English
新闻公告
More
化学进展 2015, Vol. 27 Issue (11): 1640-1648 DOI: 10.7536/PC150425 前一篇   后一篇

• 综述与评论 •

智能水凝胶双抗癌药物控释体系

于京1,2, 哈伟1, 师彦平1*   

  1. 1. 中国科学院兰州化学物理研究所 中国科学院西北特色植物资源化学重点实验室 甘肃省天然药物重点实验室 兰州 730000;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2015-04-01 修回日期:2015-06-01 出版日期:2015-11-15 发布日期:2015-09-18
  • 通讯作者: 师彦平 E-mail:shiyp@licp.cas.cn
  • 基金资助:
    国家自然科学基金项目(No.21375136,21405164)资助

Intelligent Hydrogel-Based Dual Drug Delivery System

Yu Jing1,2, Ha Wei1, Shi Yanping1*   

  1. 1. Key Laboratory of Chemistry of Northwestern Plant Resources of Chinese Academy of Sciences, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-04-01 Revised:2015-06-01 Online:2015-11-15 Published:2015-09-18
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No.21375136, 21405164).
近年来,基于联合用药策略的双药物控释体系的研究为降低抗癌药物毒性和提高疗效提供了有效途径。水凝胶作为一类高临床应用价值的药物载体,在药物控释方面具有广泛的应用前景。癌症是危害人类健康和生命的疾病之一,当人体内正常细胞发生癌变后,癌变细胞周围会发生一些显著的变化。因此,根据肿瘤细胞与正常细胞在体内环境及体外环境的差异,发展了多种智能型水凝胶双抗癌药物控释载体。它能够在感知外界因素的刺激下发生内部结构的变化,从而实现对药物的可控释放。与此同时,随着新的治疗手段的兴起和更多抗癌作用靶点的发现,水凝胶载体也成功实现了化学药物和生物治疗因子的同时负载和可控释放。本文将从不同智能型水凝胶载体如何负载、控释双抗癌药物及水凝胶药物载体中药物的组合方式两方面综述智能型水凝胶双抗癌药物控释体系最新研究进展,并展望其发展前景。
In recent years, the development of codelivery systems based on combination strategies has provided an effective approach for reducing side effect and retaining drug bioactivity of anti-cancer drugs. Cancer is one of the most serious diseases endangering human health. There are some significant changes between normal tissues and cancerous tissues, and such changes have motivated researchers to design multiple intelligent hydrogel-based dual drug carriers for drug controlled release. Meanwhile, with the development of effective treatment, modulating multiple targets simultaneously can be achieved through a combination of anticancer drug and biological factor in hydrogel. The dual-drug controlled release from hydrogel is also realized. In the review, the recent advance on the intelligent hydrogel-based dual drug delivery system are summarized, which are classified referring to the mechanism of hydrogel loaded dual drugs, the release principles of drugs and the means of combination of drugs. In addition, some personal perspectives on this field are also presented.

Contents
1 Introduction
2 Intelligent hydrogel-based dual drug delivery carriers
2.1 Temperature-sensitive carriers
2.2 pH sensitive carriers
2.3 Redox sensitive carriers
3 The means of drug combination in hydrogel
3.1 Combination of two anticancer drugs
3.2 Combination of anticancer drug and growth factor
3.3 Combination of anticancer drug and gene
4 Conclusion

中图分类号: 

()
[1] Kurbacher C, Mallmann P, Kurbacher J, Sass G, Andreotti P, Rahmun A, Hübner H, Krebs D. Anticancer Res., 1993, 14:1961.
[2] Einhorn L H. J. Clin. Oncol., 1990, 8:1777.
[3] Ghosh J, Das J, Manna P, Sil P C. Biomaterials, 2011, 32:4857.
[4] Liu J, Zhao Y, Guo Q, Wang Z, Wang H, Yang Y, Huang Y. Biomaterials, 2012, 33:6155.
[5] Drury J L, Mooney D J. Biomaterials, 2003, 24:4337.
[6] Park J H, Bae Y H. Biomaterials, 2002, 23:1797.
[7] Keilholz U, Weber J, Finke J H, Gabrilovich D I, Kast W M, Disis M L, Kirkwood J M, Scheibenbogen C, Schlom J, Maino V C. J. Immunother., 2002, 25:97.
[8] Parton M, Gore M, Eisen T. J. Clin. Oncol., 2006, 24:5584.
[9] Klebanoff C A, Yamamoto T N, Restifo N P. Nat. Rev. Clin. Oncol., 2014, 11:685.
[10] Vile R, Russell S, Lemoine N. Gene Ther., 2000, 7:2.
[11] Qiu Y, Park K. Adv. Drug Delivery Rev., 2012, 64:49.
[12] He C, Kim S W, Lee D S. J. Control. Release, 2008, 127:189.
[13] Zhao Y L, Stoddart J F. Langmuir, 2009, 25:8442.
[14] Murdan S. J. Control. Release, 2003, 92:1.
[15] Kozlovskaya V, Chen J, Tedjo C, Liang X, Campos-Gomez J, Oh J, Saeed M, Lungu C T, Kharlampieva E. J. Mater. Chem. B, 2014, 2:2494.
[16] Vogt A P, Sumerlin B S. Soft Matter, 2009, 5:2347.
[17] Gil E S, Hudson S M. Prog. Polym. Sci., 2004, 29:1173.
[18] Wang H, Xu F, Wang Y, Liu X, Jin Q, Ji J. Polym. Chem., 2013, 4:3012.
[19] Grassi G, Farra R, Caliceti P, Guarnieri G, Salmaso S, Carenza M, Grassi M. Am. J. Drug Delivery, 2005, 3:239.
[20] Ha W, Yu J, Song X Y, Chen J, Shi Y P. ACS Appl. Mater. Interfaces, 2014, 6:10623.
[21] Jeong B, Bae Y H, Lee D S, Kim S W. Nature, 1997, 388:860.
[22] Jeong B, Bae Y H, Kim S W. J. Control. Release, 2000, 63:155.
[23] Kabanov A V, Batrakova E V, Alakhov V Y. Adv. Drug Delivery Rev., 2002, 54:759.
[24] Kabanov A V, Batrakova E V, Alakhov V Y. J. Control. Release, 2002, 82:189.
[25] Gong C, Wang C, Wang Y, Wu Q, Zhang D, Luo F, Qian Z. Nanoscale, 2012, 4:3095.
[26] Qiao M, Chen D, Hao T, Zhao X, Hu H, Ma X. Int. J. Pharm., 2007, 345:116.
[27] Ma H, He C, Cheng Y, Li D, Gong Y, Liu J, Tian H, Chen X. Biomaterials, 2014, 35:8723.
[28] Li J, Harada A, Kamachi M. Polym. J., 1994, 26:1019.
[29] Ha W, Yu J, Song X Y, Zhang Z J, Liu Y Q, Shi Y P. J. Mater. Chem. B, 2013, 1:5532.
[30] Yang Y Q, Zhao B, Li Z D, Lin W J, Zhang C Y, Guo X D, Wang J F, Zhang L J. Acta Biomater., 2013, 9:7679.
[31] Wei L, Cai C, Lin J, Chen T. Biomaterials, 2009, 30:2606.
[32] Zhao L, Zhu L, Liu F, Liu C, Shan D, Wang Q, Zhang C, Li J, Liu J, Qu X, Yang Z. Int. J. Pharm., 2011, 410:83.
[33] Yu J, Ha W, Chen J, Shi Y P. RSC Adv., 2014, 4:58982.
[34] Schafer F Q, Buettner G R. Free Radical Biol. Med., 2001, 30:1191.
[35] Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. J. Control. Release, 2011, 152:2.
[36] Ma D, Zhou X Y, Yang Y F, You Y, Liu Z H, Lin J T, Liu T, Xue W. Sci. Adv. Mater., 2013, 5:1307.
[37] Grasselli G, Viganò L, Capri G, Locatelli A, Tarenzi E, Spreafico C, Bertuzzi A, Giani A, Materazzo C, Cresta S. J. Clin. Oncol., 2001, 19:2222.
[38] Xu S, Wang W, Li X, Liu J, Dong A, Deng L. Eur. J. Pharm. Sci., 2014, 62:267.
[39] Andre T, Louvet C, Maindrault-Goebel F, Couteau C, Mabro M, Lotz J, Gilles-Amar V, Krulik M, Carola E, Izrael V. Eur. J. Cancer, 1999, 35:1343.
[40] Dranoff G. Oncogene, 2003, 22:3188.
[41] 常瑞雪(Chang R X), 颜天华(Yan T H), 王秋娟(Wang Q J), 郭青龙(Guo Q L). 药学进展(Progress in Pharmaceutical Sciences), 2011, 35(1):1.
[42] 刘佳(Liu J), 单安山(Shan A S), 孙进华(Sun J H). 黑龙江畜牧兽医(Heilongjiang Animal Science and Veterinary Medicine), 2009,(21):19.
[43] 郭银燕(Guo Y Y), 赵伟(Zhao W), 文剑(Wen J). 东南大学学报(Journal of Southeast University), 2010, 29(3):347.
[44] Seo S H, Han H D, Noh K H, Kim T W, Son S W. Clin. Exp. Metastasis, 2009, 26:179.
[45] Burnett J C, Rossi J J. Chem. Biol., 2012, 19:60.
[46] Deng Q, Li K Y, Chen H, Dai J H, Zhai Y Y, Wang Q, Li N, Wang Y P, Han Z G. Hepatology, 2014, 59:518.
[47] Andey T, Marepally S, Patel A, Jackson T, Sarkar S, O'Connell M, Reddy R C, Chellappan S, Singh P, Singh M. J. Control. Release, 2014, 184:67.
[48] Cheng H, Li Y Y, Zeng X, Sun Y X, Zhang X Z, Zhuo R X. Biomaterials, 2009, 30:1246.
[49] Guo D D, Hong S H, Jiang H L, Kim J H, Minai-Tehrani A, Kim J E, Shin J Y, Jiang T, Kim Y K, Choi Y J, Cho C S, Cho M H. Biomaterials, 2012, 33:2272.
[1] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[2] 于秋灵, 李政, 窦春妍, 赵义平, 巩继贤, 张健飞. pH敏感性智能水凝胶的设计及其应用[J]. 化学进展, 2020, 32(2/3): 179-189.
[3] 苏喜, 葛闯, 陈李, 徐溢. 基于水凝胶的细菌传感检测[J]. 化学进展, 2020, 32(12): 1908-1916.
[4] 蔡紫煊, 张斌, 姜丽阳, 李允译, 许国贺, 马晶军. 智能响应型水凝胶药物控释体系及其应用[J]. 化学进展, 2019, 31(12): 1653-1668.
阅读次数
全文


摘要

智能水凝胶双抗癌药物控释体系