English
新闻公告
More
化学进展 2018, Vol. 30 Issue (2/3): 198-205 DOI: 10.7536/PC170712 前一篇   后一篇

• 综述 •

埃洛石纳米管在分离富集中的应用

张华东, 李攻科*, 胡玉斐*   

  1. 中山大学化学学院 广州 510275
  • 收稿日期:2017-07-14 修回日期:2017-10-18 出版日期:2018-02-15 发布日期:2017-12-11
  • 通讯作者: 李攻科,cesgkl@mail.sysu.edu.cn;胡玉斐,huyufei@mail.sysu.edu.cn E-mail:cesgkl@mail.sysu.edu.cn;huyufei@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21675178,21475153,21575167)、广东省自然科学重点基金项目(No.2015A030311020)、广东省自然科学基金自由申请项目(No.2016A030313358)、广东省公益研究与能力建设专项基金项目(No.2015A030401036)和广州市民生科技重大专项资助项目(201604020165)资助

Applications of Halloysite Nanotubes in Separation and Enrichment

Huadong Zhang, Gongke Li*, Yufei Hu*   

  1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
  • Received:2017-07-14 Revised:2017-10-18 Online:2018-02-15 Published:2017-12-11
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21675178, 21475153, 21575167), the Guangdong Provincial Natural Science Foundation(No. 2015A030311020, 2016A030313358), the Special Funds for Public Welfare Research and Capacity Building in Guangdong Province of China(No. 2015A030401036), and the Guangzhou Minsheng Science and Technology Major Project of China(No.201604020165).
埃洛石纳米管(Halloysite Nanotubes,HNTs)是一种天然的纳米管状材料,具有对环境友好、生物相容性好、细胞毒性小等特点,近年来该材料得到了广泛的应用。HNTs是生物相容性较好的“绿色”材料,成本低、来源广等优点使其成为制备生物复合材料中的添加剂,而且HNTs具有的空腔结构、表面电荷性质及表面吸附性为重金属离子、染料分子、有机分子等的分离富集提供有利条件。另外,HNTs及其衍生的生物复合材料在循环肿瘤细胞的富集上得到应用。为了更好地了解和利用埃洛石纳米管,本文介绍了埃洛石纳米管的物理化学性能,以及HNTs在分离富集、活性分子的载运与控制释放等方面的应用进展,并对埃洛石纳米管的发展及应用前景进行展望。
Halloysite nanotubes(HNTs), as a natural nano-tubular material, with a variety of advantages, such as environmental friendliness, biocompatibility, low cytotoxicity and so on, have been widely used in recent years. As a kind of biocompatible "green" material, because of their low cost and abundant natural resources, HNTs can be used as excellent additives for biomaterials. Besides, nano-tubular structure, surface charge and adsorption properties provide favorable conditions for separation and enrichment of metal ions, dyes, organic compounds and so on. Even better, HNTs and HNTs-derived biomaterials have been used as absorbents to capture circulating tumor cells in recent studies. For better understanding and utilize the nanotube, we introduce the structure and properties of HNTs in detail, and review their application in separation, loading and controlled release of active molecules, etc. in this paper. Finally, we give a conclusion that HNTs own a splendid perspectives on future opportunities and promising applications.
Contents
1 Introduction
2 Structure and properties of halloysite nanotubes
2.1 General Structure
2.2 Main Properties
3 Application of halloysite nanotubes in detection
3.1 Application in detection of heavy metal ions
3.2 Application in detection of compounds
4 Application of halloysite nanotubes in enrichment
4.1 Enrichment of dyes
4.2 Enrichment of functional compounds
4.3 Enrichment of tumor cells
5 Conclusion

中图分类号: 

()
[1] Münzer A M, Michael Z P, Star A. ACS Nano, 2013, 7(9):7448.
[2] Xiao F X, Hung S F, Miao J W, Wang H Y, Yang H B, Liu B. Small, 2015, 11(5):554.
[3] Mollaamin F. J. Comput. Theor. Nanos., 2014, 11(11):2393.
[4] Berthier P. Annales de Chimie et de Physique, 1826, 32:332.
[5] Liu M X, Jia Z X, Jia D M, Zhou C R. Prog. Polym. Sci., 2014, 39(8):1498.
[6] Yu L, Wang H X, Zhang Y T, Zhang B, Liu J D. Environ. Sci. Nano, 2016, 3(1):28.
[7] Krawczyk-Coda M. Spectrochim. Acta Part B:At. Spectrosc., 2017, 129:21.
[8] Massaro M, Colletti C G, Lazzara G, Guernelli S, Noto R, Riela S. ACS Sustainable Chem. Eng., 2017, 5(4):3346.
[9] Abolghasemi M M, Arsalani N, Yousefi V, Arsalani M, Piryaei M. J. Sep. Sci., 2016, 39(5):956.
[10] Feng K Y, Hong G Y, Liu J S, Li M Q, Zhou C R, Liu M X. Chem. Eng. J., 2018, 331:744.
[11] Yang J, Wu Y P, Shen Y, Zhou C R, Li Y F, He R R, Liu M X. ACS Appl. Mater. Interfaces, 2016, 8(40):26578.
[12] Lvov Y, Wang W C, Zhang L Q, Fakhrullin R. Adv. Mater., 2015, 28(6):1227.
[13] Pauling L. Proc. Natl. Acad. Sci.U.S.A., 1930, 16:578.
[14] 牛继南(Niu J N), 强颖怀(Qiang Y H), 王春阳(Wang C Y), 李祥(Li X), 周一浩(Zhou Y H), 商翔宇(Shang X Y), 庄全超(Zhuang Q C). 矿物学报(Acta Mineralogica Sinica), 2014, (1):13.
[15] Yuan P, Tan D Y, Annabi-Bergaya F. Appl. Clay Sci., 2015, 112/113:75.
[16] Lvov Y, Abdullayev E. Prog. Polym. Sci., 2013, 38(10/11):1690.
[17] Lvov Y M, Shchukin D G, Möhwald H, Price R R. ACS Nano, 2008, 2(5):814.
[18] Abdullayev E, Joshi A, Wei W B, Zhao Y F, Lvov Y. ACS Nano, 2012, 6(8):7216.
[19] Carli L N, Daitx T S, Soares G V, Crespo J S, Mauler R S. Appl. Clay Sci., 2014, 87:311.
[20] Guimarães L, Enyashin A N, Frenzel J, Heine T, Duarte H A, Seifert G. ACS Nano, 2007, 1(4):362.
[21] Guimaraães L, Enyashin A N, Seifert G, Duarte H A. J. Phys. Chem. C, 2010, 114(26):11358.
[22] Piperno S, Kaplan-Ashiri I, Cohen S R, Popovitz-Biro R, Wagner H D, Tenne R, Foresti E, Lesci I G, Roveri N. Adv. Funct. Mater., 2010, 17(16):3332.
[23] Tully J, Yendluri R, Lvov Y. Biomacromolecules, 2016, 17(2):615.
[24] Peixoto A F, Fernandes A C, Pereira C, Pires J, Freire C. Micropor. Mesopor. Mater., 2016, 219:145.
[25] Churchman G J, Davy G J, Aylmore T J, Gilkes L, Self R J. Clay Miner., 1995, 30(2):89.
[26] Sing K S W. Pure Appl. Chem., 1985, 57(4):603.
[27] Zhang A B, Pan L, Zhang H Y, Liu S T, Ye Y, Xia M S, Chen X G. Colloids Surface A, 2012, 396(7):182.
[28] Zhou T Z, Li C P, Jin H L, Lian Y Y, Han W M. ACS Appl. Mater. Interfaces, 2017, 9(7):6030.
[29] Ferrante F, Armata N, Cavallaro G, Lazzara G. J. Phys. Chem. C, 2017, 121(5):2951.
[30] Shu Z, Chen Y, Zhou J, Li T T, Sheng Z M, Tao C W, Wang Y X. Appl. Clay. Sci., 2016, 132:114.
[31] Massaro M, Lazzara G, Milioto S, Noto R, Riela S. J. Mater. Chem. B, 2017, 5(16):2867.
[32] Vergaro V, Abdullayev E, Lvov Y M, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S. Biomacromolecules, 2010, 11(3):820.
[33] Liu M X, Wu C C, Jiao Y P, Xiong S, Zhou C R. J. Mater. Chem. B, 2013, 1(15):2078.
[34] Huang B, Liu M X, Long Z R, Shen Y, Zhou C R. Mater. Sci. Engineering C, 2017, 70:303.
[35] Fayazi M, Taher M A, Afzali D, Mostafavi A. Sens. Actuators. B Chem., 2016, 228:1.
[36] Amjadi M, Samadi A, Manzoori J L, Arsalani N. Anal. Methods, 2015, 7(14):5847.
[37] Samadi A, Amjadi M. J. Appl. Spectrosc., 2016, 83(3):1.
[38] Li R J, Hu Z, Zhang S R, Li Z H, Chang X J. Int. J. Environ. Anal. Chem., 2013, 93(7):767.
[39] He Q, Yang D, Deng X L, Wu Q, Li R J, Zhai Y H, Zhang L J. Water Res., 2013, 47(12):3976.
[40] Li R J, He Q, Hu Z, Zhang S R, Zhang L J, Chang X J. Anal. Chim. Acta, 2012, 713(3):136.
[41] Amjadi M, Samadi A, Manzoori J L. Microchim. Acta, 2015, 182(9):1.
[42] Saraji M, Jafari M T, Mossaddegh M. Anal. Chim. Acta, 2016, 926:55.
[43] Saraji M, Jafari M T, Mossaddegh M. Anal. Chim. Acta, 2017, 964:85.
[44] Zhong S A, Zhou C Y, Zhang X N, Zhou H, Li H, Zhu X H, Wang Y. J. Hazard. Mater., 2014, 276:58.
[45] Wang H B, Zhao X P, Wang S F, Tao S, Ai N, Wang Y. J. Chromatogr. A, 2015, 1392:20.
[46] Chang J, Xiao W, Liu P, Liao X N, Wen Y P, Bai L, Li L J, Li M F. J. Electroanal. Chem., 2016, 780:103.
[47] Li Y Y, Tian L H, Liu L, Liu L, Li J J, Wei Q, Cao W. New J. Chem., 2016, 40(1):558.
[48] Cao H M, Sun X M, Zhang Y, Jia N Q. Anal. Biochem., 2012, 430(2):111.
[49] Yao Y J, Xu F F, Chen M, Xu Z X, Zhu Z W. Bioresour. Technol., 2010, 101:3040.
[50] Robati D, Mirza B, Ghazisaeidi R, Rajabi M, Moradi O, Tyagi I, Agarwal S, Gupta V K. J. Mol. Liq., 2016, 216, 830.
[51] Xiong L, Yang Y, Mai J X, Sun W L, Zhang C Y, Wei D P, Chen Q, Ni J R. Chem. Eng. J., 2010, 156(2):313.
[52] Ghosh D, Bhattacharyya K G. Appl. Clay Sci., 2002, 20(6):295.
[53] Zhao M F, Liu P. Micropor. Mesopor. Mater., 2008, 112:419.
[54] Luo P, Zhao Y F, Zhang B, Liu J D, Yang Y, Liu J F. Water Res., 2010, 44(5):1489.
[55] Zhao Y F, Abdullayev E, Vasiliev A, Lvov Y. J. Colloid Interface Sci., 2013, 406(18):121.
[56] Peng Q, Liu M X, Zheng J W, Zhou C R. Micropor. Mesopor. Mater., 2015, 201:190.
[57] Xie Y F, Qian D Y, Wu D L, Ma X F. Chem. Eng. J., 2011, 168(2):959.
[58] Hu Q, Yu J C, Liu M, Liu A P, Dou Z S, Yang Y. J. Med. Chem., 2014, 57(13):5679.
[59] Das M, Singh R P, Datir S R, Jain S. Bioconjug. Chem., 2013, 24(4):626.
[60] Shanmugam V, Chien Y H, Cheng Y S, Liu T Y, Huang C C, Su C H, Chen Y S, Kumar U, Hsu H F, Yeh C S. ACS Appl. Mater. Interfaces, 2014, 6(6):4382.
[61] Kruif J K, Ledergerber G, Garofalo C, Fasler-Kan E, Kuentz M. Eur. J. Pharm. Biopharm., 2016, 101:90.
[62] Kelly H M, Deasy P E, Claffey N. Int. J. Pharm., 2004, 274(2):167.
[63] Liu M X, Chang Y Z, Yang J, You Y Y, He R, Chen T F, Zhou C R. J. Mater. Chem. B, 2016, 4(13):2253.
[64] Guo M Y, Wang A F, Muhammad F, Qi W X, Ren H, Guo Y J, Zhu G S. Chin. J. Chem., 2012, 30(9):2115.
[65] Rao K M, Nagappan S, Seo D J, Ha C S. Appl. Clay. Sci., 2014, s97/98:33.
[66] Vergaro V, Lvov Y M, Leporatti S. Macromol. Biosci., 2012, 12(9):1265.
[67] Dzamukova M R, Naumenko E A, Lvov Y M, Fakhrullin R F. Sci. Rep., 2015, 5:10560.
[68] Tan D Y, Yuan P, Annabi-Bergaya F, Yu H G, Liu D, Liu H M, He H P. Micropor. Mesopor. Mater., 2013, 179(10):89.
[69] Li H, Zhu X H, Xu J F, Peng W, Zhong S A, Wang Y. RSC Adv., 2016, 6(59):54463.
[70] Luo Y Y, Mills D K. Southern Biomedical Engineering Conference. IEEE, 2016, 76.
[71] Tu J X, Cao Z, Jing Y H, Fan C J, Zhang C, Liao L Q, Liu L J. Compos. Sci. Technol., 2013, 85(9):126.
[72] Noein L, Haddadi-Asl V, Salami-Kalajahi M. Int. J. Polymer Mater. Polymer Biomater., 2017, 66(3):123.
[73] Duce C, Della Porta V, Bramanti E, Campanella B, Spepi A, Tine M R. Nanotechnology, 2016, 28(5):055706.
[74] Lee I W, Li J L, Chen X G, Park H J. J. Appl. Polym. Sci., 2015, 133(4):42900.
[75] Lee M H, Park H J. J. Appl. Polym. Sci., 2015, 132(46):132.
[76] Cavallaro G, Grillo I, Gradzielski M, Lazzara G. J. Phys. Chem. C, 2016, 120(25):13492.
[77] Massaro M, Riela S, Guernelli S, Parisi F, Lazzara G, Baschieri A, Valgimigli L, Amorati R. J. Mater. Chem. B, 2016, 4(13):2229.
[78] Eccles S A, Welch D R. Lancet, 2007, 369(9574):1742.
[79] Dey S, Vaidyanathan R, Carrascosa L G, Shiddiky M J A, Trau M. ACS Sensor, 2016, 1:399.
[80] Hughes A D, King M R. Langmuir, 2010, 26(14):12155.
[81] Mitchell M J, Castellanos C A, King M R. Biomaterials, 2015, 56:179.
[82] Liu M X, He R, Yang J, Zhao W, Zhou C R. ACS Appl. Mater. Interfaces, 2016, 8(12):7709.
[83] He R, Liu M X, Shen Y, Long Z R, Zhou C R. J. Mater. Chem. B, 2017, 5(9):1712.
[1] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[2] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[3] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[4] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[5] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[6] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[7] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[8] 郭珊, 周翔. 循环肿瘤细胞体内检测技术及其应用研究[J]. 化学进展, 2021, 33(1): 1-12.
[9] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[10] 高凤凤, 杨言言, 杜晓, 郝晓刚, 官国清, 汤兵. 电控离子(交换)膜分离技术——从ESIX到ESIPM[J]. 化学进展, 2020, 32(9): 1344-1351.
[11] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[12] 徐国华, 成凯, 王晨, 李从刚. 生物凝聚态物质的多层次结构表征[J]. 化学进展, 2020, 32(8): 1231-1239.
[13] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[14] 李孝建, 张海军, 李赛赛, 张 俊, 贾全利, 张少伟. 超亲水疏油材料的制备及其油水分离性能[J]. 化学进展, 2020, 32(6): 851-860.
[15] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.