English
新闻公告
More
化学进展 DOI: 10.7536/PC121242 前一篇   后一篇

• 综述与评论 •

手性组装材料及其在对映体分离中的应用

段小丽, 付雁, 张金利, 李韡*   

  1. 天津大学化工学院 天津 300072
  • 收稿日期:2012-12-01 修回日期:2013-03-01 出版日期:2013-08-25 发布日期:2013-06-13
  • 通讯作者: 李韡 E-mail:liwei@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20836005, 21076141, 21206107)资助

Chiral Assembled Materials and Their Application in Enantiomeric Resolution

Duan Xiaoli, Fu Yan, Zhang Jinli, Li Wei*   

  1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2012-12-01 Revised:2013-03-01 Online:2013-08-25 Published:2013-06-13

手性组装材料作为一种新型功能复合材料,已经引起众多科学研究领域的广泛关注,尤其是其在对映体分离方面的潜在应用成为当前的研究热点。本文首先从手性来源角度对手性组装材料的构建机制进行了分类探讨,包括手性诱导、手性放大、手性传递和手性转录4个主要途径,其中具有手性的多孔金属有机骨架、纳米笼是基于手性诱导和手性传递机制构建的组装材料,手性凝胶的形成是基于手性放大机制,而手性转录机制主要用于手性多孔无机材料、螺旋纳米结构的构建。其次,介绍了手性组装材料的对映体识别功能,主要针对金属有机骨架化合物 (MOFs)、手性凝胶和纳米笼三类手性组装材料在对映体分离中的应用进行了综述。阐述了天然生物大分子DNA的手性自组装特性及其对对映体的立体选择性识别功能, 并介绍了DNA螺旋组装结构在手性等离子材料、非对称催化剂设计等方面的应用。最后,归纳了金属有机骨架化合物、手性凝胶、纳米笼和DNA等手性组装材料各自的优势,并对DNA在手性拆分领域的应用前景进行了展望。

Chiral assembled materials have received increasing attention in many research areas as new functional composite materials, especially focusing on their potential application in enantiomeric resolution. In this paper, the formation mechanisms of chiral assembled materials are firstly discussed from the origin of chirality, which include four main ways: chiral induction, chiral amplification, chiral transfer and chiral transcription. The formation of chiral porous metal-organic frameworks and nanocages are based on the mechanisms of chiral induction and chiral transfer, while chiral gels are formed on the basis of chiral amplification mechanism. Chiral transcription mechanism is mainly utilized to construct chiral porous inorganic materials and helical nanostructures. Secondly, stereoselective recognition of chiral assembled materials towards optical enantiomers, including metal-organic frameworks (MOFs), chiral gels, nanocages, and their applications on enantioselective separation are reviewed. Thirdly, the chiral self-assembly and stereoselective recognition of natural DNAs, as well as the applications of DNA helical structures in the fields of chiral plasmon materials and asymmetric catalysts are introduced. Finally, the unique advantages of metal-organic frameworks, chiral gels, nanocages and DNA are summerized, and the application prospects of DNAs in chiral separation are outlooked. Contents
1 Introduction
2 Formation mechanisms of chiral assembled materials
2.1 Chiral induction
2.2 Chiral amplification
2.3 Chiral transfer
2.4 Chiral transcription
3 Application of chiral assembled materials in enantioselective recognition
3.1 Metal-organic frameworks(MOFs)
3.2 Chiral gels
3.3 Nanocages
4 Application of natural DNAs in chiral separation
4.1 Chiral assembly
4.2 Enantioseparation
5 Conclusion and outlook

中图分类号: 

()
[1] Pieraccini S, Masiero S, Ferrarini A, Spada G P. Chem. Soc. Rev., 2011, 40(1): 258-271
[2] Strzelecka T E, Davidson M W, Rill R L. Nature, 1988, 331(6155): 457-460
[3] Ma L Q, Falkowski J M, Abney C, Lin W B. Nat. Chem., 2010, 2(10): 838-846
[4] Xu H, Zuend S J, Woll M G, Tao Y, Jacobsen E N. Science, 2010, 327(5968): 986-990
[5] Ito H. Nat. Chem., 2012, 4 (6): 438-439
[6] Phipps R J, Hamilton G L, Toste F D. Nat. Chem., 2012, 4(8): 603-614
[7] Wu X W, Starnes S D. Org. Lett., 2012, 14(14): 3652-3655
[8] Miao W G, Zhang L, Wang X F, Gao H, Jin Q X, Liu M H. Chem. Eur. J., 2013, 19(9): 3209-3036
[9] Lim I S, Mott D, Engelhard M H, Pan Y, Kamodia S, Luo J, Njoki P N, Zhou S Q, Wang L C, Zhong C J. Anal. Chem., 2009, 81(2): 689-698
[10] Xia Y S, Zhou Y L, Tang Z Y. Nanoscale, 2011, 3(4): 1374-1382
[11] Ruiz U, Pagliusi P, Provenzano C, Shibaev V P, Cipparrone G. Adv. Funct. Mater., 2012, 22(14): 2964-2970
[12] Kopp V I, Genack A Z. Nat. Photonics, 2011, 5(8): 470-472
[13] Zhou Y L, Yang M, Sun K, Tang Z Y, Kotov N A. J. Am. Chem. Soc., 2010, 132(17): 6006-6013
[14] Masini F, Kalashnyk N, Knudsen M M, Cramer J R, Lgsgaard E, Besenbacher F, Gothelf K V, Linderoth T R. J. Am. Chem. Soc., 2011, 133(35): 13910-13913
[15] Guo Z, Du Y, Chen Y T, Ng S C, Yang Y H. J. Phys. Chem. C, 2010, 114(34): 14353-14361
[16] Asefa T. Angew. Chem. Int. Ed., 2012, 51(9): 2008-2010
[17] Ishi-i T, Kuwahara R, Takata A, Jeong Y, Sakurai K, Mataka S. Chem. Eur. J., 2006, 12(3): 763-776
[18] Li C H, Chang K C, Tsou C C, Lan Y, Yang H C, Sun S S. J. Org. Chem., 2011, 76(14): 5524-5530
[19] Qiu H B, Inoue Y, Che S A. Angew. Chem. Int. Ed., 2009, 48(17): 3069-3072
[20] Pandeeswar M, Avinash M B, Govindaraju T. Chem. Eur. J., 2012, 18(16): 4818-4822
[21] Wang Y, Li Q. Adv. Mater., 2012, 24(15): 1926-1945
[22] Zhu Z N, Liu W J, Li Z T, Han B, Zhou Y L, Gao Y, Tang Z Y. ACS Nano, 2012, 6(3): 2326-2332
[23] Gibaud T, Barry E, Zakhary M J, Henglin M, Ward A, Yang Y S, Berciu C, Oldenbourg R, Hagan M F, Nicastro D, Meyer R B, Dogic Z. Nature, 2012, 481(7381): 348-353
[24] Chung W J, Oh J W, Kwak K, Lee B Y, Meyer J, Wang E, Hexemer A, Lee S W. Nature, 2011, 478(7369): 364-368
[25] Cai Y G, Bernasek S L. J. Phys. Chem. B, 2005, 109(10): 4514-4519
[26] 袁菁(Yuan J), 张莉(Zhang L), 黄昕(Huang X), 姜思光(Jiang S G), 刘鸣华(Liu M H). 化学进展(Progress in Chemistry), 2005, 17(5): 780-788
[27] Kaiser T E, Stepanenko V, Würthner F. J. Am. Chem. Soc., 2009, 131(19): 6719-6732
[28] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007, 46(9): 1489-1492
[29] George S J, Tomovi Dc' Ž, Schenning A P H J, Meijer E W. Chem. Commun., 2011, 47: 3451-3453
[30] Wolffs M, George S J, Tomovi Dc' Ž, Meskers S C J, Schenning A P H J, Meijer E W. Angew. Chem. Int. Ed., 2007,46(43): 8203-8205
[31] Molla M R, Das A, Ghosh S. Chem. Commun., 2011, 47(31): 8934-8936
[32] Morris R E, Bu X H. Nat. Chem., 2010, 2(5): 353-361
[33] Sun C Y, Qin C, Wang C G, Su Z M, Wang S, Wang X L, Yang G S, Shao K Z, Lan Y Q, Wang E B. Adv. Mater., 2011, 23(47): 5629-5632
[34] Lan Y Q, Li S L, Wang X L, Shao K Z, Du D Y, Su Z M, Wang E B. Chem. Eur. J., 2008, 14(32): 9999-10006
[35] Palmans A R A, Meijer E W. Angew. Chem. Int. Ed., 2007, 46(47): 8948-8968
[36] Freire F, Seco J M, Quiñoá E, Riguera R. Angew. Chem. Int. Ed., 2011, 50(49): 11692-11696
[37] Danila I, Pop F, Escudero C, Feldborg L N, Luis J P, Riobe F, Avarvari N, Amabilino D B. Chem. Commun., 2012, 48(38): 4552-4554
[38] Debnath S, Bergamini J F, Artzner F, Mériadec C, Camerel F, Fourmigué M. Chem. Commun., 2012, 48(17): 2283-2285
[39] García F, Sánchez L. J. Am. Chem. Soc., 2012, 134(1): 734-742
[40] Crassous J. Chem. Soc. Rev., 2009, 38(3): 830-845
[41] Yang H, Wang F, Kang Y, Li T H, Zhang J. Chem. Commun., 2012, 48: 9424-9426
[42] Kaczorowski T, Justyniak I, Lipińska T, Lipkowski J, Lewiński J. J. Am. Chem. Soc., 2009, 131(15): 5393-5395
[43] Ho R M, Li M C, Lin S C, Wang H F, Lee Y D, Hasegawa H, Thomas E L. J. Am. Chem. Soc., 2012, 134(26): 10974-10986
[44] Revol J F, Godbout L, Gray D G. J. Pulp Pap. Sci., 1998, 24(5): 146-149
[45] Shopsowitz K E, Qi H, Hamad W Y, MacLachlan M J. Nature, 2010, 468(7322): 422-426
[46] Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2012, 134(2): 867-870
[47] Herault C A, Banu A, Barboiu M, Michau M, Lee A V D. Angew. Chem. Int. Ed., 2007, 46(23): 4268-4272
[48] Li C, Deng K, Tang Z Y, Jiang L. J. Am. Chem. Soc., 2010, 132(23): 8202-8209
[49] Liu B, Han L, Che S A. Angew. Chem. Int. Ed., 2012, 51(4): 923-927
[50] Paik P, Gedanken A, Mastai Y. J. Mater. Chem., 2010, 20(20): 4085-4093
[51] Fireman-Shoresh S, Marx S, Avnir D. Adv. Mater., 2007, 19(16): 2145-2150
[52] Kim B H, Lee S U, Moon D C. Chirality, 2012, 24(12): 1037-1046
[53] Bragg W, Shamsi S A. J. Chromatogr. A, 2012, 1267: 144-155
[54] Pfaunmiller E L, Hartmann M, Dupper C M, Soman S, Hage D S. J. Chromatogr. A, 2012, 1269: 198-207
[55] Dang D B, Wu P Y, He C, Xie Z, Duan C Y. J. Am. Chem. Soc., 2010, 132(41): 14321-14323
[56] Liu Y, Xuan W M, Cui Y. Adv. Mater., 2010, 22(37): 4112-4135
[57] Liu B, Shekhah O, Arslan H K, Liu J X, Woell C, Fischer R A. Angew. Chem. Int. Ed., 2012, 51(3): 807-810
[58] Botas J A, Calleja G, Sanchez-Sanchez M, Orcajo M G. Langmuir, 2010, 26(8): 5300-5303
[59] 贾超(Jia C), 原鲜霞(Yuan X X), 马紫峰(Ma Z F). 化学进展(Progress in Chemistry), 2009, 21(9): 1954-1962
[60] Wu Y N, Li F T, Zhu W, Cui J C, Tao C A, Lin C X, Hannam P M, Li G T. Angew. Chem. Int. Ed., 2011, 50(52): 12518-12522
[61] He J, Yee K K, Xu Z T, Zeller M, Hunter A D, Chui S S Y, Che C M. Chem. Mater., 2011, 23(11): 2940-2947
[62] Ke F, Yuan Y P, Qiu L G, Shen Y H, Xie A J, Zhu J F, Tian X Y, Zhang L D. J. Mater. Chem., 2011, 21(11): 3843-3848
[63] Horcajada P, Serre C, Maurin G, Ramsahye N A, Balas F, Vallet-Regí M, Sebban M, Taulelle F, Férey G. J. Am. Chem. Soc., 2008, 130(21): 6774-6780
[64] Li J R, Tao Y, Yu Q, Bu X H, Sakamoto H, Kitagawa S. Chem. Eur. J., 2008, 14(9): 2771-2776
[65] Jiang J W, Babarao R, Hu Z Q. Chem. Soc. Rev., 2011, 40(7): 3599-3612
[66] Li G, Yu W B, Ni J, Liu T F, Liu Y, Sheng E, Cui Y. Angew. Chem., 2008, 120(7): 1265-1269
[67] Padmanaban M, Müller P, Lieder C, Gedrich K, Grünker R, Bon V, Senkovska I, Baumgärtner S, Opelt S, Paasch S, Brunner E, Glorius F, Klemm E, Kaskel S. Chem. Commun., 2011, 47(44): 12089-12091
[68] Yuan G Z, Zhu C F, Xuan W M, Cui Y. Chem. Eur. J., 2009, 15(26): 6428-6434
[69] Suh K, Yutkin M P, Dybtsev D N, Fedin V P, Kim K. Chem. Commun., 2012, 48(4): 513-515
[70] Wanderley M M, Wang C, Wu C D, Lin W B. J. Am. Chem. Soc., 2012, 134(22): 9050-9053
[71] Li G, Yu W B, Cui Y. J. Am. Chem. Soc., 2008, 130(14): 4582-4583
[72] Wang W J, Dong X L, Nan J P, Jin W Q, Hu Z Q, Chen Y F, Jiang J W. Chem. Commun., 2012, 48(56): 7022-7024
[73] Kosal M E, Chou J H, Wilson S R, Suslick K S. Nat. Mater., 2002, 1(2): 118-121
[74] Das M C, Xiang S C, Zhang Z J, Chen B L. Angew. Chem. Int. Ed., 2011, 50(45): 10510-10520
[75] Das M C, Guo Q S, He Y B, Kim J, Zhao C G, Hong K L, Xiang S C, Zhang Z J, Thomas K M, Krishna R, Chen B L. J. Am. Chem. Soc., 2012, 134(20): 8703-8710
[76] Hirst A R, Smith D K. Chem. Eur. J., 2005, 11(19): 5496-5508
[77] Yang Z M, Liang G L, Xu B. Acc. Chem. Res., 2008, 41(2): 315-326
[78] Ajayaghosh A, Praveen V K, Vijayakumar C. Chem. Soc. Rev., 2008, 37(1): 109-122
[79] George M, Weiss R G. Acc. Chem. Res., 2006, 39(8): 489-497
[80] Li Y G, Wang T Y, Liu M H. Soft Matter, 2007, 3(10): 1312-1317
[81] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34(10): 821-836
[82] 孔丽(Kong L), 孙涛(Sun T), 张峰(Zhang F),辛飞飞(Xin F F),郝爱友(Hao A Y). 化学进展(Progress in Chemistry), 2012, 24(5): 790-800
[83] Fu X J, Yang Y, Wang N X, Wang H, Yang Y J. J. Mol. Recognit., 2007, 20(4): 238-244
[84] Fages F. Angew. Chem. Int. Ed., 2006, 45(11): 1680-1682
[85] Jintoku H, Takafuji M, Oda R, Ihara H. Chem. Commun., 2012, 48(40): 4881-4883
[86] Jin Q X, Zhang L, Zhu X F, Duan P F, Liu M H. Chem. Eur. J., 2012, 18(16): 4916-4922
[87] Smith D K. Chem. Soc. Rev., 2009, 38(3): 684-694
[88] Jonkheijm P, van der Schoot P, Schenning A P H J, Meijer E W. Science, 2006, 313(5783): 80-83
[89] Naota T, Koori H. J. Am. Chem. Soc., 2005, 127(26): 9324-9325
[90] Chen X, Huang Z, Chen S Y, Li K, Yu X Q, Pu L. J. Am. Chem. Soc., 2010, 132(21): 7297-7299
[91] Tu T, Fang W W, Bao X L, Li X B, Dtz K H. Angew. Chem. Int. Ed., 2011, 50(29): 6601-6605
[92] Liu T F, Liu Y, Xuan W M, Cui Y. Angew. Chem. Int. Ed., 2010, 49(24): 4121-4124
[93] Xuan W M, Zhang M N, Liu Y, Chen Z J, Cui Y. J. Am. Chem. Soc., 2012, 134(16): 6904-6907
[94] Bren U, Lah J, Bren M, Martinek V, Florian J. J. Phys. Chem. B, 2010, 114(8): 2876-2885
[95] Arcella A, Portella G, Ruiz M L, Eritja R, Vilaseca M, Gabelica V, Orozco M. J. Am. Chem. Soc., 2012, 134(15): 6596-6606
[96] Lech C J, Li Z, Heddi B, Phan A T. Chem. Commun., 2012, 48(93): 11425-11427
[97] Choi J, Kim S, Tachikawa T, Fujitsuka M, Majima T. J. Am. Chem. Soc., 2011, 133(40): 16146-16153
[98] Saha S, Chakraborty K, Krishnan Y. Chem. Commun., 2012, 48(19): 2513-2515
[99] Campolongo M J, Kahn J S, Cheng W L, Yang D Y, Campolongo T G, Luo D. J. Mater. Chem., 2011, 21(17): 6113-6121
[100] Pinheiro A V, Han D R, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6(12):763-772
[101] Howson S E, Bolhuis A, Brabec V, Clarkson G J, Malina J, Rodger A, Scott P. Nat. Chem., 2012, 4(1): 31-36
[102] 陈晓东(Chen X D), 姜思光(Jiang S G), 刘鸣华(Liu M H). 化学进展(Progress in Chemistry), 2003, 15(5): 367-373
[103] Mitchell J C, Harris J R, Malo J, Bath J, Turberfield A J. J. Am. Chem. Soc., 2004, 126(50): 16342-16343
[104] Goodman R P, Schaap I A T, Tardin C F, Erben C M, Berry R M, Schmidt C F, Turberfield A J. Science, 2005, 310(5754): 1661-1665
[105] Zhang C, Wu W M, Li X, Tian C, Qian H, Wang G S, Jiang W, Mao C D. Angew. Chem. Int. Ed., 2012, 51(32): 7999-8002
[106] Qi H, Shopsowitz K E, Hamad W Y, MacLachlan M J. J. Am. Chem. Soc., 2011, 133(11): 3728-3731
[107] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459(7250): 414-418
[108] Kuzyk A, Schreiber R, Fan Z Y, Pardatscher G, Roller E M, Hgele A, Simmel F C, Govorov A O, Liedl T. Nature, 2012, 483(7389): 311-314
[109] Li Z T, Zhu Z N, Liu W J, Zhou Y L, Han B, Gao Y, Tang Z Y. J. Am. Chem. Soc., 2012, 134(7): 3322-3325
[110] Aldaye F A, Palmer A L, Sleiman H F. Science, 2008, 321(5897): 1795-1799
[111] Tanaka K, Clever G H, Takezawa Y, Yamada Y, Kaul C, Shionoya M, Carell T. Nat. Nanotechnol., 2006, 1(3): 190-194
[112] Condon A. Nat. Rev. Genet., 2006, 7(7): 565-575
[113] Clever G H, Kaul C, Carell T. Angew. Chem. Int. Ed., 2007, 46(33): 6226-6236
[114] Qu X G, Trent J O, Fokt I, Priebe W, Chaires J B. PNAS, 2000, 97(22): 12032-12037
[115] Shoji A, Kuwahara M, Ozaki H, Sawai H. J. Am. Chem. Soc., 2007, 129(5): 1456-1464
[116] Yu H J, Wang X H, Fu M L, Ren J S, Qu X G. Nucleic Acids Res., 2008, 36(17): 5695-5703
[117] Zhao C Q, Geng J, Feng L Y, Ren J S, Qu X G. Chem. Eur. J., 2011, 17(29): 8209-8215
[118] Michaud M, Jourdan E, Villet A, Ravel A, Grosset C, Peyrin E. J. Am. Chem. Soc., 2003, 125(28): 8672-8679
[119] Michaud M, Jourdan E, Ravelet C, Villet A, Ravel A, Grosset C, Peyrin E. Anal. Chem., 2004, 76(4): 1015-1020
[120] Ravelet C, Boulkedid R, Ravel A, Grosset C, Villet A, Fize J, Reyrin E. J. Chromatogr. A, 2005, 1076: 62-70
[121] Zhao C Q, Ren J S, Gregoliński J, Lisowski J, Qu X G. Nucleic Acids Res., 2012, 40(16): 8186-8196
[122] Feng L Y, Zhao C Q, Xiao Y, Wu L, Ren J S, Qu X G. Chem. Commun., 2012, 48(55): 6900-6902
[123] Feng L Y, Xu B L, Ren J S, Zhao C Q, Qu X G. Chem. Commun., 2012, 48(72): 9068-9070
[124] Roelfes G, Boersma A J, Feringa B L. Chem. Commun., 2006, (6): 635-637
[125] Coquière D, Feringa B L, Roelfes G. Angew. Chem. Int. Ed., 2007, 46(48): 9308-9311
[126] Boersma A J, Feringa B L, Roelfes G. Angew. Chem. Int. Ed., 2009, 121(18): 3396-3398
[127] Tang Z, Goncalves D P N, Wieland M, Marx A, Hartig J S. ChemBioChem, 2008, 9(7): 1061-1064
[128] Boersma A J, Coquière D, Geerdink D, Rosati F, Feringa B L, Roelfes G. Nat. Chem., 2010, 2(11):991-995
[129] Wang C H, Jia G Q, Zhou J, Li Y H, Liu Y, Lu S M, Li C. Angew. Chem. Int. Ed., 2012, 51(37): 9352-9355
[130] Gu Z Y, Yang C X, Chang N, Yan X P. Acc. Chem. Res., 2012, 45(5): 734-745
[1] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[2] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[3] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[4] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[5] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[6] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[7] 汤波, 王微, 罗爱芹. 新型多孔材料用作色谱手性固定相[J]. 化学进展, 2022, 34(2): 328-341.
[8] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[9] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[10] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[11] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[12] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[13] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[14] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[15] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.