English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1132-1142 DOI: 10.7536/PC140136 前一篇   后一篇

• 综述与评论 •

中孔金属有机骨架材料的制备与应用

宋莉芳*, 夏慧芸, 陈华鑫, 李卓, 卢佳佳   

  1. 交通铺面材料教育部工程研究中心 长安大学材料科学与工程学院 西安 710061
  • 收稿日期:2014-01-01 修回日期:2014-03-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 宋莉芳 E-mail:slf@chd.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51202016)、陕西省博士后基金项目和中央高校基本科研业务费项目(No.CHD2011JC167,CHD2011JC192,CHD2013G3312019)资助

Preparation and Application of Mesoporous Metal-Organic Frameworks

Song Lifang*, Xia Huiyun, Chen Huaxin, Li Zhuo, Lu Jiajia   

  1. Engineering Research Center of Transportation Materials, Ministry of Education, School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
  • Received:2014-01-01 Revised:2014-03-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51202016), the Shaanxi Postdoctoral Sustentation Fund, China and the Fundamental Research Funds for the Central Universities(No. CHD2011JC167,CHD2011JC192,CHD2013G3312019)

相对于微孔金属有机骨架化合物,中孔金属有机骨架化合物的研究大大拓宽了该类材料的应用,尤其是在多相催化、挥发性有机物吸附和药物输送等领域。目前存在的问题主要集中在材料制备环节,尽管可以从分子水平设计出具有合适尺寸的中孔金属有机骨架材料,但是会出现合成过程中骨架结构发生贯穿无法得到中孔,甚至样品活化过程中骨架发生坍塌失去中孔等问题。本文综述了中孔金属有机骨架材料的设计策略与制备方法,如使用长配体、混合配体、表面活性剂辅助及后合成修饰等方法,并对各种制备方法的优缺点进行了总结。简要介绍了中孔金属有机骨架材料在气体存储、多相催化、分子传感、挥发性有机物吸附和药物载体等领域的应用进展,最后展望了该材料的发展前景。

Mesoporous metal-organic frameworks(MOFs), comparing with those with micropores, have attracted tremendous attention for expanding their applications in gas storage, heterogeneous catalysis, volatile organic compounds (VOCs) adsorption, drug carrier, etc. Metal-organic frameworks are still largely restricted to the microporous regins to date, with the negative impact of small pore size on the diffusion and mass transfer inside. The development of reliable and reproducible methods to prepare and stabilize mesoporous metal-organic frameworks with tailored structures and tunable properties remains a great challenge to meet many future applications. The structure of materials can be designed on molecular level, but the problem remains that the frameworks tend to interpenetrate one another to maximize packing efficiency or collapse while solvent molecules removed. The preparation and applications of mesoporous metal-organic frameworks are reviewed in this paper. Several preparation approaches, such as combining secondary building units(SBUs) and extended ligands, designing zinc-adeninate octahedral building units with lager size, using long ligands or mixed-ligands, surfactant template to get mesosize channels, cages or pockets are presented in detail, and the advantages and disadvantages of each method are summarized. In addition, applications of mesoporous metal-organic frameworks in the areas of gas storage, catalysis, sensors, adsorption of VOCs and drug carrier are introduced.

Contents
1 Introduction
2 Design of mesoporous metal-organic frameworks
2.1 SBU and extended ligands
2.2 Metal-adeninate vertices
2.3 Long ligands
2.4 Utility of mixed-ligands
2.5 Surfactant template
3 Application of mesoporous metal-organic frameworks
3.1 Gas storage
3.2 Heterogeneous catalysis
3.3 Sensors
3.4 Adsorption of VOCs
3.5 Drug carrier
4 Conclusion

中图分类号: 

()

[1] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M.Science,2013, 341(6149): 974.
[2] 谢生明(Xie S M), 袁黎明(Yuan L M).化学进展(Progress in Chemistry), 2013, 25(10): 1763.
[3] Lee J, Farha O K, Roberts J, Scheidt K A, Nguyen S T, Hupp J T.Chem. Soc. Rev., 2009, 38(5): 1450.
[4] Fang Q R, Zhou H C, Makal T A, Young M D.Comments Inorg. Chem., 2010, 31(5/6): 165.
[5] Xuan W, Zhu C, Liu Y, Cui Y.Chem. Soc. Rev., 2012, 41(5): 1677.
[6] Song L, Zhang J, Sun L, Xu F, Li F, Zhang H, Si X, Jiao C, Li Z, Liu S, Liu Y, Zhou H, Sun D, Du Y, Cao Z, Gabelica Z.Energy Environ. Sci., 2012, 5(6): 7508.
[7] Eddaoudi M, Kim J, Rosi N, Vodak D, Wachter J, O'Keeffe M, Yaghi O M.Science, 2002, 295(5554): 469.
[8] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin A Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M.Science, 2010, 329(5990): 424.
[9] An J, Farha O K, Hupp J T, Pohl E, Yeh J I, Rosi N L.Nat. Commun., 2012, 3: 604.
[10] Li T, Kozlowski M T, Doud E A, Blakely M N, Rosi N.J. Am. Chem. Soc., 2013, 135(32): 11688.
[11] Park J, Li J R, Carolina S E, Yuan D, Zhou H C. Chem. Commun., 2012, 48(6): 883.
[12] Wang X S, Ma S Q, Sun D F, Parkin S, Zhou H C.J. Am. Chem. Soc., 2006, 128(51): 16474.
[13] Zhao D, Yuan D, Sun D, Zhou H C.J. Am. Chem. Soc., 2009, 131(26): 9186.
[14] Yuan D, Zhao D, Sun D, Zhou H C.Angew. Chem. Int. Ed., 2010, 49(31): 5357.
[15] Yuan D, Zhao D, Zhou H C.Inorg. Chem., 2011, 50(21): 10528.
[16] Yuan D, Getman R B, Wei Z, Snurr R Q, Zhou H C.Chem. Commun., 2012, 48(27): 3297.
[17] Fang Q R, Yuan D Q, Sculley J, Lu W G, Zhou H C.Chem. Commun., 2012, 48(2): 254.
[18] Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn P L, Lee J H, Chang J S, Jhung S H, Ferey G.Angew. Chem. Int. Ed., 2006, 45(48): 8227.
[19] Sonnauer A, Hoffmann F, Froba M, Kienle L, Duppel V, Thommes M, Serre C, Ferey G, Stock N.Angew. Chem. Int. Ed., 2009, 48(21): 3791.
[20] Yan Y, Lin X, Yang S, Blake A J, Dailly A, Champness N R, Hubberstey P, Schröder M.Chem. Commun., 2009, (9): 1025.
[21] Yan Y, Yang S, Blake A J, Lewis W, Poirier E, Barnett S A, Champness N R, Schroder M.Chem. Commun., 2011, 47(36): 9995.
[22] Farha O K, Yazaydn A Ö, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T.Nat. Chem., 2010, 2(11): 944.
[23] Qiu S L, Zhu G S.Coord. Chem. Rev., 2009, 253(23/24): 2891.
[24] Jiang H L, Xu Q.Chem. Commun., 2011, 47(12): 3351.
[25] Park Y K, Choi S B, Kim H, Kim K, Won B H, Choi K, Choi J S, Ahn W S, Won N, Kim S, Jung D H, Choi S H, Kim G H, Cha S S, Jhon Y H, Yang J K, Kim J.Angew. Chem. Int. Ed., 2007, 46: 8230.
[26] Lan Y Q, Jiang H L, Li S L, Xu Q.Adv. Mater., 2011, 23(43): 5015.
[27] Koh K, Wong-Foy A G, Matzger A J.Angew. Chem. Int. Ed., 2008, 47(4): 677.
[28] Koh K, Wong-Foy A G, Matzger A J.J. Am. Chem. Soc., 2009, 131(12): 4184.
[29] Klein N, Senkovska I, Gedrich K, Stoeck U, Henschel A, Mueller U, Kaskel S.Angew. Chem. Int. Ed., 2009, 48(52): 9954.
[30] Gu X J, Lu Z H, Xu Q.Chem. Commun., 2010, 46(39): 7400.
[31] Zhao Y J, Zhang J L, Han B X, Song J L, Li J S, Wang Q A.Angew. Chem. Int. Ed., 2011, 50(3): 636.
[32] Sun L B, Li J R, Park J, Zhou H C.J. Am. Chem. Soc., 2011, 134(1): 126.
[33] Gorka J, Fulvio P F, Pikus S, Jaroniec M.Chem. Commun., 2010, 46(36): 6798.
[34] Qiu L G, Xu T, Li Z Q, Wang W, Wu Y, Jiang X, Tian X Y, Zhang L D.Angew. Chem. Int. Ed., 2008, 47(49): 9487.
[35] Mu B, Schoenecker P M, Walton K S.J. Phys. Chem. C, 2010, 114(14): 6464.
[36] Ma L Q, Lin W B.J. Am. Chem. Soc., 2008, 130(42): 13834.
[37] Hwang Y K, Hong D Y, Chang J S, Jhung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Ferey G.Angew. Chem. Int. Ed., 2008, 47(22): 4144.
[38] Maksimchuk N V, Kovalenko K A, Fedin V P, Kholdeeva O A.Adv. Synth. Catal., 2010, 352(17): 2943.
[39] Fang Q R, Zhu G S, Jin Z, Ji Y Y, Ye J W, Xue M, Yang H, Wang Y, Qiu S L.Angew. Chem. Int. Ed., 2007, 46(35): 6638.
[40] Jhung S H, Lee J H, Yoon J W, Serre C, Ferey G, Chang J S.Adv. Mater., 2007, 19(1): 121.
[41] Zhao Z X, Li X M, Huang S S, Xia Q B, Li Z.Ind. Eng. Chem. Res., 2011, 50(4): 2254.
[42] Yang K, Sun Q, Xue F, Lin D H.J. Hazard. Mater., 2011, 195: 124.
[43] Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G.Angew. Chem. Int. Ed., 2006, 45(36): 5974.

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[5] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[6] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[7] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[8] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[9] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[10] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[11] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[14] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[15] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.