English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1628-1639 DOI: 10.7536/PC150513 前一篇   后一篇

• 综述与评论 •

基于纳米粒子的糖蛋白/糖肽分离富集方法

丁鹏2, 陈掀2, 李秀玲1*, 卿光焱2, 孙涛垒2,3*, 梁鑫淼1   

  1. 1. 中国科学院大连化学物理研究所 中国科学院分离分析化学重点实验室 大连 116023;
    2. 武汉理工大学 材料复合新技术国家重点实验室 武汉 430070;
    3. 武汉理工大学化学化工与生命科学学院 武汉 430070
  • 收稿日期:2015-05-01 修回日期:2015-06-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 李秀玲, 孙涛垒 E-mail:lixiuling@dicp.ac.cn;suntaolei@whut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21475129,21275114,51473131)和国家重点基础研究发展计划(973)项目(No.2013CB933002)资助

The Separation and Enrichment of Glycoproteins or Glycopeptides Based on Nanoparticles

Ding Peng2, Chen Xian2, Li Xiuling1*, Qing Guangyan2, Sun Taolei2,3*, Liang Xinmiao1   

  1. 1. Key Lab of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
    2. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
    3. School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
  • Received:2015-05-01 Revised:2015-06-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21475129, 21275114, 51473131) and the Major State Basic Research Development Program of China(973 Program)(No.2013CB933002).
蛋白质糖基化是一种重要的蛋白质翻译后修饰方式,糖基化对蛋白质的结构和功能有着非常重要的影响。在血清或者组织提取液中,一些低浓度的糖蛋白/糖肽是具有高度临床灵敏性和特异性的生物标记物,这些生物分子可能对疾病发生机理探讨、疾病标记物发现及蛋白类新药开发提供重要信息。由于糖蛋白/糖肽的丰度低,从复杂的生物样品中高选择性富集糖蛋白/糖肽一直是糖蛋白组学的难点和重点。纳米结构的材料因其大比表面积、丰富的活性亲和位点和特殊结构,已经广泛应用于糖蛋白/糖肽的分离富集中。本文对基于金、SiO2、TiO2、Fe3O4、金刚石和聚合物纳米粒子为载体的糖蛋白/糖肽分离富集方法的研究进展作了简要概述,并且阐明了糖蛋白/糖肽分离富集方法所面临的挑战,最后,对其未来发展方向做了展望。
As one of the most important post-translational modifications, protein glycosylation has a significant effect on the structures and functions of proteins. Many low-abundance endogenous glycoproteins/glycopeptides in the serum or tissue extracts are biomarkers with higher clinical sensitivity and specificity, which could provide valuable information to explore the pathogenesis of many diseases, discover disease biomarkers and develop proteins based new drugs. However, it is still a great challenge for glycoproteomics to selectively separate and enrich the glycoproteins/glycopeptides from the complex biological samples due to their extremely low concentrations. Nanoparticle materials have been attracted much attention in the separation and enrichment of glycoproteins/glycopeptides due to their large surface to volume ratio, numerous affinity sites and unique structures. In this work, the recent progress for the separation and enrichment of glycoproteins/glycopeptides based on the nanoparticles, including gold, SiO2, TiO2, nanodiamond and polymer nanoparticles are reviewed. Finally, the challenges and prospects for the methods of the separation and enrichment of glycoproteins/glycopeptides are briefly proposed.

Contents
1 Introduction
2 The separation and enrichment of glycoproteins or glycopeptides based on nanoparticles
2.1 Detonation nanodiamond(dND)
2.2 Magnetic nanoparticls
2.3 Polymer nanoparticles
2.4 Gold nanoparticles
2.5 SiO2 nanoparticles
2.6 TiO2 nanoparticles
2.7 Glycopeptide enrichment:methods comparison
3 Conclusion and outlook

中图分类号: 

()
[1] Wells L, Visseller K, Hart G W. Science, 2001, 291:2376.
[2] Rudd P M, Elliott T, Cresswell P, Wilson I A, Dwek R A. Science, 2001, 291:2370.
[3] Miyoshi E, Ito Y, Miyoshi Y. Journal of Oncology, 2010, 816595.
[4] Joseph A L, John N W. Nature Reviews Cancer, 2005, 5:845.
[5] Rademacher T W, Parekh R B, Dwek R A, Isenberg D, Rook G, Axford J S, Roitt I. Springer Semin. Immunopathol., 1988, 10:231.
[6] Drake P M, Cho W, Li B S, Prakobphol A, Johansen E, Anderson N L, Regnier F E, Gibson B W, Fisher S J. Clin. Chem., 2010, 56:223.
[7] 曹晶(Cao J), 聂爱英(Nie A Y), 陈瑶函(Chen Y H), 王胜(Wang S), 陆豪杰(Lu H J), 杨芃原(Yang P Y). 化学进展(Progress in Chemistry), 2009(21):1888.
[8] 程功(Cheng G), 王志刚(Wang Z G), 刘彦琳(Liu Y L), 孙德慧(Sun D H), 倪嘉缵(Ni J Z).化学进展(Progress in Chemistry), 2013, 25(4):620.
[9] Xu C J, Xu K M, Gu H W, Zhong X F, Guo Z H, Zheng R K, Zhang X X, Xu B. J. Am. Chem. Soc., 2004, 126:3392.
[10] Zhao H, Li Y J, Hu Y. Clinical Proteomics, 2014, 11:21.
[11] Bodnar E D, Perreault H. Anal. Chem., 2013, 85:10895.
[12] Ushizawa K, Sato Y, Mitsumori T, Machinami T, Ueda T, Ando T. Chem. Phys. Lett., 2012, 351:105.
[13] Kossovsky N, Gelman A, Hnatyszyn H J, Rajguru S, Garrell R L, Torbati S, Freitas S S F, Chow G M. Bioconjugate Chem., 1995, 6:507.
[14] Cheng C Y, Perevedentseva E, Tu J S, Chung P H, Cheng C L, Liu K K, Chao J I, Chen P H, Chang C C. Appl. Phys. Lett., 2007, 90:163903.
[15] Huang L C, Chang H C. Langmuir, 2004, 20:5879.
[16] Wei L M, Zhang W, Lu H J, Yang P Y. Talanta, 2010, 80:1298.
[17] Chang Y, Huang C, Lin C, Chang H, Wu C. Proteomics, 2010, 10:2961.
[18] Chang C, Wu C, Wang Y, Chang H. Anal. Chem., 2008, 80:3791.
[19] Yeap W S, Tan Y Y, Loh K P. Anal. Chem., 2008, 80:4659.
[20] Xu G B, Zhang W, Wei L M, Lu H J, Yang P Y. Analyst, 2013, 138:1876.
[21] Safarik I, Safarikova M. Biomagn. Res. Technol., 2004, 2:7.
[22] Shinkai M, Ito A. Adv. Biochem. Eng. Biotechnol., 2004, 91:191.
[23] Li Y, Leng T H, Lin H Q, Deng C H, Xu X Q, Yao N, Yang P Y, Zhang X M. J. Proteome Res., 2007, 6:4498
[24] Li Y, Lin H Q, Deng C H, Yang P Y, Zhang X M. Proteomics, 2008, 8:238.
[25] Li Y, Wu J S, Qi D W, Xu X Q, Deng C H, Yang P Y, Zhang X M. Chem. Commun., 2008, 5:564.
[26] Tang J, Liu Y, Yin P, Yao G P, Yan G Q, Deng C H, Zhang X M. Proteomics, 2010, 10:2000.
[27] Hong J, Xu D M, Gong P J, Sun H W, Dong L, Yao S D. J. Mol. Catal. B:Enzymatic, 2007, 45:84.
[28] Lübbe A S, Alexiou C, Bergemann C. J. Surg. Res., 2001, 95:200.
[29] Briscoe D M, Alexander S I. Curr. Opin. Immunol., 1998, 10:525.
[30] Morozov V N, Morozova Y T. Anal. Chim. Acta, 2006, 564:40.
[31] Mykhaylyk O, Vlaskou D, Tresilwised N, Pithayanukul P, Möller W, Plank C. J. Magn. Magn. Mater., 2007, 311:275.
[32] Sparbier K, Koch S, Kessler I, Wenzel T, Kostrzewa M. J. Biomol. Tech., 2005, 4:407.
[33] Lee J H, Kim Y S. J. Am. Soc. Mass Spectrom, 2005, 16:1456.
[34] Zhou W, Yao N, Yao G P, Deng C H, Zhang X M, Yang P Y. Chem. Commun., 2008, 48:5577.
[35] Pan M R, Sun Y F, Zheng J, Yang W L. ACS Appl. Mater. Interfaces, 2013, 5:8351.
[36] Wang Y L, Liu M B, Xie L Q, Fang C Y, Xiong H M, Lu H J. Anal. Chem., 2014, 86:2057.
[37] Wang X, Emmett M R, Marshall A G. Anal. Chem., 2010, 82:6542.
[38] Sun C, Chen P, Chen Q, Sun L, Kang X, Qin X, Liu Y. Acta Biochim. Biophys. Sinica, 2012, 44:765.
[39] Li X L, Shen G B, Zhang F F, Yang B C, Liang X M. J. Chromator. B, 2013, 941:45.
[40] Pan Y, Bai H, Ma C, Deng Y, Qin W, Qian X. Talanta, 2013, 115:842.
[41] Sheng Q Y, Ke X Y, Li K Y, Yu D P, Liang X M. J. Chromatogr. A, 2013, 1291:56.
[42] Wan H H, Yan J Y, Yu L, Shen Q Y, Zhang X L, Xue X Y, Li X L, Liang X L. Analyst, 2011, 136:4422.
[43] Zheng J N, Xiao Y, Wang L, Lin Z, Yang H H, Zhang L, Chen G N. J. Chromatogr. A, 2014, 1358:29.
[44] Shen A J, Li X L, Dong X F, Wei J, Guo Z M, Liang X M. J. Chromatogr. A, 2013, 1314:63.
[45] Yeh C H, Chen S H, Li D T, Lin H P, Huang H J, Chang C I, Shih W L, Chern C L, Shi F K, Hsu J L. J. Chromatogr. A, 2012, 1224:70.
[46] Xiong Z C, Zhao L, Wang F J, Zhu J, Qin H Q, Wu R A, Zhang W B, Zou H F. Chem. Commun., 2012, 48:8138.
[47] Xiong Z C, Qin H Q, Wan H, Huang G, Zhang Z, Dong J, Zhang L Y, Zhang W B, Zou H F. Chem. Commun., 2013, 49:9284.
[48] Chen Y J, Xiong Z C, Zhang L Y, Zhao J Y, Zhang Q A, Peng L, Zhang W B, Ye M L, Zou H F. Nanoscale, 2015, 7:3100.
[49] Zhang J, Ni Y L, Zheng X L. J. Sep. Sci., 2015, 38:81.
[50] Lapeyre V, Ancla C, Catargi B, Ravaine V. J. Colloid Interface Sci., 2008, 327:316.
[51] Shen W W, Ma C N, Wang S F, Xiong H M, Lu H J, Yang P Y. Chem. Asian J., 2010, 5:1185.
[52] Qu Y Y, Liu J X, Yang K G, Liang Z, Zhang L H, Zhang Y K. Chem. Eur. J., 2012, 18:9056.
[53] Qiu J, Zhang Y, Lu H, Yang P. Acta Chimica Sinica, 2011, 18:2123.
[54] Templeton A C, Chen S W, Gross S M, Murray R W. Langmuir, 1999, 15:66.
[55] Zhang L J, Xu Y W, Yao H L, Xie L Q, Yao J, Lu H J, Yang P Y. Chem. Eur. J., 2009, 15:10158.
[56] Yao G P, Zhang H Y, Deng C H. Rapid Comm. Mass Spect., 2009, 23:3493.
[57] Tran T H, Park S Y, Lee H, Park S, Kim B, Kim O H, Oh B C, Lee D, Lee H. Analyst, 2012, 137:991.
[58] Qi D W, Zhang H Y, Tang J, Deng C H, Zhang X M. J. Phys. Chem. C, 2010, 114:9221.
[59] Tang J, Liu Y, Qi D, Yao Y, Deng C, Zhang X. Proteomics, 2009, 9:5046.
[60] Hu J J, Ma R N, Liu F, Chen Y L, Ju H X. RSC Adv., 2014, 4:28856.
[61] Zhang L J, Xu Y W, Yao H L, Xie L Q, Yao J, Lu H J, Yang P Y. Chem. Eur. J., 2009, 15:10158.
[62] Xu Y W, Wu Z X, Zhang L J, Lu H J, Yang P Y, Webley P A, Zhao D Y. Anal. Chem., 2009, 81:503.
[63] Ma R N, Hu J J, Cai Z W, Ju H X. Nanoscale, 2014, 6:3150.
[64] Jiang B, Liang Y, Wu Q, Jiang H, Yang K G, Zhang L H, Liang Z, Peng X J, Zhang Y K. Nanoscale, 2014, 6:5616.
[65] Xiong Z C, Zhao L, Wang F J, Zhu J, Qin H Q, Wu R A, Zhang W B, Zou H F. Chem. Commun., 2012, 48:8138.
[66] Huang G, Xiong Z C, Qin H Q, Zhu J, Sun Z, Zhang Y, Peng X J, Ou J J, Zou H F. Anal. Chim. Acta, 2014, 809:61.
[67] Li X L, Liu H L, Qing G Y, Wang S T, Liang X L. J. Matter. Chem. B, 2014, 2:2276.
[68] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359:710.
[69] Yanagisawa T, Shimizu T, Kuroda K, Kato C. Bull. Chem. Soc. Jpn., 1990, 63:1535.
[70] Ma R N, Hu J J, Cai Z W, Ju H X. Nanoscale, 2014, 6:3150.
[71] Zhao D Y, Huo Q S, Stuky G D, Feng J, Melosh N, Fredrickson G H. Science, 1998, 279:548.
[72] Wan Y, Zhao D Y. Chem. Rev., 2007, 107:2821.
[73] Lin H P, Mou C Y. Acc. Chem. Res., 2002, 35:927.
[74] Xu Y W, Wu Z X, Zhang L J, Lu H J, Yang P Y, Webley P A, Zhao D Y. Anal. Chem., 2009, 81:503.
[75] Yan Y H, Deng C H, Zheng Z F, Zhang X M, Yang P Y. Chem. Plus. Chem., 2014, 79:31.
[76] Pan Y T, Ma C, Tong W, Fan C, Zhang Q, Zhang W J, Tian F, Peng B, Qin W J, Qian X H. Anal. Chem., 2015, 87:656.
[77] Yan J Y, Li X L, Yu L, Jin Y, Zhang X L, Xue X Y, Ke Y X, Liang X L. Chem. Commun., 2010, 46:5488.
[78] Wan H L, Yan J Y, Yu L, Sheng Q Y, Zhang X L, Xue X Y, Li X L, Liang X M. Analyst, 2011, 136:4422.
[79] Larsen M R, Jensen S S, Jakobsen L A, Heegaard N H H. Mol. Cell. Proteomics, 2007, 6:1778.
[80] Wohlgemuth J, Karas M, Eichhorn T, Hendriks R, Andrecht S. Anal. Biochem., 2009, 395:178.
[81] Yan J Y, Li X L, Yu L, Jin Y, Zhang X L, Xue X Y, Ke Y X, Liang X M. Chem. Commun., 2010, 46:5488.
[82] Wang W J,Liu H, Li Z L. Chin. J. Chem., 2011, 29:2229.
[83] Palmisano G, Lendal S E, Engholm-Keller K, Leth-Larsen R, Parker B L, Larsen R. Nature Protols, 2010, 5:1974.
[84] Cao W Q, Cao J, Huang J M, Zhang L, Yao J,Xu H Q,Yang P Y. Glycoconjugated Journal, 2012, 29:433.
[85] Parker B L, Gupta P, Cordwell S J, Larsen M R, Palmisano G. J. Proteome Res., 2010, 10:1449.
[86] Zhang L, Jiang H, Yao J, Wang Y, Fang C, Yang P, Lu H. Chem. Commun., 2014, 50:1027.
[87] Cao Q, Ma C, Bai H, Li X, Yan H, Zhao Y, Ying W, Qian X. Analyst, 2014, 139:603.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[3] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[4] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[5] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[6] 张华东, 李攻科*, 胡玉斐*. 埃洛石纳米管在分离富集中的应用[J]. 化学进展, 2018, 30(2/3): 198-205.
[7] 张咚咚, 刘敬民, 刘瑶瑶, 党梦, 方国臻, 王硕. 纳米粒子在药物传递中的应用[J]. 化学进展, 2018, 30(12): 1908-1919.
[8] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[9] 毕洪梅, 韩晓军. 磁应答型药物递送载体的设计与构建[J]. 化学进展, 2018, 30(12): 1920-1929.
[10] 李平, 董阿力德尔图, 孙梓嘉, 高歌. N-卤胺类高分子与纳米抗菌材料的制备及应用[J]. 化学进展, 2017, 29(2/3): 318-328.
[11] 陈璐扬, 赵瑾, 龙丽霞, 侯信, 原续波*. 肿瘤免疫治疗中的生物医用载体[J]. 化学进展, 2017, 29(10): 1195-1205.
[12] 杜鑫, 赵彩霞, 黄洪伟, 温永强, 张学记. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化学进展, 2016, 28(8): 1131-1147.
[13] 郝锐, 张丛筠, 卢亚, 张东杰, 郝耀武, 刘亚青. 氧化石墨烯/金银纳米粒子复合材料的制备及其SERS效应研究[J]. 化学进展, 2016, 28(8): 1186-1195.
[14] 邱健豪, 何明, 贾明民, 姚建峰. 金属有机骨架材料制备双金属或多金属催化材料及其应用[J]. 化学进展, 2016, 28(7): 1016-1028.
[15] 王昀, 冯岸超, 袁金颖. 刺激响应聚合物在金纳米粒子催化体系中的应用[J]. 化学进展, 2016, 28(7): 1054-1061.