English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1655-1664 DOI: 10.7536/PC140531 前一篇   后一篇

• 综述与评论 •

用于锕系分离和三价镧系/锕系分离的水溶性配体

吴宇轩1,2, 刘宁2, 丁颂东*1   

  1. 1. 四川大学化学学院 成都 610064;
    2. 四川大学原子核科学技术研究所 辐射物理及技术教育部重点实验室 成都 610064
  • 收稿日期:2014-05-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 丁颂东 E-mail:dsd68@163.com
  • 基金资助:

    国家自然科学基金重大研究计划(No. 91126016)和国家基础科学人才培养基金(No. J1210004, J1103315)资助

Water-Soluble Ligands Used in the Separation of Actinides and the Partitioning of Trivalent Lanthanides from Actinides

Wu Yuxuan1,2, Liu Ning2, Ding Songdong*1   

  1. 1. College of Chemistry, Sichuan University, Chengdu 610064, China;
    2. Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
  • Received:2014-05-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the Major Research Plan of the National Natural Science Foundation of China (No. 91126016) and the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (No. J1210004, J1103315)

三价镧系(Lns(Ⅲ))与锕系(Ans(Ⅲ))分离是核工业高放废液处理过程中十分重要的环节。由于两者物理化学性质极为相近,分离难度很大,Lns(Ⅲ)与Ans(Ⅲ)的分离被公认为是最具挑战性的课题之一,迄今尚未得到满意解决。为实现两者的分离,技术上有两条途径可供选择:一是开发对Ans(Ⅲ)有高选择性的脂溶性萃取剂;二是开发对Ans(Ⅲ)有良好配位性质的水溶性配体。近年来,这两方面研究都已取得了较大进展。就后者而言,发现一些水溶性酰胺和吡啶衍生物、氨羧络合剂等配体对Ans(Ⅲ)有很好的选择性。它们已作为Ans(Ⅲ)的反萃剂或掩蔽剂用于Lns(Ⅲ)与Ans(Ⅲ)的分离。为此,本文就这些水溶性配体在对Lns(Ⅲ)和Ans(Ⅲ)萃取的影响、配合物组成与结构以及配位反应热力学性质等研究方面取得的进展进行综述,并对进一步的研究工作提出了一些建议。

The partitioning of the trivalent lanthanides (Lns(Ⅲ)) and actinides (Ans(Ⅲ)) is a key step of high level liquid waste processing in nuclear industry. Due to the very similar physical chemical properties between Lns(Ⅲ) and Ans(Ⅲ), their partitioning is so difficult as to be considered as one of the most challenging issues which has not been satisfactorily solved yet. For the partitioning of Lns(Ⅲ) and Ans(Ⅲ), there are two ways to be chosen in technology. One is to develop the lipophilic extractants with high selectivity for Ans(Ⅲ), and the other is to exploit the hydrophilic ligands with good coordination properties for Ans(Ⅲ). In recent years, the considerable progresses are made on both ways. In regard of the research and development for the latter, it is found that some water-soluble ligands such as complexones, water-soluble amides and pyridine derivatives exhibit good selectivity for Ans(Ⅲ) in aqueous solution. For the past few years, these water-soluble ligands as stripping or masking agents have been used for the separation of Ans(Ⅲ) from Lns(Ⅲ). In the present paper, the progress on the water-soluble ligands for the separation of Ans and the partitioning of Lns(Ⅲ) from Ans(Ⅲ) are reviewed from the following aspects: the influences on the extraction of Lns(Ⅲ) and Ans(Ⅲ); the composition and structures of complexes; as well as the thermodynamic properties for coordination reaction. In addition, some advices are also given for further exploration.

Contents
1 Introduction
2 Water-soluble ligands
2.1 Water-soluble amides
2.2 Complexones
2.3 Water-soluble pyridine derivatives
3 Conclusion and outlook

中图分类号: 

()

[1] Croff A C, Blomeke J O. Actinide Partitioning-Ttransmutation Program, Final Report, ORNL 5566, 1980.
[2] Michael J. Advanced Extraction Methods for Actinide/Lanthanide Separations, Nuclear Energy Research Initiative (NERI) Final Report, Grant No. DE-FG07-02SF22614 SF 269A, Project Number 02-098, 2005.
[3] Chopping G R. J. Less-Commom Metals, 1983, 93: 323.
[4] Zhu Y J. Radiochim. Acta, 1995, 68: 95.
[5] Zhu Y J, Chen J, Jiao R Z. Solvent Extr. Ion. Exch., 1996, 14: 61.
[6] Hill C, Guilaneux D, Berthon L, Madic C. J. Nucl. Sci. Technol., 2002, S3: 309.
[7] Drew M G B, Foreman M R S J, Hill C, Hudson M J, Madic C. Inorg. Chem. Commun., 2005, 8: 239.
[8] Narbutt J, Krejzler J. Radiochim. Acta, 2008, 96: 219.
[9] Lewis F W, Harwood L M, Hudson M J, Drew M G B, Desreux J F, Vidick G, Bouslimani N, Modolo G, Wilden A, Sypula M, Vu T H, Simonin J P. J. Am. Chem. Soc., 2011, 133: 13093.
[10] 陈靖(Chen J), 王芳(Wang F), 何喜红(He X H), 盘登芳(Pan D F). 化学进展(Progress in Chemistry), 2011, 23(7): 1338.
[11] 盘登芳(Pan D F), 叶钢(Ye G), 王芳(Wang F), 陈靖(Chen J). 化学进展(Progress in Chemistry), 2012, 24(11): 2167.
[12] Lewis F W, Hudson M J, Harwood L M. Synlett, 2011, 18: 2609.
[13] Ekberg C, Fermvik A, Retegan T, Skarnemark G, Foreman M R S, Hudson M J, Englund S, Nilsson M. Radiochim. Acta, 2008, 96: 225.
[14] Kolarik Z. Chem. Rev., 2008, 108: 4208.
[15] Sasaki Y, Sugo Y, Suzuki S, Tachimori S. Solvent Extr. Ion Exch., 2001, 19: 91.
[16] Sasaki Y, Tachimori S. Solvent Extr. Ion Exch., 2002, 20: 21.
[17] Ansari S A, Pathak P N, Manchanda V K, Husain M, Prasad A K, Parmar V S. Solvent Extr. Ion Exch., 2005, 23: 463.
[18] Zhang P, Chen J, Tian G X. CN 1203489 B, 2005.
[19] Sasaki Y, Sugo Y, Kitatsuji Y, Kirishima A, Kimura T, Choppin G R. Anal. Sci., 2007, 23: 727.
[20] Sasaki Y, Suzuki H, Sugo Y, Kimura T, Chopping G R. Chem. Lett., 2006, 35: 256.
[21] Wei M, Feng X G, Chen J. Sep. Sci. Technol., 2013, 48: 741.
[22] Wei M, He Q G, Feng X G, Chen J. J. Radioanal. Nucl. Chem., 2012, 293: 689.
[23] Tian G X, Rao L F, Teat S J, Liu G K. Chem. Eur. J., 2009, 15: 4172.
[24] Sasaki Y, Morita Y, Kitatsuji Y, Kimura T. Chem. Lett., 2010, 39: 898.
[25] Charbonnel M C, Berthon C, Berthon L, Boubals N, Burdet F, Duchesne M T, Guilbaud P, Mabille N, Petit S, Zorz N. Procedia Chemistry, 2012, 7: 20.
[26] Bollesteros M J, Calor J N, Costenoble S, Montuir M, Pacary V, Sorel C, Burdet F, Espinoux D, Hérès X, Eysseric C. Procedia Chemistry, 2012, 7: 178.
[27] Poinssot C, Rostaing C, Baron P, Warin D, Boullis B. Procedia Chemistry, 2012, 7: 358.
[28] Iqbal M, Huskens J, Sypula M, Modolo G, Verboom W. New J. Chem., 2011, 35: 2591.
[29] Shimojo K, Naganawa H, Noro J, Kubota F, Goto M. Anal. Sci., 2007, 23: 1427.
[30] Suneesh A S, Venkatesan K A, Syamala K V, Antony M P, Vasudeva Rao P R. Radiochim. Acta, 2012, 100: 425.
[31] Zhang P, Wang H R, Wang J C, Chen J. J. Radioanal. Nucl. Chem., 2007, 273: 65.
[32] Chen J, Wang J C, Duan W H. Proceedings of the International Solvent Extraction Conference. Tucson, 2008. 611.
[33] Wei M, Liu X G, Chen J. J. Radioanal. Nucl. Chem., 2012, 291: 717.
[34] Sasaki Y, Tsubata Y, Kitatsuji Y, Morita Y. Chem. Lett., 2013, 42: 91.
[35] Nilsson M, Nash K L. Solvent Extr. Ion Exch., 2007, 25: 665.
[36] Braley J C, Grimes T S, Nash K L. Ind. Eng. Chem. Res., 2012, 51: 629.
[37] Tachimori S, Sato A, Nakamura H. J. Nucl. Sci. Technol., 1979, 16: 434.
[38] Thakur P, Conca J L, Dodge C J, Francis A J, Choppin G R. Radiochim. Acta, 2013, 101: 221.
[39] Heitzmann M, Bravard F, Gateau C, Boublas N, Berthon C, Pécaut J, Charbonnel M C, Delangle P. Inorg. Chem., 2009, 48: 246.
[40] Heitzmann M, Gateau C, Chareyre L, Miguirditchian M, Charbonnel M C, Delangle P. New J. Chem., 2010, 34: 108.
[41] Hudson M J, Boucher C E, Braekers D, Desreux J F, Drew M G B, Foreman M R S J, Harwood L M, Madic C, Marken F, Youngs T G A. New J. Chem., 2006, 30: 1171.
[42] Kolarik Z, Müllich U, Gassner F. Solvent Extr. Ion Exch., 1999, 17: 1155.
[43] Trumm S, Geist A, Panak P J, Fanghänel T. Solvent Extr. Ion Exch., 2011, 29: 213.
[44] Geist A, Hill C, Modolo G, Foreman M R S J, Weigl M, Gompper K, Hudson M J. Solvent Extr. Ion Exch., 2006, 24: 463.
[45] Magnusson D, Christiansen B, Malmbeck R, Glatz J P. Radiochim. Acta, 2009, 97: 497.
[46] Fermvik A, Ekberg C, Englund S, Foreman M R S J, Modolo G, Retegan T, Skarnemark G. Radiochim. Acta, 2009, 97: 319.
[47] Trumm S, Panak P J, Geist A, Fanghänel T. Eur. J. Inorg. Chem., 2010, 19: 3022.
[48] Trumm S, Lieser G, Foreman M R S J, Panak P J, Geist A, Fanghänel T. Dalton Trans., 2010, 39: 923.
[49] Traister G L, Schilt A A. Anal. Chem., 1976, 48: 1216.
[50] Müllich U, Geist A, Zevaco T. EP 2377861 A1, 2011.
[51] Geist A, Müllich U, Magnusson D, Kaden P, Modolo G, Wilden A, Zevaco T. Solvent Extr. Ion Exch., 2012, 30: 433.
[52] Magnusson D, Geist A, Malmbeck R, Modolo G, Wilden A. Procedia Chemistry, 2012, 7: 245.
[53] Wilden A, Modolo G, Sypula M, Geist A, Magnusson D. Procedia Chemistry, 2012, 7: 418.
[54] Ruff C M, Müllich U, Geist A, Panak P J. Dalton Trans., 2012, 41: 14594.
[55] Steppert M, Walther C, Geist A, Fanghänel T. New J. Chem., 2009, 33: 2437.
[56] Sasaki Y, Tsubata Y, Kitatsuji Y, Sugo Y, Shirasu N, Morita Y. Procedia Chemistry, 2012, 7: 380.

[1] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[2] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[3] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[4] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[5] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[6] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[7] 刘耀阳, 刘志斌, 赵闯, 周羽, 高杨, 何辉. 锕系元素分离研究:不对称双酰胺荚醚的萃取化学及应用[J]. 化学进展, 2020, 32(2/3): 219-229.
[8] 牟泽怀, 王银军, 谢鸿雁. 稀土金属配合物催化芳香型乙烯基极性单体立构选择性聚合[J]. 化学进展, 2020, 32(12): 1885-1894.
[9] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[10] 袁世芳, 闫艺. 同核双金属烯烃聚合催化剂[J]. 化学进展, 2019, 31(12): 1737-1748.
[11] 池晓汪, 吴群燕, 于吉攀, 张覃, 柴之芳, 石伟群. 锕系异核双金属化合物[J]. 化学进展, 2019, 31(10): 1341-1349.
[12] 杨欣达, 姜琴, 施鹏飞*. 具有双光子效应的多核配合物[J]. 化学进展, 2018, 30(8): 1172-1185.
[13] 邱康强, 朱宏翊, 计亮年, 巢晖. 金属配合物用于细胞内动态实时荧光示踪研究[J]. 化学进展, 2018, 30(10): 1524-1533.
[14] 何良, 谭彩萍, 曹乾, 毛宗万. 磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用[J]. 化学进展, 2018, 30(10): 1548-1556.
[15] 孙悦文, 金素星, 王晓勇, 郭子建. 金属配合物在肿瘤化学免疫治疗中的应用前景[J]. 化学进展, 2018, 30(10): 1573-1583.