English
新闻公告
More
化学进展 DOI: 10.7536/PC120607 前一篇   后一篇

• 综述与评论 •

具有模拟SOD功能的大分子

裴菲, 何玉凤, 李晓晓, 王荣民*, 李刚, 赵婷婷   

  1. 生态环境相关高分子材料教育部重点实验室 甘肃省高分子材料重点实验室 西北师范大学化学化工学院 兰州 730070
  • 收稿日期:2012-06-01 修回日期:2012-09-01 出版日期:2013-02-24 发布日期:2012-12-28
  • 通讯作者: 王荣民 E-mail:wangrm@nwnu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21263024,21244003)、PCSIRT(IRT1177)和甘肃省科技支撑计划项目(No.1011GKCA017)资助

SOD Mimics Based on Macromolecules

Pei Fei, He Yufeng, Li Xiaoxiao, Wang Rongmin*, Li Gang, Zhao Tingting   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Received:2012-06-01 Revised:2012-09-01 Online:2013-02-24 Published:2012-12-28

生命活动中用于维持生物体内超氧阴离子自由基动态平衡的超氧化物歧化酶(superoxide dismutase, SOD)是一类金属酶,属于典型的生物大分子金属络合物,因其在生命活动中所起的重要作用而备受关注。目前,有关SOD的模拟已从小分子化合物的模拟,走向大分子环境与活性中心相结合的系统模拟。本文从高分子化合物角度对模拟SOD的研究进展作一综述,以期为设计并开发具有生物相容且高活性的新型高分子抗氧化剂提供新思路。天然大分子有蛋白质与多肽、多糖、分子聚集体,目前所采用的蛋白质(多肽)是性能稳定的天然蛋白质或通过基因重组技术生物合成的蛋白质或多肽,所采用的多糖类物质主要有右旋糖酐、羧甲基纤维素、壳聚糖等。小分子活性化合物(如金属卟啉、新型肟类为配体的同核与异核复合物、salen型金属配合物等)通过与这些天然大分子结合,在提高活性的同时也改善了其稳定性。将活性小分子物质与分子聚集体(如胶束、脂质体)结合制得的SOD模拟物可以模拟天然SOD在体内的环境,提高抗氧化活性和体内循环时间。合成高分子模拟SOD的工作主要集中于高分子接枝金属配合物的研究,其中典型的合成高分子有聚乙二醇(polyethylene glycol, PEG)、聚L-赖氨酸、聚(苯乙烯-马来酸酐)、聚(环己烷-1,4-丙酮二亚甲基缩酮)、氯化聚苯乙烯树脂、聚乳酸和一些嵌段共聚物,其抗氧化活性与金属配体有关,是一类潜在的抗癌药物。

Superoxide dismutases (SOD) is a kind of typical metalloenzymes. It has been paid much attention for its important role in life activities, such as maintaining the dynamic equilibrium of the superoxide anion radicals in vivo. At present, the simulation of SOD has been developed from small molecule compounds as active center to system simulation, in which active center was combined into polymer environment. This paper reviews the progress of SOD mimics in polymers perspective. Based on studying simulation strategies, we can get new ideas for designing and exploiting a new-type biocompatible and high reactive antioxidants. Natural polymer includes proteins and peptides, polysaccharides, molecular aggragates. Recently, steady natural proteins and gene recombined proteins or peptides have been used as SOD mimics. Polysaccharides for mimicing SOD include dextran, carboxymethyl cellulose and chitosan. Above macromolecules could conjugate with small molecule compounds with biological activity, such as metalloporphyrins, homonuclear complexes, heteronuclear complexes with new oximes ligands and salen-type metal complexes. After being conjugated, the activity of small molecule compounds had been promoted greatly, while their stability could also be improved. The environment of natural enzymes in vivo can also be simulated by inserting low molecular weight active compounds into molecular aggragates (micelles and liposomes) as the activity and circulation time of SOD mimics could be improved. Some synthetic polymers, such as polyethylene glycol (PEG), poly( L -lysine), poly(styrene-maleic anhydride), poly(cyclohexane-1,4-acetone methylene ketal) chloride, polystyrene resins, polylactic acid and block copolymers, were also used for SOD mimics. The antioxidant activity of obtained polymer grafted metal complexes was influenced by ligands. They are typical candidates of anti-cancer drugs. Contents
1 Introduction
2 Structure and simulation strategy of SOD
2.1 Structure and function of SOD
2.2 Simulation strategy of SOD
3 SOD mimics based on natural polymers
3.1 Proteins and peptides
3.2 Polysaccharides
3.3 Molecular aggregates
4 SOD mimics based on synthetic polymers
5 Summary

中图分类号: 

()

[1] Fridovich I. J. Biol. Chem., 1989, 264(14): 7761-7764
[2] Goldstein S, Czapski G, Meyerstein D. J. Am. Chem. Soc., 1990, 112(18): 6489-6492
[3] Chen Z L, Zhu Y G. Phytochem. Analysis, 2000, 11(6): 362-365
[4] Yamashita N, Hoshida S, Nishida M, Igarashi J, Taniguchi N, Tada M, Kuzuya T, Hori M. J. Mol. Cell. Cardiol., 1997, 29(7): 1805-1813
[5] 胡平(Hu P), 吴耿伟(Wu G W), 夏青(Xia Q), 毛宗万(Mao Z W). 化学进展(Progress in Chemistry), 2009, 21(5): 873-879
[6] Gwinner W, Tisher C C, Nick H S. Kidney Int., 1995, 48(2): 354-362
[7] 李晨(Li C), 杨 征(Yang Z), 厍梦尧(She M Y), 尹文婷(Yin W T), 李剑利(Li J L), 赵桂仿(Zhao G F), 史 真(Shi Z). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(9): 2046-2061
[8] Riley D P. Chem. Rev., 1999, 99(9): 2573-2587
[9] Wu A J, Penner-Hahn J E, Pecoraro V L. Chem. Rev., 2004, 104(2): 903-938
[10] Day B J. Drug Discov. Today, 2004, 9(13): 557-566
[11] Cuzzocrea S, Mazzon E, Paola R D, Genovese T, Muia C, Caputi A P, Salvemini D. Arthritis Rheum., 2005, 52(6): 1929-1940
[12] Munroe W, Kingsley C, Durazo A, Gralla E B, Imlay J A, Srinivasan C, Valentine J S. J. Inorg. Biochem., 2007, 101(11/12): 1875-1882
[13] De Garavilla Dr L, Chermak T, Valentine H L, Hanson R C. Drug Develop. Res., 1992, 25(2): 139-148
[14] De Bono S. Trends Biochem. Sci., 2001, 26(5): 283-283
[15] Wang M, Lam T T, Fu J, Tso M O. Res. Commun. Mol. Pathol. Pharmacol., 1995, 89(3): 291-305
[16] Horn A Jr, Parrilha G L, Melo K V, Fernandes C, Horner M, Visentin L C, Santos J A, Santos M S, Eleutherio E C A, Pereira M D. Inorg. Chem., 2010, 49(4): 1274-1276
[17] O’Connor M, Kellett A, McCann M, Rosair G, McNamara M, Howe O, Creaven B S, McClean S, Kia A F, O’Shea D, Devereux M J. Med. Chem., 2012, 55(5): 1957-1968
[18] Cao X, Antonyuk S V, Seetharaman S V, Whitson L J, Taylor A B, Holloway S P, Strange R W, Doucette P A, Valentine J S, Tiwari A, Hayward L J, Padua S, Cohlberg J A, Hasnain S S, Hart P J. J. Biol. Chem., 2008, 283(23): 16169-16177
[19] Gartner A, Weser U. Top. Curr. Chem., 1986, 132: 1-61
[20] Yan F, Mu Y, Yan G L, Liu J Q, Shen J C, Luo G M. Mini-Rev. Med. Chem., 2010, 10(4): 342-356
[21] Czapski G, Goldstein S. Free Radical Res., 1991, 12(1): 167-171
[22] Samuni A, Mitchell J B, DeGraff W, Krishna C M, Samuni U, Russo A. Free Radical Res., 1991, 12(1): 187-194
[23] Hahn S M, Krishna C M, Samuni A, Mitchell J B, Russo A. Arch. Biochem. Biophys., 1991, 288(1): 215-219
[24] 张英(Zhang Y), 董绍华(Dong S H). 科技通报(Bull. Sci. Techn. ), 1997, 13(5): 312-315
[25] Olinescua R M, Kummerowa F A. J. Nutr. Biochem., 2001, 12(3): 162-169
[26] Ibrahim H R, Hoq M I, Aoki T. Int. J. Biol. Macromol., 2007, 41(5): 631-640
[27] 李刚(Li G). 西北师范大学博士论文(Doctoral Dissertation of Northwest Normal University), 2011
[28] Moreau J L, Baudrimont M, Carrier P, Peltier G, Bourdineaud J P. Biochimie, 2008, 90(5): 705-716
[29] Oliveri V, Vecchio G. Eur. J. Med. Chem., 2011, 46 (3): 961-965
[30] Chang T M S, D’Agnillo F, Yu W P, Razack S. Adv. Drug Deliver. Rev., 2000, 40(3): 213-218
[31] Makoto Y, Aritomo Y, Satoshi M, Uichi M, Yoshihiro K, Shoji N. J. Oleo. Sci., 2003, 52(3): 149-157
[32] Tarasov E, Blaszak M M, LaMarre J M, Olsen K W. Artif. Cells Blood Substit. Immobil. Biotechnol., 2007, 35(1): 31-43
[33] Shuvaev V V, Tliba S, Pick J, Arguiri E, Christofidou-Solomidou M, Albelda S M, Muzykantov V R. J. Control. Release, 2011, 149(3): 236-241
[34] Nadithe V, Bae Y H. Int. J. Biol. Macromol., 2010, 47(5): 603-613
[35] Yan F, Yan G L, Lv S W, Shen N, Mu Y, Chen T, Gong P S, Xu Y W, Lv L M, Liu J Q, Shen J C, Luo G M. Int. J. Biochem. Cell Biol., 2011, 43(12): 1802-1811
[36] Casolaro M, Chelli M, Ginanneschi M, Laschi F, Messori L, Muniz-Miranda M, Papini A M, Kowalik-Jankowska T, Kozlowski H. J. Inorg. Biochem., 2002, 89(3/4): 181-190
[37] Yan F, Yang W K, Li X Y, Lin T T, Lun Y N, Lin F, Lv S W, Yan G L, Liu J Q, Shen J C, Mu Y, Luo G M. Biochem. Biophys. Acta -Gen., 2008, 1780(6): 869-872
[38] Asayama S, Kawamura E, Nagaoka S, Kawakami H. Mol. Pharmaceut., 2006, 3(4): 468-470
[39] Krause M E, Glass A M, Jackson T A, Laurence J S. Inorg. Chem., 2011, 50(6): 2479-2487
[40] Yamaguchi A, Ishino T, Matsukura N, Kawakami H, Asayama S, Nagaoka S, Yuasa M. J. Oleo Sci., 2003, 52(5): 269-276
[41] Yune T Y, Lee J Y, Jiang M H, Kim D W, Choi S Y, Oh T H. Free Radical Biol. Med., 2008, 45(8): 1190-1200
[42] Arda-Pirincci P, Bolkent S. Mol. Cell. Biochem., 2011, 350(1/2): 13-27
[43] Colak A, Terzi U, Col M, Karaoglu S A, Karabocek S, Kucukdumlu A, Ayaz F A. Eur. J. Med. Chem., 2010, 45(11): 5169-5175
[44] Tang B, Zhang G Y, Liu Y, Han F. Anal. Chim. Acta, 2002, 459(1): 83-91
[45] Fu H, Zhou Y H, Chen W L, Deqing Z G, Tong M L, Ji L N, Mao Z W. J. Am. Chem. Soc., 2006, 128(15): 4924-4925
[46] Zhou Y H, Fu H, Zhao W X, Chen W L, Su C Y, Sun H Z, Ji L N, Mao Z W. Inorg. Chem., 2007, 46(3): 734-739
[47] Puglisi A, Tabbi G, Vecchio G. J. Inorg. Biochem., 2004, 98(6): 969-976
[48] Valdivia A, Perez Y, Dominguez A, Caballero J, Gomez L, Schacht E H, Villalonga R. Macromol. Biosci., 2005, 5(2): 118-123
[49] Nakaoka R, Tabata Y, Yamaoka T, Ikada Y. J. Control. Release, 1997, 46(3): 253-261
[50] Perez Y, Valdivia A, Gomez L, Simpson B K, Villalonga R. Macromol. Biosci., 2005, 5(12): 1220-1225
[51] Ngo D H, Qian Z J, Vo T S, Ryu B, Ngo D N, Kim S K. Carbohyd. Polym., 2011, 84(4): 1282-1288
[52] Sun T, Xie W M, Xu P X. Carbohyd. Polym., 2004, 58(4): 379-382
[53] Dominguez A, Valdivia A, Caballero J, Villalonga R. J. Bioact. Compat. Pol., 2005, 20(6): 557-570
[54] Chiumiento A, Dominguez A, Lamponi S, Villalonga R, Barbucci R. J. Mater. Sci-Mater. M., 2006, 17(5): 427-435
[55] 金虬(Jin Q), 程志明(Cheng Z M), 李大珍(Li D Z). 北京师范大学学报(自然科学版)(Journal of Beijing Normal University(Natural Science)), 1996, 32(3): 362-366
[56] Hu P, Tirelli N. Bioconjugate Chem., 2012, 23(3): 438-449
[57] 殷晓春(Yin X C), 王荣民(Wang R M), 何玉凤(He Y F), 朱永峰(Zhang Y F), 裴菲(Pei F), 化学进展(Progress in Chemistry), 2011, 23(5): 963- 973
[58] Walde P. Orig. Life Evol. Biosph., 2006, 36(2): 109-150
[59] Murakami Y, Kikuchi J I, Hisaeda Y, Hayashida O. Chem. Rev., 1996, 96(2): 721-758
[60] Nagami H, Yoshimoto N, Umakoshi H, Shimanouchi T, Kuboi R. J. Biosci. Bioeng., 2005, 99(4): 423-428
[61] Tuan L Q, Umakoshi H, Shimanouchi T, Kuboi R. Langmuir, 2008, 24(2): 350-354
[62] Yoshimoto N, Tasaki M, Shimanouchi T, Umakoshi H, Kuboi R. J. Biosci. Bioeng., 2005, 100(4): 455-459
[63] Nagami H, Umakoshi H, Shimanouchi T, Kuboi R. Biochem. Eng. J., 2004, 21(3): 221-227
[64] Umakoshi H, Morimoto K, Ohama Y, Nagami H, Shimanouchi T, Kuboi R. Langmuir, 2008, 24 (9): 4451-4455
[65] Umakoshi H, Morimoto K, Yasuda N, Shimanouchi T, Kuboi R. J. Biotechnol., 2010, 147(1): 59-63
[66] Kawakami H, Hiraka K, Tamai M, Horiuchi A, Ogata A, Hatsugai T, Yamaguchi A, Oyaizu K, Yuasa M. Polym. Adv. Technol., 2007, 18(1): 82-87
[67] Hiraka K, Kanehisa M, Tamai M, Asayama S, Nagaoka S, Oyaizu K, Yuasa M, Kawakami H. Colloids Surf. B, 2008, 67(1): 54-58
[68] Yuasa M, Oyaizu K, Ogata A, Matsukura N, Yamaguchi A. J. Oleo Sci., 2005, 54(4): 233-239
[69] Yuasa M, Oyaizu K, Murata H, Komuro M, Awa R, Ohkubo A. J. Oleo Sci., 2007, 56(2): 95-101
[70] Kawakami H, Ohse T, Kawano M, Nagaoka S. Polym. Adv. Technol., 1999, 10(5): 270-274
[71] Coughlin P K, Lippard S. J. Inorg. Chem., 1984, 23(10): 1446-1451
[72] Kimura E, Yatsunami A, Watanabe A, Machida R, Koike T, Fujioka H, Kuramoto Y, Sumomogi M, Kunimitsu K, Yamashita A. Biochem. Biophys. Acta, 1983, 745(1): 37-43
[73] Riley D P, Weiss R H. J. Am. Chem. Soc., 1994, 116(1): 387-388
[74] Durackova Z, Labuda J. J. Inorg. Biochem., 1995, 58(4): 297-303
[75] 张龙泽(Zhang L Z), 马书林(Ma S L). 药学学报(Acta Pharmaceutica Sinica), 2002, 37(3): 235-240
[76] Cinci L, Masini E, Bencini A, Valtancoli B, Mastroianni R, Calosi L, Bani D. Free Radical Biology & Medicine, 2010, 48(11): 1525-1534
[77] Pollard J M, Reboucas J S, Durazo A, Kos I, Fike F, Panni M, Gralla E B, Valentine J S, Batinic-Haberle I, Gatti R A. Free Rad. Biol. Med., 2009, 47(3): 250-260
[78] Batinic-Haberle I, Spasojevic I, Stevens R D, Bondurant B, Okado-Matsumoto A, Fridovich I, Vujaskovic Z, Dewhirst M W. Dalton Transactions, 2006, 4: 617-624
[79] Asayama S, Hanawa T, Nagaoka S, Kawakami H. Mol. Pharm., 2007, 4(3): 484-486
[80] Park W, Lim D. Bioorg. Med. Chem. Lett., 2009, 19(3): 614-617
[81] Axthelm F, Casse O, Koppenol W H, Nauser T, Meier W, Palivan C G. J. Phys. Chem. B, 2008, 112 (28): 8211-8217
[82] Piacham T, Ayudhya C I N, Prachayasittikul V, Bulow L, Ye L. Chem. Commun., 2003, (11): 1254-1255
[83] Lee S, Yang S C, Heffernan M J, Taylor W R, Murthy N. Bioconjugate Chem., 2007, 18(1): 4-7
[84] Fiore V F, Lofton M C, Roser-Page S, Yang S C, Roman J, Murthy N, Barker T H. Biomaterials, 2010, 31(5): 810-817
[85] Aliyev E, Sakallioglu U, Eren Z, Aikgoz G. Biomaterials, 2004, 25(19): 4633-4637
[86] Yuasa M, Yamaguchi A, Ohira T, Horiuchi A, Kawakami H, Asayama S, Nagaoka S. Material Techn., 2003, 21(1): 7-12
[87] Szilagyi I, Berkesi O, Sipiczki M, Korecz L, Rockenbauer A, Painko I. Catal. Lett., 2009, 127(3/4): 239-247
[88] 王荣民(Wang R M), 朱永峰(Zhang Y F), 何玉凤(He Y F), 李岩(Li Y), 毛崇武(Mao C W), 何乃普(He N P). 化学进展(Progress in Chemistry), 2010, 22(10): 1952-1963

[1] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[2] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[3] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[4] 许颖, 高婷婷, 王启晓, 屈阳, 刘宏飞, 辛渊蓉. 高分子类型MONOLITH材料的制备技术及其作为亲和色谱固定相用于分离生物大分子的应用[J]. 化学进展, 2018, 30(8): 1112-1120.
[5] 李享, 石家愿, 邱爽, 王明芳, 刘长林*. SOD1抑制与活性氧信号转导的调控[J]. 化学进展, 2018, 30(10): 1475-1486.
[6] 那向明, 周炜清, 李娟, 苏志国, 马光辉. 高分子多孔微球产品的制备及其在类病毒颗粒分离纯化中的应用[J]. 化学进展, 2018, 30(1): 5-13.
[7] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[8] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[9] 李晓佩, 黄昆, 林洁媛, 徐怡庄, 刘会洲. Hofmeister离子序列及其调控水溶液中大分子溶质行为的作用机制[J]. 化学进展, 2014, 26(08): 1285-1291.
[10] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[11] 张夏聪, 李文*, 张阿方. 温度敏感树形聚合物[J]. 化学进展, 2012, (9): 1765-1775.
[12] 邵锋, 陈坤, 罗志辉, 王艳君, 陆冬莲, 韩鹤友* . SERS技术在疾病诊断和生物分析中的应用[J]. 化学进展, 2012, 24(12): 2391-2402.
[13] 姚敏, 王嘉骏, 顾雪萍, 冯连芳. POSS基树枝状大分子的合成与应用[J]. 化学进展, 2012, 24(0203): 405-413.
[14] 邱素艳, 高森, 林振宇, 陈国南. 点击化学最新进展[J]. 化学进展, 2011, 23(4): 637-648.
[15] 罗时忠, 韩梦成, 曹月辉, 凌从祥. 温度响应性单分子聚合物胶束[J]. 化学进展, 2011, 23(12): 2541-2549.
阅读次数
全文


摘要

具有模拟SOD功能的大分子