English
新闻公告
More
化学进展 2019, Vol. 31 Issue (10): 1341-1349 DOI: 10.7536/PC190322 前一篇   后一篇

• •

锕系异核双金属化合物

池晓汪1,2, 吴群燕2, 于吉攀2, 张覃1,**(), 柴之芳2,3, 石伟群2,**()   

  1. 1. 贵州大学矿业学院 贵阳 550025
    2. 中国科学院高能物理研究所核能化学实验室 北京 100049
    3. 中国科学院宁波材料技术与工程研究所先进能源材料工程实验室 宁波 315201
  • 收稿日期:2019-03-19 出版日期:2019-10-15 发布日期:2019-08-05
  • 通讯作者: 张覃, 石伟群
  • 基金资助:
    国家自然科学基金项目(11875058); 国家自然科学基金项目(U1867205); 贵州省高层次创新型人才培养计划项目(黔科合人才[2015]4012号)

Actinide-Heterobimetal Compounds

Xiaowang Chi1,2, Qunyan Wu2, Jipan Yu2, Qin Zhang1,**(), Zhifang Chai2,3, Weiqun Shi2,**()   

  1. 1. College of Mining, Guizhou University, Guiyang 550025, China
    2. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    3. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
  • Received:2019-03-19 Online:2019-10-15 Published:2019-08-05
  • Contact: Qin Zhang, Weiqun Shi
  • About author:
    ** E-mail: (Qin Zhang);
    (Weiqun Shi)
  • Supported by:
    National Natural Science Foundation of China(11875058); National Natural Science Foundation of China(U1867205); Project of High-Level Innovative Talents of Guizhou Province, China(黔科合人才[2015]4012号)

锕系金属有机化合物的研究已成为金属有机化学研究领域的热点之一,其化合物的合成和分离极具挑战性,其中锕系异核双金属化合物在催化和小分子活化方面有潜在的应用前景。随着人们对锕系独特电子结构及其性质的深入认识,锕系异核双金属化合物的研究也取得了一些进展。本文总结了锕系异核双金属化合物近30年的研究成果,主要包括锕系-过渡金属体系和锕系-主族金属体系的实验和理论研究。

The study of organoactinide compounds has become one of the hot fields in organometallic chemistry, which are extremely challenging on synthesis and separation, and the potential application of actinide-heterobimetal compounds lie in catalysis and small molecule activation. With the deep understanding of unique electronic structure and properties of actinide compounds, some progress has been made in actinide-heterobimetal compounds. This review summarizes the research results of actinide-heterobimetal compounds in the past 30 years, including experimental and theoretical studies on actinide-transition metal and actinide-main group metal systems.

()
图1 Th-M(M=Ru, Ni, Pt)化合物[19, 21, 22]
Fig. 1 Th-M(M=Ru, Ni, Pt) compounds[19, 21, 22]
图2 U-Re化合物[23, 25, 26]
Fig. 2 U-Re Compounds[23, 25, 26]
图3 U-Co化合物
Fig. 3 U-Co Compound
图4 U-Ru化合物[28]
Fig. 4 U-Ru compounds[28]
图5 U-Fe化合物[29]
Fig. 5 U-Fe Compound[29]
图6 Th-Cu化合物[30]
Fig. 6 Th-Cu Compound[30]
图7 U-Co化合物[35]
Fig. 7 U-Co compounds[35]
图8 U/Th-Co化合物的合成[34]
Fig. 8 Synthesis of U/Th-Co compounds[34]. Copyright 2014, ACS.
图9 An-Mo化合物[37]
Fig. 9 An-Mo compounds[37]
图10 U-Rh化合物及其单晶结构[38]
Fig. 10 U-Rh compound and its single crystal structure[38]. Copyright: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
图11 U-Ni化合物[41]
Fig. 11 U-Ni compound[41]
图12 U-M(M=Sn, Al, Ga)化合物[42,43,44,45,46]
Fig. 12 U-M(M=Sn, Al, Ga) compounds[42,43,44,45,46]
图13 U-Pn(Pn=P, As, Sb, Bi)和Th-Pn(Pn=P, As, Sb)化合物[47]
Fig. 13 U-Pn(Pn=P, As, Sb, Bi) and Th-Pn(Pn=P, As, Sb) compounds[47]
图14 U-E(E=N, P, As, Sb, Bi)多重键的共价性[54]
Fig. 14 Covalency in U-E(E=N, P, As, Sb, Bi) triple bonds[54]. Copyright 2015, ACS.
[1]
Kealy T J, Pauson P L . Nature, 1951,168:1039.
[2]
Wilkinson G, Rosenblum M, Whiting M C, Woodward R B . J. Am. Chem. Soc., 1952,74:2125.
[3]
Reynolds L T, Wilkinson G . J. Inorg. Nucl. Chem., 1956,2:246.
[4]
Halter D P, Heinemann F W, Bachmann J, Meyer K . Nature, 2016,530:317.
[5]
Halter D P, Heinemann F W, Maron L, Meyer K . Nat. Chem., 2017,10:259.
[6]
MacDonald M R, Fieser M E, Bates J E, Ziller J W, Furche F, Evans W J . J. Am. Chem. Soc., 2013,135:13310.
[7]
Langeslay R R, Fieser M E, Ziller J W, Furche F, Evans W J . Chem. Sci., 2015,6:517.
[8]
Windorff C J, Chen G P, Cross J N, Evans W J, Furche F, Gaunt A J, Janicke M T, Kozimor S A, Scott B L . J. Am. Chem. Soc., 2017,139:3970.
[9]
Su J, Windorff C J, Batista E R, Evans W J, Gaunt A J, Janicke M T, Kozimor S A, Scott B L, Woen D H, Yang P . J. Am. Chem. Soc., 2018,140:7425.
[10]
Billow B S, Livesay B N, Mokhtarzadeh C C, McCracken J, Shores M P, Boncella J M, Odom A L . J. Am. Chem. Soc., 2018,140:17369.
[11]
Cotton F A, Curtis N F, Harris C B, Johnson B F G, Lippard S J, Mague J T, Robinson W R, Wood J S . Science, 1964,145:1305.
[12]
Davidson P J, Lappert M F . J. Chem. Soc. Chem. Commun., 1973,317a.
[13]
Resa I, Carmona E, Gutierrez-Puebla E, Monge A . Science, 2004,305:1136.
[14]
Nguyen T, Sutton A D, Brynda M, Fettinger J C, Long G J, Power P P . Science, 2005,310:844.
[15]
Green S P, Jones C, Stasch A . Science, 2007,318:1754.
[16]
Berry J F, Lu C C . Inorg. Chem., 2017,56:7577.
[17]
Liddle S T . Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties. John Wiley & Sons. 2015.
[18]
Bennett R L, Bruce M I, Stone F G A, . J. Organomet. Chem., 1971,26:355.
[19]
Sternal R S, Brock C P, Marks T J . J. Am. Chem. Soc., 1985,107:8270.
[20]
Sternal R S, Marks T J . Organometallics, 1987,6:2621.
[21]
Ritchey J M, Zozulin A J, Wrobleski D A, Ryan R R, Wasserman H J, Moody D C, Paine R T . J. Am. Chem. Soc., 1985,107:501.
[22]
Hay P J, Ryan R R, Salazar K V, Wrobleski D A, Sattelberger A P . J. Am. Chem. Soc., 1986,108:313.
[23]
Gardner B M, McMaster J, Lewis W, Liddle S T . Chem. Commun., 2009,17:2851.
[24]
Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S . Dalton Trans., 2008,21:2832.
[25]
Gardner B M, McMaster J, Moro F, Lewis W, Blake A J, Liddle S T, . Chem. Eur. J., 2011,17:6909.
[26]
Patel D, King D M, Gardner B M, McMaster J, Lewis W, Blake A J, Liddle S T . Chem. Commun., 2011,47:295.
[27]
Patel D, Moro F, McMaster J, Lewis W, Blake A J, Liddle S T . Angew. Chem. Int. Ed., 2011,50:10388.
[28]
Gardner B M, Patel D, Cornish A D, McMaster J, Lewis W, Blake A J, Liddle S T . Chem. Eur. J., 2011,17:11266.
[29]
Fortier S, Aguilarcalderón J R, Vlaisavljevich B, Mettamagaña A J, Goos A G, Botez C E . Organometallics, 2017,36:4591.
[30]
Yang P, Zhou E, Hou G, Zi G F, Ding W, Walter M D . Chem. Eur. J., 2016,22:13845.
[31]
Chi C, Wang J Q, Qu H, Li W L, Meng L, Luo M, Li J, Zhou M F . Angew. Chem. Int. Ed., 2017,129:7036.
[32]
Batsanov S S . Inorg. Mater., 2001,37:871.
[33]
Pyykkö P, Riedel S, Patzschke M . Chem. Eur. J., 2005,11:3511.
[34]
Ward A L, Lukens W W, Lu C C, Arnold J . J. Am. Chem. Soc., 2014,136:3647.
[35]
Napoline J W, Kraft S J, Matson E M, Fanwick P E, Bart S C, Thomas C M . Inorg. Chem., 2013,52:12170.
[36]
Hlina J A, Pankhurst J R, Kaltsoyannis N, Arnold P L . J. Am. Chem. Soc., 2016,138:3333.
[37]
Ayres A J, Zegke M, Ostrowski J P A, Tuna F, McInnes E J L, Wooles A J, Liddle S T . Chem. Commun., 2018,54:13515.
[38]
Lu E, Wooles A J, Gregson M, Cobb P J, Liddle S T . Angew. Chem. Int. Ed., 2018,57:6587.
[39]
Pyykkö P . J. Phys. Chem. A, 2015,119:2326.
[40]
Hlina J A, Wells J A L, Pankhurst J R, Love J B, Arnold P L . Dalton Trans., 2017,46:5540.
[41]
Feng G, Zhang M, Shao D, Wang X, Wang S, Maron L, Zhu C Q . Nat. Chem., 2019,11:248.
[42]
Porchia M, Casellato U, Ossola F, Rossetto G, Zanella P, Graziani R . J. Chem. Soc. Chem. Commun., 1986,1034.
[43]
Minasian S G, Krinsky J L, Williams V A, Arnold J . J. Am. Chem. Soc., 2008,130:10086.
[44]
Minasian S G, Krinsky J L, Rinehart J D, Copping R, Tyliszczak T, Janousch M, Shuh D K, Arnold J . J. Am. Chem. Soc., 2009,131:13767.
[45]
Liddle S T, McMaster J, Mills D P, Blake A J, Jones C, Woodul W D . Angew. Chem. Int. Ed., 2009,48:1077.
[46]
Winston M S, Batista E R, Yang P, Tondreau A M, Boncella J M . Inorg. Chem., 2016,55:5534.
[47]
Liddle S, Rookes T, Wildman E, Balazs G, Gardner B, Wooles A, Gregson M, Tuna F, Scheer M . Angew. Chem. Int. Ed., 2018,130:1332.
[48]
Seth M, Dolg M, Fulde P, Schwerdtfeger P . J. Am. Chem. Soc., 1995,117:6597.
[49]
Vlaisavljevich B, Miró P, Cramer C J, Gagliardi L, Infante I, Liddle S T . Chem. Eur. J., 2011,17:8424.
[50]
Cantero-López P, Le Bras L, Páez-Hernández D, Arratia-Perez R . Dalton Trans., 2015,44:20004.
[51]
Bi Y T, Li L, Guo Y R, Pan Q J . Inorg. Chem., 2019,58:1290.
[52]
Wu Q Y, Wang C Z, Lan J H, Xiao C L, Wang X K, Zhao Y L, Chai Z F, Shi W Q . Inorg. Chem., 2014,53:9607.
[53]
Wang C Z, Gibson J K, Lan J H, Wu Q Y, Zhao Y L, Li J, Chai Z F, Shi W Q . Dalton Trans., 2015,44:17045.
[54]
Wu Q Y, Lan J H, Wang C Z, Zhao Y L, Chai Z F, Shi W Q . J. Phys. Chem. A, 2015,119:922.
[55]
Wu Q Y, Lan J H, Wang C Z, Cheng Z P, Chai Z F, Gibson J K, Shi W Q . Dalton Trans., 2016,45:3102.
[56]
Wang C Z, Wu Q Y, Lan J H, Chai Z F, Gibson J K, Shi W Q . Radiochim. Acta, 2017,105:21.
[57]
Wu Q Y, Cheng Z P, Lan J H, Wang C Z, Chai Z F, Gibson J K, Shi W Q . Dalton Trans., 2018,47:12718.
[58]
Chi X W, Wu Q Y, Hao Q, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q . Organometallics, 2018,37:3678.
[59]
Chi X W, Wu Q Y, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q . Organometallics, 2019,38:1963.
[60]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T . Science, 2012,337:717.
[61]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T . Nat. Chem., 2013,5:482.
[62]
Lukens W W, Edelstein N M, Magnani N, Hayton T W, Fortier S, Seaman L A . J. Am. Chem. Soc., 2013,135:10742.
[63]
Kaltsoyannis N . Inorg. Chem., 2013,52:3407.
[64]
Neidig M L, Clark D L, Martin R L . Coordin. Chem. Rev., 2013,257:394.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[3] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[4] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[5] 郭文迪, 刘晔. 过渡金属配合物催化炔烃和亲核试剂的羰化反应[J]. 化学进展, 2021, 33(4): 512-523.
[6] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[7] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[8] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[9] 陈磊, 赵文, 易刚吉, 周建军, 袁爱华. 3d过渡金属单离子磁体[J]. 化学进展, 2019, 31(2/3): 337-350.
[10] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[11] 吕宪伟, 胡忠攀, 赵挥, 刘玉萍, 袁忠勇. 自支撑型过渡金属磷化物电催化析氢反应研究[J]. 化学进展, 2018, 30(7): 947-957.
[12] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[13] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[14] 阙楚强, 陈宁*, 许家喜*. 氨基甲酸酯在C—H键活化中的应用[J]. 化学进展, 2018, 30(2/3): 139-155.
[15] 熊兴泉, 范观铭, 朱荣俊, 石霖, 肖上运, 毕成. 酰胺类化合物的高效合成研究[J]. 化学进展, 2016, 28(4): 497-506.
阅读次数
全文


摘要

锕系异核双金属化合物