English
新闻公告
More
化学进展 2015, Vol. 27 Issue (8): 1087-1092 DOI: 10.7536/PC150166 前一篇   后一篇

• 综述与评论 •

Lewis酸碱对在聚合中的应用

徐铁齐*, 李长宏   

  1. 大连理工大学化学学院 大连 116023
  • 收稿日期:2015-01-01 修回日期:2015-03-01 出版日期:2015-08-15 发布日期:2015-06-05
  • 通讯作者: 徐铁齐 E-mail:tqxu@dlut.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21274015)和中央高校基本科研业务费(No. DUT12LK47)资助

Application of Lewis Pair in the Polymerization

Xu Tieqi*, Li Changhong   

  1. School of Chemistry, Dalian University of Technology, Dalian 116023, China
  • Received:2015-01-01 Revised:2015-03-01 Online:2015-08-15 Published:2015-06-05
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274015) and the Fundamental Research Funds for the Central Universities (No. DUT12LK47).
自从Stephan和Erker两位科学家提出“位阻型(Frustrated)Lewis酸碱对”概念以来,Lewis酸碱对的催化化学得到极大的关注。近年来,人们也发现Lewis酸碱对在催化极性乙烯基单体和内酯单体聚合中有着重要的应用。Lewis酸碱对催化极性乙烯基单体聚合可形成具有高分子量和窄分子量分布的聚合物,而催化活性与所使用的Lewis酸碱对关系密切,最有效的Lewis酸是Al(C6F5)3和B(C6F5)3,Lewis碱是有机磷、氮杂环卡宾和氮杂环卡宾烯和膦腈超强碱,可聚合的单体包括甲基丙烯酸甲酯、γ-甲基-α-亚甲基-γ-丁内酯、α-亚甲基-γ-丁内酯、 丙烯酸正丁酯、 N,N-二甲基丙烯酰胺、 N,N-二苯基丙烯酰胺、 乙烯基磷酸二乙酯、2-乙烯基吡啶、2-异丙烯基-2-氧 NFDA1 唑林以及非对称的极性二乙烯基单体。聚合过程包括:链引发、链增长和链终止。链引发过程是通过Lewis酸、Lewis碱和单体相互作用形成两性离子,链增长是通过双金属活化单体加成方式进行,链终止通过两种途径:1)增长聚合物链中活化的酯氧负离子对相邻酯中羰基碳原子的亲核进攻形成δ-戊内酯;2)增长聚合物链中活化的烯酯碳负离子对倒数第三个酯中羰基碳原子的亲核进攻形成β-酮酸酯。Lewis酸碱对催化内酯单体聚合可形成线形和环状聚合物,所使用的Lewis酸为Zn(C6F5)3、有机铝、氯化铟,Lewis碱为有机胺。
The catalytic chemistry of Lewis pairs has attracted an explosive level of interest since the “frustrated Lewis pairs” (FLPs) concept was uncovered through the seminal works of Stephan and Erker. Recently, FLPs has been shown to efficiently promote the polymerization of lactones and polar vinyl monomer. Lewis pairs are highly active for polymerization of polar vinyl monomer, affording typically high molecular weight polymers with relatively narrow molecular weight distributions. Especially effective systems are the Lewis pairs (LPs) consisting of the LA Al(C6F5)3 (or B(C6F5)3) and strong LBs, such as phosphines and N-heterocyclic olefins, N-heterocyclic carbenes and phosphazene superbases, for polymerization of methacrylates, acrylamides, 2-vinyl pyridine, 2-isopropenyl-2-oxazoline, α-methylene-γ-butyrolactones, diethyl vinylphosphonate, as well as renewable dissymmetric divinyl polar monomers. Chain initiation involves cooperative addition of LPs to the monomer to generate zwitterionic active species, chain propagation proceeds via a bimetallic, activated-monomer addition mechanism, and chain chain-termination via two pathways: one that proceeds via intramolecular backbiting cyclization involving nucleophilic attack of the activated antepenultimate ester group of the growing chain by the C-ester enolate active chain end to generate a cyclic β-ketoester chain end, and the other that proceeds via intramolecular backbiting cyclization involving nucleophilic attack of the activated adjacent ester group of the growing chain by the O-ester enolate active chain end to generate a δ-valerolactone chain end. Lactones are also polymerize to produce linear or cyclic polymer using FLPs consisting of the LB amine and LAs, such as Zn(C6F5)2, alkylaluminum, and indium chloride.

Contents
1 Introduction
2 Thedevelop of Lewis acid and Lewis base polymerization systems
3 The kind of FLP polymerization systems
4 The polymerizationmechanism of FLP polymerization systems
4.1 Chain initiation and chain propagation
4.2 Chain termination
5 Conclusion and outlook

中图分类号: 

()
[1] Lewis G N. Valence and the Structure of Atoms and Molecules. NY: Chemical Catalogue Company, 1923.
[2] Brown H C, Schlesinger H I, Cardon S Z. J. Am. Chem. Soc., 1942, 64: 325.
[3] Wittig G, Benz E. Chem. Ber-Recl., 1959, 92: 1999.
[4] Tochtermann W. Angew. Chem. Int. Ed., 1966, 5: 351.
[5] Damico R, Broaddus C D. J. Org. Chem., 1966, 31: 1607.
[6] Lankamp H, Nauta W T, Maclean C. Tetrahedron Lett., 1968, 2: 249.
[7] Okamoto Y, Shimakaw Y. J. Org. Chem., 1970, 35: 3752.
[8] Doering S, Erker G, Frohlich R, Meyer O, Bergander K. Organometallics, 1998, 17: 2183.
[9] Welch G C, Juan R R S, Masuda J D, Stephan D W. Science, 2006, 314: 1124.
[10] 徐莹莹(Xu Y Y),李钊(Li Z),Maxim B, 聂万丽(Nie W L). 化学进展(Progress in Chemistry), 2012, 24(8):1526.
[11] Jiang Y F, Blacque O, Fox T, Berke H. J. Am. Chem. Soc., 2013, 135: 7751.
[12] Houghton A Y, Hurmalainen J, Mansikkamäki A, Piers W E, Tuononen H M. Nat. Chem., 2014, 6: 983.
[13] Stephan D W. Nat. Chem., 2014, 6: 952.
[14] Wei S M, Du H F. J. Am. Chem. Soc., 2014, 136: 12261.
[15] Courtemanche M A, Legare M A, Maron L, Fontaine F G. J. Am. Chem. Soc., 2014, 136: 10708.
[16] Kelly M J, Gilbert J, Tirfoin R, Aldridge S. Angew. Chem. Int. Ed., 2013, 52: 14094.
[17] Chernichenko K, Madarasz A, Papai I, Nieger M, Leskela M, Repo T. Nat. Chem., 2013, 5: 718.
[18] Erker G, Stephan D W. Topics in Current Chemistry: Frustrated Lewis Pairs I. Berlin: Springer Press, 2013.
[19] Chen E Y X. Topics in Current Chemistry, 2013, 334: 39.
[20] Murahashi S, Nozakura S I, Hatada K, Takeuchi S, Aoki T. Sen-iken Nenpo. 1960, 13: 99.
[21] Ikeda M, Hirano T, Tsuruta T. Makromol. Chem., 1971, 150: 127.
[22] Kitayama T, Masuda E, Yamaguchi M, Nishiura T, Hatada K. Polym. J., 1992, 24: 817.
[23] Zhang Y, Miyake G M, Chen E Y X. Angew. Chem. Int. Ed., 2010, 49: 10158.
[24] Zhang Y, Miyake G M, John M G, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Dalton Trans., 2012, 41: 9119.
[25] He J H, Zhang Y T, Chen E Y X. Synlett, 2014, 25: 1534.
[26] Pietrangelo A, Hillmyer M A, Tolman W B. Chem. Commun., 2009, 2736.
[27] Pietrangelo A, Knight S C, Gupta A K, Yao L J, Hillmyer M A, Tolman W B. J. Am. Chem. Soc., 2010, 132: 11649.
[28] Piedra-Arroni E, Ladavière C, Amgoune A, Bourissou D. J. Am. Chem. Soc., 2013, 135: 13306.
[29] Jia Y B, Wang Y B, Ren W M, Xu T Q, Wang J, Lu X B. Macromolecules, 2014, 47: 1966.
[30] Xu T Q, Chen E Y X. J. Am. Chem. Soc., 2014, 136: 1774.
[31] Jia Y B, Ren W M, Liu S J, Xu T Q, Wang Y B, Lu X B. ACS Macro Lett., 2014, 3: 896.
[32] Johnston D S. Adv. Polym. Sci., 1982, 42: 51.
[33] Baskaran D, Müller A H E. Prog. Polym. Sci., 2007, 32: 173.
[34] Baskaran D. Prog. Polym. Sci., 2003, 38: 521.
[35] Chen E Y X. Chem. Rev., 2009, 109: 5157.
[36] Chen E Y X, Mark T J. Chem. Rev., 2000, 100: 1391.
[37] McCahill J S L, Welch G C, Stephan D W. Dalton Trans., 2009, 8555.
[38] He J H, Zhang Y T, Falivene L, Caporaso L, Cavallo L, Chen E Y X. Macromolecules, 2014, 47: 7765.
[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[6] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[7] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[8] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[9] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[10] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[11] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[12] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[13] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[14] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
[15] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
阅读次数
全文


摘要

Lewis酸碱对在聚合中的应用