English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1548-1556 DOI: 10.7536/PC180610 前一篇   后一篇

• 综述 •

磷光环金属化铱(Ⅲ)配合物在癌症治疗方面的应用

何良1, 谭彩萍1, 曹乾1, 毛宗万1,2*   

  1. 1. 中山大学化学学院 广州 510275;
    2. 华南农业大学材料与能源学院 广州 510642
  • 收稿日期:2018-06-08 修回日期:2018-06-21 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 毛宗万 E-mail:cesmzw@mail.sysu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21231007,21701195)和广东省自然科学基金项目(No.2017A030310278)资助

Application of Phosphorescent Cyclometalated Iridium(Ⅲ) Complexes in Cancer Treatment

Liang He1, Caiping Tan1, Qian Cao1, Zongwan Mao1,2*   

  1. 1. School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
    2. College of Materials and Energy, South China Agricutural University, Guangzhou 510642, China
  • Received:2018-06-08 Revised:2018-06-21 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21231007, 21701195) and the Guangdong Natural Science Foundation(No. 2017A030310278).
配位饱和且取代惰性的环金属化铱(Ⅲ)配合物由于优秀的磷光特性,在生物成像和生物传感等方面有着广泛的应用。近年来,该类铱配合物由于有效的抗肿瘤效力和新颖的抗肿瘤机制,在抗肿瘤方面的应用也引起了广泛关注。本文主要对磷光环金属化铱(Ⅲ)配合物(结构通式为[Ir(C^N)2(N^N)]+)在抗癌化疗和光动力治疗两方面的最新研究进展进行了综述;分类总结了靶向不同细胞器,作为蛋白-蛋白相互作用抑制剂,以及应用于单光子和双光子光动力治疗的环金属化铱(Ⅲ)配合物,为开发新型金属抗肿瘤药物提供参考。最后,对环金属化铱(Ⅲ)配合物在抗癌应用方面的前景进行了展望。
Due to the excellent phosphorescent properties, the coordinatively saturated and substitutionally inert cyclometalated iridium(Ⅲ) complexes have been widely used in biological imaging and biosensing. In recent years, the application of this kind of iridium(Ⅲ) complexes in cancer treatment has attracted wide attention due to its anticancer efficacy and novel mechanisms. Recent advances of phosphorescent cyclometalated iridium(Ⅲ) complexes of the formula [Ir(C^N)2(N^N)]+ in anticancer chemotherapy and photodynamic therapy (PDT) are reviewed in this article. The iridium(Ⅲ) complexes targeting different organelles or as protein-protein interactions inhibitors or being applied in one-photon and two-photon PDT are summarized and discussed, which provides guidance for the development of new metal-based anticancer drugs. Finally, the development and application of phosphorescent cyclometalated iridium(Ⅲ) complexes in cancer treatment is discussed and prospected.
Contents
1 Introduction
2 Organelle-targeted phosphorescent anticancer cyclometalated iridium (Ⅲ) complexes
2.1 Mitochondria-targeted
2.2 Lysosome-targeted
2.3 Other organelles-targeted
3 Cyclometalated iridium(Ⅲ) complexes as protein-protein interactions inhibitors
4 Cyclometalated iridium(Ⅲ) complexes used in photodynamic therapy(PDT)
4.1 Mechanisms
4.2 One-photon PDT
4.3 Two-photon PDT
5 Conclusion and outlook

中图分类号: 

()
[1] Chen W Q, Zheng R S, Baade P D, Zhang S W, Zeng H M, Bray F, Jemal A, Yu X Q, He J. CA Cancer J. Clin., 2016, 66:115.
[2] Einhorn L H. J. Clin. Oncol., 1990, 8:1777.
[3] Jayson G C, Kohn E C, Kitchener H C, Ledermann J A. Lancet, 2014, 384:1376.
[4] Waggoner S E. Lancet, 2003, 361:2217.
[5] Argyriou A A, Polychronopoulos P, Iconomou G, Chroni E, Kalofonos H P. Cancer Treat. Rev., 2008, 34:368.
[6] Zhang C X, Lippard S J. Curr. Opin. Chem. Biol., 2003, 7:481.
[7] Kaluderovic G N, Paschke R. Curr. Med. Chem., 2011, 18:4738.
[8] van Rijt S H, Sadler P J. Drug Discov. Today, 2009, 14:1089.
[9] Fricker S P. Dalton Trans., 2007, 43:4903.
[10] Komeda S, Casini A. Curr. Top. Med. Chem., 2012, 12:219.
[11] Ma D L, He H Z, Leung K H, Chan D S, Leung C H. Angew. Chem. Int. Ed., 2013, 52:7666.
[12] Leung C H, Zhong H J, Chan D S H, Ma D L. Coord. Chem. Rev., 2013, 257:1764.
[13] Zhao Q, Huang C H, Li F Y. Chem. Soc. Rev., 2011, 40:2508.
[14] Lo K K W, Zhang K Y. Rsc Adv., 2012, 2:12069.
[15] You Y M, Cho S, Nam W W. Inorg. Chem., 2014, 53:1804.
[16] Zamora A, Vigueras G, Rodríguez V, Santana M D, Ruiz J. Coord. Chem. Rev., 2018, 360:34.
[17] You Y M. J. Chin. Chem. Soc., 2018, 65:352.
[18] Gao R M, Ho D G, Hernandez B, Selke M, Murphy D, Djurovich P I, Thompson M E. J. Am. Chem. Soc., 2002, 124:14828.
[19] You Y M. Curr. Opin. Chem. Biol., 2013, 17:699.
[20] Ma D L, Chan D S, Leung C H. Acc. Chem. Res., 2014, 47:3614.
[21] Vyas S, Zaganjor E, Haigis M C. Cell, 2016, 166:555.
[22] Fulda S, Galluzzi L, Kroemer G. Nat. Rev. Drug Discov., 2010, 9:447.
[23] Cao J J, Tan C P, Chen M H, Wu N, Yao D Y, Liu X G, Ji L N, Mao Z W. Chem. Sci., 2017, 8:631.
[24] Ye R R, Tan C P, Ji L N, Mao Z W. Dalton Trans., 2016, 45:13042.
[25] Youle R J, Narendra D P. Nat. Rev. Mol. Cell Biol., 2011, 12:9.
[26] Chen M H, Wang F X, Cao J J, Tan C P, Ji L N, Mao Z W. ACS Appl. Mater. Interfaces, 2017, 9:13304.
[27] Ye R R, Cao J J, Tan C P, Ji L N, Mao Z W. Chem. -Eur. J., 2017, 23:15166.
[28] He L, Wang K N, Zheng Y, Cao J J, Zhang M F, Tan C P, Ji L N, Mao Z W. Dalton Trans., 2018, 47:6942.
[29] Ouyang M, Zeng L L, Huang H Y, Jin C Z, Liu J P, Chen Y, Ji L N, Chao H. Dalton Trans., 2017, 46:6734.
[30] Weerasinghe P, Buja L M. Exp. Mol. Pathol., 2012, 93:302.
[31] Guan R L, Chen Y, Zeng L L, Rees T W, Jin C Z, Huang J J, Chen Z S, Ji L N, Chao H. Chem. Sci., 2018,9:5183.
[32] Venkatesh V, Berrocal-Martin R, Wedge C J, Romero-Canelon I, Sanchez-Cano C, Song J I, Coverdale J P C, Zhang P, Clarkson G J, Habtemariam A, Magennis S W, Deeth R J, Sadler P J. Chem. Sci., 2017, 8:8271.
[33] Saftig P, Sandhoff K. Nature, 2013, 502:312.
[34] Li S P Y, Tang T S M, Yiu K S M, Lo K K W. Chem. -Eur. J., 2012, 18:13342.
[35] He L, Liao S Y, Tan C P, Lu Y Y, Xu C X, Ji L N, Mao Z W. Chem. Commun., 2014, 50:5611.
[36] He L, Tan C P, Ye R R, Zhao Y Z, Liu Y H, Zhao Q, Ji L N, Mao Z W. Angew. Chem. Int. Ed., 2014, 53:12137.
[37] Cao R, Jia J L, Ma X C, Zhou M, Fei H. J. Med. Chem., 2013, 56:3636.
[38] Yellol J, Perez S A, Yellol G, Zajac J, Donaire A, Vigueras G, Novohradsky V, Janiak C, Brabec V, Ruiz J. Chem. Commun., 2016, 52:14165.
[39] Novohradsky V, Zamora A, Gandioso A, Brabec V, Ruiz J, Marchan V. Chem. Commun., 2017, 53:5523.
[40] Pracharova J, Vigueras G, Novohradsky V, Cutillas N, Janiak C, Kostrhunova H, Kasparkova J, Ruiz J, Brabec V. Chem. -Eur. J., 2018, 24:4607.
[41] Gamba I, Salvadó I, Brissos R F, Gamez P, Brea J, Loza M I, Vázquez M E, Vázquez López M. Chem. Commun., 2016, 52:1234.
[42] Salvadó I, Gamba I, Montenegro J, Martinez-Costas J, Brea J M, Loza M I, Vázquez López M, Vázquez M E. Chem. Commun., 2016, 52:11008.
[43] Scott D E, Bayly A R, Abell C, Skidmore J. Nat. Rev. Drug Discov., 2016, 15:533.
[44] Leung C H, Zhong H J, Yang H, Cheng Z, Chan D S, Ma V P, Abagyan R, Wong C Y, Ma D L. Angew. Chem. Int. Ed., 2012, 51:9010.
[45] Zhong H J, Lu L H, Leung K H, Wong C C L, Peng C, Yan S C, Ma D L, Cai Z W, Wang H M D, Leung C H. Chem. Sci., 2015, 6:5400.
[46] Liu L J, Wang W, Huang S Y, Hong Y, Li G, Lin S, Tian J, Cai Z, Wang H D, Ma D L, Leung C H. Chem. Sci., 2017, 8:4756.
[47] Liu L J, He B, Miles J A, Wang W, Mao Z, Che W I, Lu J J, Chen X P, Wilson A J, Ma D L, Leung C H. Oncotarget, 2016, 7:13965.
[48] Dolmans D E, Fukumura D, Jain R K. Nat. Rev. Cancer, 2003, 3:380.
[49] Agostinis P, Berg K, Cengel K A, Foster T H, Girotti A W, Gollnick S O, Hahn S M, Hamblin M R, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson B C, Golab J. CA Cancer J. Clin., 2011, 61:250.
[50] You Y M, Nam W W. Chem. Soc. Rev., 2012, 41:7061.
[51] Jiang X P, Zhu N B, Zhao D H, Ma Y G. Sci. China Chem., 2016, 59, 40.
[52] Lerch M M, Hansen M J, van Dam G M, Szymanski W, Feringa B L. Angew. Chem. Int. Ed., 2016, 55:10978.
[53] Li S P, Lau C T, Louie M W, Lam Y W, Cheng S H, Lo K K. Biomaterials, 2013, 34:7519.
[54] Moromizato S, Hisamatsu Y, Suzuki T, Matsuo Y, Abe R, Aoki S. Inorg. Chem., 2012, 51:12697.
[55] Kando A, Hisamatsu Y, Ohwada H, Itoh T, Moromizato S, Kohno M, Aoki S. Inorg. Chem., 2015, 54:5342.
[56] He L, Li Y, Tan C P, Ye R R, Chen M H, Cao J J, Ji L N, Mao Z W. Chem. Sci., 2015, 6:5409.
[57] Ye R R, Tan C P, He L, Chen M H, Ji L N, Mao Z W. Chem. Commun., 2014, 50:10945.
[58] Jing Y, Cao Q, Hao L, Yang G G, Hu W L, Ji L N, Mao Z W. Chem. Commun., 2018, 54:271.
[59] Lv W, Zhang Z, Zhang K Y, Yang H, Liu S, Xu A, Guo S, Zhao Q, Huang W. Angew. Chem. Int. Ed., 2016, 55:9947.
[60] Gu B, Wu W B, Xu G X, Feng G X, Yin F, Chong P H J, Qu J L, Yong K T, Liu B. Adv. Mater., 2017, 29:1701076.
[61] Boreham E M, Jones L, Swinburne A N, Blanchard-Desce M, Hugues V, Terryn C, Miomandre F, Lemercier G, Natrajan L S. Dalton Trans., 2015, 44:16127.
[62] Nam J S, Kang M G, Kang J, Park S Y, Lee S J C, Kim H T, Seo J K, Kwon O H, Lim M H, Rhee H W, Kwon T H. J. Am. Chem. Soc., 2016, 138:10968.
[63] McKenzie L K, Sazanovich I V, Baggaley E, Bonneau M, Guerchais V, Williams J A, Weinstein J A, Bryant H E. Chem. -Eur. J., 2017, 23:234.
[64] Tian X H, Zhu Y H, Zhang M Z, Luo L, Wu J Y, Zhou H P, Guan L J, Battaglia G, Tian Y P. Chem. Commun., 2017, 53:3303.
[65] Liu J P, Jin C Z, Yuan B, Liu X G, Chen Y, Ji L N, Chao H. Chem. Commun., 2017, 53:2052.
[1] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[2] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[3] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[4] 王金凤, 李爱森, 李振. 室温磷光凝胶研究进展[J]. 化学进展, 2022, 34(3): 487-498.
[5] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[6] 龚筑轲, 许辉. 晶态咔唑基有机室温磷光材料[J]. 化学进展, 2022, 34(11): 2432-2461.
[7] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.
[8] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[9] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[10] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[11] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[12] 孙子茹, 刘胜男, 高清志. 靶向葡萄糖转运蛋白(GLUTs)抗癌药物的开发[J]. 化学进展, 2020, 32(12): 1869-1878.
[13] 陈晓红, 王允中, 张永明, 袁望章. 非典型发光化合物的簇聚诱导发光[J]. 化学进展, 2019, 31(11): 1560-1575.
[14] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[15] 费进波, 李琦, 赵洁, 李峻柏. 二苯丙氨酸二肽组装体的光学性质及潜在应用[J]. 化学进展, 2019, 31(1): 30-37.