) is significant for the control of air pollution as these NPs are an important factor for the formation of PM2.5. Research progress on the formation mechanism and influence factors of NPs during two processes are reviewed. Consistent conclusions from the literature can be summarized as follows:1) NPs formed from two processes resemble in their formation paths but differ in their types & components. Either NH3 or HCN is confirmed to be main NPs for pyrolysis while NH3 is dominant for gasification. 2) Comparing the influence factors, it is demonstrated that the increase of any factor such as the heating rate, the content of fuel nitrogen and the concentration of steam involved will enhance the formation of NPs for two processes. Meanwhile, the effect of temperature on the selectivity of NPs towards two processes are similar as well as higher temperature is inclined to decrease the amount of NPs. 3) Comparing the results of nitrogen distribution, it is found that the percentage of NPs in gaseous phase are approximately 50% for pyrolysis and as much as 90% for gasification. Therefore, to control the formation of NPs in gaseous phase is effective to reduce the pollutants during biomass thermo-chemical conversion. Meanwhile, based on the current conclusions obtained, the deficiencies of formation mechanism are summarized as well as the prospective developments are proposed for further research.

Contents
1 Introduction
2 Formation paths of NPs during biomass thermo-chemical conversion
2.1 Formation paths of NPs during pyrolysis process
2.2 Formation paths of NPs during gasification process
3 Effect of nitrogen occurrence characteristics in fuels
3.1 Effect of nitrogen structure
3.2 Effect of nitrogen content
4 Effect of thermal conditions
4.1 Effect of heating rate
4.2 Effect of temperature
5 Effect of reaction atmosphere
6 Effect of other conditions
6.1 Effect of the physicochemical properties of fuels
6.2 Effect of the catalytic performance of additives
7 Nitrogen distribution during two processes
8 Conclusion

中图分类号: 

()
[1] Smeets E M W, Faaij A P C, Lewandowski I M, Turkenburg W C. Prog. Energy Combust. Sci., 2007, 33(1):56.
[2] McKendry P. Bioresour. Technol., 2002, 83(1):47.
[3] Balat M. Energy Sources Part A-Recovery Util. Environ. Eff., 2008, 30(7):620.
[4] Balat M. Energy Sources Part A-Recovery Util. Environ. Eff., 2008, 30(7):636.
[5] Winter F, Wartha C, Hofbauer H. Bioresour. Technol., 1999, 70(1):39.
[6] Huang R J, Zhang Y L, Bozzetti C, Ho K F, Cao J J, Han Y M, Daellenbach K R, Slowik J G, Platt S M, Canonaco F, Zotter P, Wolf R, Pieber S M, Bruns E A, Crippa M, Ciarelli G, Piazzalunga A, Schwikowski M, Abbaszade G, Schnelle-Kreis J, Zimmermann R, An Z S, Szidat S, Baltensperger U, El Haddad I, Prevot A S H. Nature, 2014, 514(7521):218.
[7] Cao J J, Shen Z X, Chow J C, Watson J G, Lee S C, Tie X X, Ho K F, Wang G H, Han Y M. J. Air Waste Manage. Assoc., 2012, 62(10):1214.
[8] Liu H, Gibbs B M. Fuel, 2003, 82(13):1591.
[9] Vermeulen I, Block C, Vandecasteele C. Fuel, 2012, 94(1):75.
[10] Rogaume T, Koulidiati J, Richard F, Jabouille F, Torero J L. Int. J. Therm. Sci., 2006, 45(4):359.
[11] Abelha P, Gulyurtlu I, Cabrita I. Energy Fuels, 2008, 22(1):363.
[12] Yu Q Z, Brage C, Chen G X, Sjostrom K. Fuel, 2007, 86(40):611.
[13] Hansson K M, Samuelsson J, Amand L E, Tullin C. Fuel, 2003, 82(18):2163.
[14] Zhou J Q, Gao P, Dong C Q, Yang Y P. J. Fuel Chem. Techno., 2015, 43(12):1427.
[15] Hansson K M, Samuelsson J, Tullin C, Amand L E. Combust. Flame, 2004, 137(3):265.
[16] Li J, Liu Y W, Shi J Y, Wang Z Y, Hu L, Yang X, Wang C X. Thermochim. Acta, 2008, 467(1/2):20.
[17] Li J, Wang Z Y, Yang X, Hu L, Liu Y W, Wang C X. J. Anal. Appl. Pyrolysis, 2007, 80(1):247.
[18] Hao J F, Guo J Z, Ding L, Xie F W, Xia Q L, Xie J P. J. Therm. Anal. Calorim., 2014, 115(1):667.
[19] Tian K, Liu W J, Qian T T, Jiang H, Yu H Q. Environ. Sci. Technol., 2014, 48(18):10888.
[20] Becidan M, Skreiberg O, Hustad J E. Energy Fuels, 2007, 21(2):1173.
[21] De Jong W, Di Nola G, Venneker B C H, Spliethoff H, Wojtowicz M A. Fuel, 2007, 86(15):2367.
[22] Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Tang G Y, Wang Z. J. Anal. Appl. Pyrolysis, 2009, 85(1/2):447.
[23] Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Wang Z. Fuel, 2010, 89(5):1064.
[24] 任强强(Ren Q Q), 赵长遂(Zhao C S), 梁财(Liang C), 沈解忠(Shen J Z). 中国电机工程学报(Proceedings of the CSEE), 2008, 28(23):99.
[25] Ren Q Q. J. Therm. Anal. Calorim., 2014, 115(1):881.
[26] 高攀(Gao P), 孙志向(Sun Z X), 孔岩(Kong Y), 周建强(Zhou J Q), 董长青(Dong C Q), 杨勇平(Yang Y P). 太阳能学报(Acta Energiae Solaris Sinica), 2014, 35(12):2541.
[27] Ren Q Q, Zhao C S. Environ. Sci. Technol., 2012, 46(7):4236.
[28] Eigenmann F, Maciejewski A, Baiker A. Thermochim. Acta, 2006, 440(1):81.
[29] Tian F J, Yu J L, Mckenzie L J, Hayashi J I, Chiba T, Li C Z. Fuel, 2005, 84(4):371.
[30] Chen H F, Namioka T, Yoshikawa K. Appl. Energy, 2011, 88(12):5032.
[31] Ren Q Q. J. Therm. Anal. Calorim., 2013, 112(2):997.
[32] Zhou J C, Masutani S M, Ishimura D M, Turn S Q, Kinoshita C M. Ind. Eng. Chem. Res., 2000, 39(3):626.
[33] Wilk V, Hofbauer H. Fuel, 2013, 106:793.
[34] Aznar M, Anselmo M S, Manya J J, Murillo M B. Energy Fuels, 2009, 23:3236.
[35] Tian F J, Yu J L, McKenzie L J, Hayashi J, Li C Z. Energy Fuels, 2007, 21(2):517.
[36] Paterson N, Zhuo Y, Dugwell D, Kandiyoti R. Energy Fuels, 2005, 19(3):1016.
[37] Leppalahti J, Koljonen T. Fuel Process. Technol., 1995, 43(1):1.
[38] Leppalahti J. Fuel, 1995, 74(9):1363.
[39] Hansson K M, Amand L E, Habermann A, Winter F. Fuel, 2003, 82(6):653.
[40] Yuan S, Zhou Z J, Li J, Chen X L, Wang F C. Energy Fuels, 2010, 24(11):6166.
[41] Li J, Wang Z Y, Yang X, Hu L, Liu Y W, Wang C X. Thermochim. Acta, 2006, 447(2):147.
[42] Ren Q Q, Zhao C S, Chen X P, Duan L B, Li Y J, Ma C Y. Proc. Combust. Inst., 2011, 33:1715.
[43] Zhang J, Tian Y, Cui Y N, Zuo W, Tan T. Bioresour. Technol., 2013, 132:57.
[44] Leichtnam J N, Schwartz D, Gadiou R. J. Anal. Appl. Pyrolysis, 2000, 55(2):255.
[45] Rodante F, Marrosu G, Catalani G. Thermochim. Acta, 1992, 194:197.
[46] Ren Q Q, Zhao C S. Environ. Sci. Technol., 2013, 47(15):8955.
[47] Ren Q Q, Zhao C S. Appl. Energy, 2013, 112:170.
[48] Yuan S, Chen X L, Li W F, Liu H F, Wang F C. Bioresour. Technol., 2011, 102(21):10124.
[49] Chen H F, Wang Y, Xu G W, Yoshikawa K. Energies, 2012, 5(12):5418.
[50] Turn S Q, Kinoshita C M, Ishimura D M, Zhou J C. Fuel, 1998, 77(3):135.
[51] Stubenberger G, Scharler R, Zahirovic S, Obernberger I. Fuel, 2008, 87(6):793.
[52] Tian F J, Li B Q, Chen Y, Li C Z. Fuel, 2002, 81(17):2203.
[53] Cao J P, Li L Y, Morishita K, Xiao X B, Zhao X Y, Wei X Y, Takarada T. Fuel, 2013, 104:1.
[54] Meesuk S, Cao J P, Sato K, Hoshino A, Utsumi K, Takarada T. J. Chem. Eng. Jpn., 2013, 46(8):556.
[55] Tian Y, Zhang J, Zuo W, Chen L, Cui Y N, Tan T. Environ. Sci. Technol., 2013, 47(7):3498.
[56] Zhu X D, Yang S J, Wang L, Liu Y C, Qian F, Yao W Q, Zhang S C, Chen J M. Environ. Pollut., 2016, 211:20.
[57] Wei L H, Wen L, Yang T H, Zhang N. Energy Fuels, 2015, 29(8):5088.
[58] Aljbour S H, Kawamoto K. Chemosphere, 2013, 90(4):1501.
[59] Ferrasse J H, Dumas C, Roche N. Chem. Eng. Technol., 2011, 34(1):103.
[60] Hernandez A B, Ferrasse J H, Roche N. Chem. Eng. Technol., 2013, 36(11):1985.
[61] Hongrapipat J, Pang S, Saw W L. Biomass Conv. Bioref., 2016, 6(1):105.
[62] Broer K M, Brown R C. Appl. Energy, 2015, 158:474.
[63] Vriesman P, Heginuz E, Sjostrom K. Fuel, 2000, 79(11):1371.
[64] Broer K M, Brown R C. Energy Fuels, 2016, 30(1):407.
[65] Jeremias M, Pohorely M, Bode P, Skoblia S, Beno Z, Svoboda K. Fuel, 2014, 117:917.
[66] Tian F J, Yu J L, McKenzie L J, Hayashi J, Li C Z. Fuel, 2006, 85(10/11):1411.
[67] Ren Q Q, Zhao C S, Wu X, Liang C, Chen X P, Shen J Z, Wang Z. J. Therm. Anal. Calorim., 2010, 99(1):301.
[68] Cao J P, Shi P, Zhao X Y, Wei X Y, Takarada T. Energy Fuels, 2014, 28(3):2041.
[69] Cao J P, Shi P, Zhao X Y, Wei X Y, Takarada T. Fuel Process. Technol., 2014, 123:34.
[70] Pinto F, Lopes H, Andre R N, Gulyurtlu I, Cabrita I. Fuel, 2007, 86(14):2052.
[71] Pinto F, Andre R N, Franco C, Lopes H, Carolino C, Costa R, Gulyurtlu I. Fuel, 2010, 89(11):3340.
[1] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[2] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[3] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[4] 骆敏倩, 衡伟利, 代娟, 魏元锋, 高缘, 张建军. 药物无定形的转晶及其抑制策略[J]. 化学进展, 2021, 33(11): 2116-2127.
[5] 徐永洞, 刘志丹. 生物质水热液化水相产物形成机理及资源回收[J]. 化学进展, 2021, 33(11): 2150-2162.
[6] 王红娟, 时蜜, 田璐, 赵亮, 张美芹. 指纹遗留时间的研究方法[J]. 化学进展, 2019, 31(5): 654-666.
[7] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[8] 张冰洁, 刘倩, 周群芳, 张建清, 江桂斌. 纳米银的神经毒理学效应[J]. 化学进展, 2018, 30(9): 1392-1402.
[9] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[10] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[11] 韩德文, 王鑫彤, 鞠法帅, 王杨君, 冯加良, 汪午. PM2.5中的有机硫酸酯类化合物[J]. 化学进展, 2017, 29(5): 530-538.
[12] 杨昆仑, 周家盛, 吕丹, 孙悦, 楼子墨, 徐新华*. 铁基复合材料的制备及其对水中锑的去除[J]. 化学进展, 2017, 29(11): 1407-1421.
[13] 李力成, 方东, 李广忠, 刘瑞娜, 刘素琴, 徐卫林. 阳极氧化法制备阀金属氧化物纳米管的机理及影响因素[J]. 化学进展, 2016, 28(4): 589-606.
[14] 王晶, 范昊雯, 张贺, 陈群, 刘仪, 马卫华. 钛的阳极氧化过程与TiO2纳米管的形成机理[J]. 化学进展, 2016, 28(2/3): 284-295.
[15] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.