English
新闻公告
More
化学进展 2018, Vol. 30 Issue (10): 1475-1486 DOI: 10.7536/PC180608 前一篇   后一篇

• 综述 •

SOD1抑制与活性氧信号转导的调控

李享, 石家愿, 邱爽, 王明芳, 刘长林*   

  1. 华中师范大学化学学院 农药与化学生物学教育部重点实验室 武汉 430079
  • 收稿日期:2018-06-07 修回日期:2018-08-27 出版日期:2018-10-15 发布日期:2018-09-25
  • 通讯作者: 刘长林 E-mail:liuchl@mail.ccnu.edu.cn
  • 基金资助:
    国家自然科学基金项目(No.21271079,21771073)资助

SOD1 Inhibition Regulates the ROS Signaling Transduction

Xiang Li, Jiayuan Shi, Shuang Qiu, Mingfang Wang, Changlin Liu*   

  1. Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, School of Chemistry, Central China Normal University, Wuhan 430079, China
  • Received:2018-06-07 Revised:2018-08-27 Online:2018-10-15 Published:2018-09-25
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21271079, 21771073).
铜锌超氧化物歧化酶(Copper-zinc Superoxide Dismutase,SOD1)是胞内广泛存在的抗氧化酶,催化O2·-歧化为H2O2和O2,维持胞内活性氧物种(ROS)内稳态。癌细胞的生长、增殖都依赖于适度高浓度的H2O2,高表达的SOD1维持癌细胞内较高水平的H2O2和ROS内稳态。抑制癌细胞内SOD1的活性,可以有效调节ROS信号通路,抑制癌细胞的生长、增殖,阻滞癌细胞周期,促进癌细胞凋亡。因此,通过抑制其活性调控癌细胞内ROS信号网络并选择性杀死癌细胞已经成为抗癌药物设计的一个重要方向。本文主要总结了各类SOD1抑制剂,以及SOD1抑制对ROS信号转导的调控,分析了SOD1特异抑制选择性杀死癌细胞的机制。
Copper-zinc superoxide dismutase(SOD1) is an antioxidant metalloenzyme that widely distriutes within a cell, and catalyzes rapid dismutation of superoxide anion(O2·-) into hydrogen peroxide(H2O2) and oxygen(O2) to maintain the homeostasis of intracellular reactive oxygen species(ROS). The growth and proliferation of cancer cells depend on higher concentrations of H2O2, whereas high expression of SOD1 can maintain higher H2O2 levels and ROS homeostasis of cancer cells. SOD1 inhibition effectively regulates ROS signaling pathways in a cancer cell, inhibits cancer cell growth and proliferation, arrests cancer cell cycle, and promotes cancer cell apoptosis. Targeting SOD1 can regulate the ROS signaling network and selectively kill cancer cells. This review summarizes various types of SOD1 inhibitors designed so far, the regulation of ROS signaling transduction by SOD1 inhibition, and the mechanism of specific SOD1 inhibition-mediated apoptosis of cancer cells.
Contents
1 Introduction
2 The structure and function of SOD1
2.1 Structure and catalytic mechanism of SOD1
2.2 Functions of SOD1
3 Regulation of ROS signaling pathways by SOD1
3.1 SOD1 and ROS signaling pathways
3.2 SOD1 and cancer
4 SOD1 inhibition
4.1 Inhibition of SOD1 expression
4.2 SOD1 inhibitors
5 SOD1 inhibition-regulated ROS signaling pathways
6 Conclusion

中图分类号: 

()
[1] Jones C T, Brock D J H, Chancellor A M, Warlow C P, Swingler R J. Lancet, 1993, 342:1050.
[2] Sheng Y, Abreu I A, Cabelli D E, Maroney M J, Miller A F, Teixeira M, Valentine J S. Chem. Rev., 2014, 114:3854.
[3] Marklund S L. Biochem. J., 1984, 222:649.
[4] Bourne Y, Redford S M, Steinman H M, Lepock J R, Tainer J A, Getzoff E D. Proc. Natl. Acad. Sci. U.S.A., 1996, 93:12774.
[5] Bedard K, Krause K H. Physiol. Rev., 2007, 87:245.
[6] Reczek C R, Chandel N S. Annu. Rev. Cancer Biol., 2017, 1:79.
[7] Corson L B, Strain J J, Culotta V C, Cleveland D W. Proc. Natl. Acad. Sci. U.S.A., 1998, 95:6361.
[8] Schafer Z T, Grassian A R, Song L, Jiang Z Y, Gerhart-Hines Z, Irie H Y, Gao S Z, Puigserver P, Brugge J S. Nature, 2009, 461:109.
[9] Mitsuishi Y, Taguchi K, Kawatani Y, Shibata T, Nukiwa T, Aburatani H, Yamamoto M, Motohashi H. Cancer Cell, 2012, 22:66.
[10] Huang P, Feng L, Oldham E A, Keating M J, Plunkett W. Nature, 2000, 407:390.
[11] Papa L, Manfredi G, Germain D. Genes & Cancer, 2014, 5:15.
[12] Abraham W, Ilana R, Yogita P, Adam B, Lev W, Jonathan G. Langmuir, 2001, 17:5621.
[13] Lowndes S A, Adams A, Timms A, Fisher N, Smythe J, Watt S M, Joel S, Donate F, Hayward C, Reich S, Middleton M. Clin. Cancer Res., 2008, 14:7526.
[14] Juarez J C, Manuia M, Burnett M E, Betancourt O, Boivin B, Shaw D E, Tonks N K, Mazar A P, Doñate F. Proc. Natl. Acad. Sci. U.S.A., 2008, 105:7147.
[15] Lee K, Briehl M M, Mazar A P, Batinic-Haberle I, Reboucas J S, Glinsmann-Gibson B, Rimsza L M, Tome M E. Free Radical Bio. Med., 2013, 60:157.
[16] Alvarez H M, Xue Y, Robinson C D, Canalizo-Hernández M A, Marvin R G, Kelly R A, Mondragón A, Penner-Hahn J E, O'Halloran T V. Science, 2010, 327:331.
[17] Dong X W, Zhang Z, Zhao J D, Lei J, Chen Y Y, Li X, Chen H H, Tian J L, Zhang D, Liu C R, Liu C L. Chem. Sci., 2016, 7:6251.
[18] McCord J M, Fridovich I. J. Biol. Chem., 1969, 244:6049.
[19] Muñoza C M, Meeterena L A, Posta J A, Verkleija A J, Boonstra T V B. Free Radical Bio. Med., 2002, 33:1061.
[20] Zelko I N, Mariani T J, Folz R J. Free Radical Bio. Med., 2002, 33:337.
[21] Sasaki T, Shimizu T, Koyama T, Sakai M, Uchiyama S, Kawakami S, Noda Y, Shirasawa T, Kojima S. J. Neurosci. Res., 2011, 89:601.
[22] Sturtz L A, Diekert K, Jensen L T, Lill R, Culotta V C. J. Biol. Chem., 2001, 276:38084.
[23] Seetharaman S V, Taylor A B, Holloway S, Hart P J. Arch. Biochem. Biophys., 2010, 503:183.
[24] Spagnolo L, Törö I, D'Orazio M, O'Neill P, Pedersen J Z, Carugo O, Rotilio G, Battistoni A, Djinovic-Carugo K. J. Biol. Chem., 2004, 279:33447.
[25] Valentine J S, Doucette P A, Zittin P S. Annu. Rev. Biochem., 2005, 74:563.
[26] Bertini I, Manganl S, Viezzoli M S. Adv. Inorg. Chem., 1998, 45:127.
[27] Ellerby L M, Cabelli D E, Graden G A, Valentine J S. J. Am. Chem. Soc., 1996, 118:6556.
[28] Fisher C L, Cabelli D E, Tainer J A, Hallewell R A, Getzoff E D. Proteins:Struct. Funct. Bioinf., 1994, 19:24.
[29] Hart P J. Curr. Opin. Chem. Biol., 2006, 10:131.
[30] Reddi A, Culotta V. Cell, 2013, 152:224.
[31] Homma K, Fujisawa T, Tsuburaya N, Yamaguchi N, Kadowaki H, Takeda K, Nishitoh H, Matsuzawa A, Naguro I, Ichijo H. Mol. Cell, 2013, 52:75.
[32] Tsang C K, Liu Y, Thomas J, Zhang Y J, Zheng X F S. Nat. Commun., 2014, 5:3446.
[33] Zhang F, Strö M A L, Fukada K, Lee S, Hayward L J, Zhu H. J. Biol. Chem., 2007, 282:16691.
[34] Magrì A, Belfore R, Reina S, Tomasello M F, Rosa M C D, Guarino F, Leggio L, Pinto V D, Messina A. Sci. Rep., 2016, 6:34802.
[35] Trist B G, Davies K M, Cottam V, Genoud S, Ortega R, Roudeau S, Carmona A, Silva K D, Wasinger V, Lewis S J G, Sachdev P, Smith B, Troakes C, Vance C, Shaw C, Al-Sarraj S, Ball H J, Halliday G M, Hare D J, Double K L. Acta Neuropathol., 2017, 134:113.
[36] Helferich A M, Ruf W P, Grozdanov V, Freischmidt A, Feiler M S, Zondler L, Ludolph A C, McLean P J, Weishaupt J H, Danzer K M. Mol. Neurodegener., 2015, 10:66.
[37] Pasinelli P, Belford M E, Lennon N, Bacskai B J, Hyman B T, Trotti D, Brown R H. Neuron, 2004, 43:19.
[38] Tsang C K, Chen M, Cheng X, Qi Y M, Chen Y, Das I, Li X X, Vallat B, Fu L W, Qian C N, Wang H Y, White E, Burley S K, Zheng X F S. Mol. Cell, 2018, 70:502.
[39] Chattopadhyay M, Valentine J S. Antioxid. Redox Signal., 2009, 11:1603.
[40] Pasinelli P, Brown R H. Nat. Rev. Neurosci., 2006, 7:710.
[41] Soto C. Nat. Rev. Neurosci., 2003, 4:49.
[42] Valentine J S, Hart P J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:3617.
[43] Beckman J S, Carson M, Smith C D, Koppenol W H. Nature, 1993, 364:584.
[44] Wiedau-Pazos M, Goto J J, Rabizadeh S, Gralla E B, Roe J A, Lee M K, Valentine J S, Bredesen D E. Science, 1996, 271:515.
[45] Estévez A G, Crow J P, Sampson J B, Reiter C, Zhuang Y, Richardson G J, Tarpey M M, Barbeito L, Beckman J S. Science, 1999, 286:2498.
[46] D'Autreaux B, Toledano M B. Nat. Rev. Mol. Cell Biol., 2007, 8:813.
[47] Veal E A, Day A M, Morgan B A. Mol. Cell, 2007, 26:1.
[48] Dickinson B C, Chang C J. Nat. Chem. Biol., 2011, 7:504.
[49] Bindoli A, Rigobello M P. Antioxid. Redox Signal., 2013, 18:1557.
[50] Trachootham D, Lu W, Ogasawara M A, Nilsa R D, Huang P. Antioxid. Redox Signal., 2008, 10:1343.
[51] Moloney J N, Cotter T G. Semin. Cell Dev. Biol., 2017, 80:50.
[52] Groeger G, Quiney C, Cotter T G. Antioxid. Redox Signal., 2009, 11:2655.
[53] Azad M B, Chen Y, Gibson S B. Antioxid. Redox Signal., 2009, 11:777.
[54] Glass C K, Saijo K, Winner B, Marchetto M C, Gage F H. Cell, 2010, 140:918.
[55] Wheeler M D, Katuna M, Smutney O M, Froh M, Dikalova A, Mason R P, Samulski R J, Thurman R G. Hum. Gene Ther., 2001, 12:2167.
[56] Afonso V, Santos G, Collin P, Khatib A M, Mitrovic D R, Lomri N, Leitman D C, Lomri A. Free Radical Bio. Med., 2006, 41:709.
[57] Bhattacharya A, Hegazy A N, Deigendesch N, Kosack L, Cupovic J, Kandasamy R K, Hildebrandt A, Merkler D, Kuhl A A, Vilagos B, Schliehe C, Panse I, Khamina K, Baazim H, Arnold I, Flatz L C, Xu H F, Lang P A, Aderem A, Takaoka A, Superti-Furga G, Colinge J, Ludewig B, Lohning M, Bergthaler A. Immunity, 2015, 43:974.
[58] Marikovsky M, Ziv V, Nevo N, Harris-Cerruti C, Mahler O. J. Immunol., 2003, 170:2993.
[59] Dimayuga F O, Wang C, Clark J M, Dimayuga E R, Dimayuga V M, Bruce-Keller A J. J. Neuroimmunol., 2007, 182:89.
[60] Li Q, Spencer N Y, Oakley F D, Buettner G R, Engelhardt J F. Antioxid. Redox Signal., 2009, 11:1249.
[61] He C, Ryan A J, Murthy S, Carter A B. J. Biol. Chem., 2013, 288:20745.
[62] Harraz M M, Marden J J, Zhou W, Zhang Y, Williams A, Sharov V S, Nelson K, Luo M H, Paulson H, Schöneich C, Engelhardt J F. J. Clin. Invest., 2008, 118:659.
[63] Carter B J, Anklesaria P, Choi S, Engelhardt J F. Antioxid. Redox Signal., 2009, 11:1569.
[64] Frakes A K, Ferraiulol L, Haidet-Philips A M, Schmelzer L, Braun L, Miranda C J, Ladner K J, Bevan A K, Foust K D, Godbout J P, Popovich P G, Guttridge D C, Kaspar B K. Neuron, 2014, 81:1009.
[65] Irani K, Xia Y, Zweier J L, Sollott S J, Der C J, Fearon E R, Sundaresan M, Finkel T, Goldschmidt-Clermont P J. Science, 1997, 275:1649.
[66] Oakley F D, Abbott D, Li Q, Engelhardt J F. Antioxid. Redox Signal., 2009, 11:1313.
[67] Shaw A T, Winslow M M, Magendantz M, Ouyang C, Dowdle J, Subramanian A, Lewis T A, Maglathin R L, Tolliday N, Jacks T. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:8773.
[68] Elchuri S, Oberley T D, Qi W, Eisenstein R S, Roberts L J, van Remmen H, Epstein C J, Huang T T. Oncogene, 2005, 24:367.
[69] Glasauer A, Sena L A, Diebold L P, Mazar A P, Chandel N S. J. Clin. Invest., 2014, 124:117.
[70] Papa L, Hahn M, Marsh E L, Evans B S, Germain D. J. Biol. Chem., 2014, 289:5412.
[71] Somwar R, Erdjument-Bromage H, Larsson E, Shum D, Lockwood W W, Yang G, Sander C, Ouerfelli O, Tempst P J, Djaballah H, Varmus H E. Proc. Natl. Acad. Sci. U.S.A., 2011, 108:16375.
[72] Che M, Wang R, Li X, Wang H Y, Zheng X F S. Drug Discov. Today, 2016, 21:143.
[73] Kang D H, Kang S W. Biomol. Ther., 2013, 21:89.
[74] Van Empel V P M, Bertrand A T, van Oort R, van der Nagel R, Engelen M, van Rijen H V, Doevendans P A, Crijins H J, Ackerman S L, Sluiter W, De Windt L W. J. Am. Coll. Cardiol., 2006, 48(4):824.
[75] Ozturk P, Arican O, Belge K E, Karakas T, Kabakci B. Acta Dermatovenerol. Croat., 2013, 21:80.
[76] Xia H, Mao Q, Eliason S L, Harper S Q, Martins I H, Orr H T, Paulson H L, Yang L, Kotin R M, Davidson B L. Nat. Med., 2004, 10:816.
[77] Saito Y, Yokota T, Mitani T, Ito K, Anzai M, Miyagishi M, Taira K, Mizusawa H. J. Biol. Chem., 2005, 280:42826.
[78] Smith R A, Miller T M, Yamanaka K, Monia B P, Condon T P, Hung G, Lobsiger C S, Ward C M, McAlonis-Downes M, Wei H, Wancewicz E V, Bennett C F, Cleveland D W. J. Clin. Invest., 2006, 116:2290.
[79] Broom W J, Greenway M, Sadrivakili G, Russ C, Auwarter K E, Glajch K E, Dupe N, Swingler R J, Purcell S, Hayward C, Sapp P C, McKennayasek D, Valdmanis P N, Bouchard J P, Meininger V, Hosler B A, Glass J D, Polack M, Rouleau G A, Cha J H, Hardiman O, Brown R H. Amyotroph. Lateral. Scler., 2008, 9:229.
[80] Wright P D, Huang M, Weiss A, Matthews J, Wightman N, Glicksman M, Brown R H. Neurosci. Lett., 2010, 482:188.
[81] Broom W J, Auwarter K E, Ni J, Russel D E, Yeh L A, Maxwell M M, Glicksman M, Kazantsev A G, Brown R H. J. Biomol. Screen., 2006, 11:729.
[82] Murakami G, Inoue H, Tsukita K, Asai Y, Amagai Y, Aiba K, Shimogawa H, Uesugi M, Nakatsuji N, Takahashi R. J. Biomol. Screen., 2011, 16:405.
[83] Mizuguchi S, Capretta A, Suehiro S, Nishiyama N, Luke P, Potter R F, Fraser D D, Cepinskas G. Free Radical Bio. Med., 2010, 49:1534.
[84] Taillé C, Elbenna J, Lanone S, Boczkowski J, Motterlini R. J. Biol. Chem., 2005, 280:25350.
[85] Howland D S, Liu J, She Y, Goad B, Maragakis N J, Kim B, Erickson J, Kulik J, DeVito L, Psaltis G, DeGennaro L J, Cleveland D W, Rothstein J D. Proc. Natl. Acad. Sci. U.S.A., 2002, 99:1604.
[86] Subramaniam J R, Lyons W E, Liu J, Bartnikas T B, Rothstein J, Price D L, Cleveland D W, Gitlin J D, Wong P C. Nat. Neurosci., 2002, 5:301.
[87] Auclair J R, Agar J N. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:21394.
[88] Furukawa Y, Kaneko K, Yamanaka K, O'Halloran T V, Nukina N. J. Biol. Chem., 2008, 283:24167.
[89] Kerman A, Liu H N, Croul S, Bilbao J, Rogaeva E, Zinman L, Robertson J, Chakrabartty A. Acta Neuropathol., 2010, 119:335.
[90] Heikkila R E, Cabbat F S, Cohen G. J. Biol. Chem., 1976, 251:2182.
[91] Misra H P. J. Biol. Chem., 1979, 254:11623.
[92] Lushchak V, Semchyshyn H, Lushchak O, Mandryk S. Biochem. Bioph. Res. Co., 2005, 338:1739.
[93] Kelner M J, Bagnell R, Hale B, Alexander N M. Free Radical Bio. Med., 1989, 6:355.
[94] Chauret N, Gauthier A, Martin J, Nicoll-Griffith D A. Drug MeTab. Dispos., 1997, 25:1130.
[95] Griffiths D E, Wharton D C. J. Biol. Chem., 1961, 236:1850.
[96] Regland B, Lehmann W, Abedini I, Blennow K, Jonsson M, Karlsson I, Sjögren M, Wallin A, Xilinas M, Gottfries C. Dement. Geriatr. Cogn. Disord., 2001, 12:408.
[97] Cherny R A, Atwood C S, Xilinas M E, Gray D N, Jones W D, McLean C A, Barnham K J, Volitakis I, Fraser F W, Kim Y, Huang X, Goldstein L E, Moir R D, Lim J T, Beyreuther K, Zheng H, Tanzi R E, Masters C L, Bush A I. Neuron, 2001, 30:665.
[98] Di Viara M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P. Inorg. Chem., 2004, 43:3795.
[99] Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro J P. Neurotoxicology, 2007, 28:445.
[100] Kawamura K, Kuroda Y, Sogo M, Fujimoto M, Inui T, Mitsui T. Biochem. Bioph. Res. Co., 2014, 452:181.
[101] Rothstein J D, Bristol L A, Hosler B, Brown R H, Kuncl R W. Proc. Natl. Acad. Sci. U.S.A., 1994, 91:4155.
[102] Katsuyama M, Iwata K, Ibi M, Matsuno K, Matsumoto M, Yabe-Nishimura C. Toxicology, 2012, 299:55.
[103] Mandinov L, Mandinova A, Kyurkchiev S, Kyurkchiev D, Kehayov I, Kolev V, Soldi R, Bagala C, de Muinck E D, Lindner V, Post M J, Simons M, Bellum S, Prudovsky I, Maciag T. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:6700.
[104] Doñate F, Juarez J C, Burnett M E, Manuia M M, Guan X, Shaw D E, Smith E L, Timucin C, Braunstein M J, Batuman O A, Mazar A P. Br. J. Cancer, 2008, 98:776.
[105] Lowndes S A, Sheldon H V, Cai S, Taylor J M, Harris A L. Microvasc. Res., 2009, 77:314.
[106] Pan Q, Bao L W, Merajver S D. Mol. Cancer Res., 2003, 1:701.
[107] Juarez J C, Betancourt O, Pirie-Shepherd S R, Guan X, Price M L, Shaw D E, Mazar A P, Doñate F. Clin. Cancer Res., 2006, 12:4974.
[108] Pan Q, Kleer C G, van Golen K L, Irani J, Bottema K M, Bias C, de Carvalho M, Mesri E A, Robins D M, Dick R D, Brewer G J, Merajver S D. Cancer Res., 2002, 62:4854.
[109] Chidambaram M V, Barnes G, Frieden E. J. Inorg. Biochem., 1984, 22:231.
[110] Bissig K D, Voegelin T C, Solioz M. FEBS Lett., 2001, 507:367.
[111] Banci L, Bertini I, Ciofi-Baffoni S, Kozyreva T, Zovo K, Palumaa P. Nature, 2010, 465:645.
[112] 张哲(Zhang Z), 陈欢欢(Chen H H), 杨婵丽(Yang C L), 章丹(Zhang D), 刘春荣(Liu C R), 刘长林(Liu C L). 中国科学:化学(Scientia Sinica Chimica), 2015, 45:829.
[113] Li X, Chen Y Y, Zhao J D, Shi J Y, Wang M F, Qiu S, Hu Y H, Xu Y L, Cui Y F, Liu C R, Liu C L, unpublished work.
[114] Sugawara T, Lewén A, Gasche Y, Yu F, Chan P H. FASEB J., 2002, 16:1997.
[1] 王欣瑜, 赵富平, 张儒, 孙子茹, 刘胜男, 高清志. 抗肿瘤缺氧诱导因子-1的小分子抑制剂[J]. 化学进展, 2021, 33(12): 2259-2269.
[2] 蒋革, 罗锋, 徐耀忠, 张晓辉. 近紫外光辅助4-硫脱氧胸苷抗癌作用的研究[J]. 化学进展, 2016, 28(8): 1224-1237.
[3] 叶霁青, 岳晓虹, 孙丽萍. 小分子IL-6/STAT3信号通路抑制剂[J]. 化学进展, 2016, 28(7): 1099-1111.
[4] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[5] 郭键, 贺耘, 叶新山. 唾液酸转移酶抑制剂的设计与发现[J]. 化学进展, 2016, 28(11): 1712-1720.
[6] 李晓晖*, 黄美玲, 刘丽娜, 王燕云. 环肽类组蛋白去乙酰化酶抑制剂[J]. 化学进展, 2014, 26(09): 1527-1536.
[7] 杨冬梅, 周宇涵, 常晴, 赵一龙, 曲景平. 三氟甲基烷基酮的生物活性及合成方法[J]. 化学进展, 2014, 26(06): 976-986.
[8] 郑伟, 谢琼, 陈良康, 陈建兴, 仇缀百. 双位点作用的乙酰胆碱酯酶抑制剂[J]. 化学进展, 2013, 25(11): 1973-1980.
[9] Barbara K. Dunn. 乳腺癌预防的三期临床试验:雌激素靶向药物,选择性雌激素受体调控剂和芳香酶抑制剂[J]. 化学进展, 2013, 25(09): 1429-1449.
[10] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[11] 陈平, 姜亮, 刘琼*, 杨思林, 宋云, 倪嘉缵. 硒蛋白M及其与重大疾病的关系[J]. 化学进展, 2013, 25(04): 479-487.
[12] 杜可杰, 王忆, 梁捷雯, 计亮年, 巢晖*. DNA拓扑异构酶抑制剂[J]. 化学进展, 2013, 25(04): 545-554.
[13] 伍道春, 何严萍* . 非核苷类HCV NS5B聚合酶抑制剂[J]. 化学进展, 2012, 24(11): 2255-2267.
[14] 王兆慧, 宋文静, 马万红, 赵进才. 铁配合物的环境光化学及其参与的环境化学过程[J]. 化学进展, 2012, 24(0203): 423-432.
[15] 李铁海, 郭利娜, 李中华, 王佳佳, 李静, 赵炜. O-GlcNAcase抑制剂[J]. 化学进展, 2011, 23(8): 1657-1664.
阅读次数
全文


摘要

SOD1抑制与活性氧信号转导的调控