English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 539-549 DOI: 10.7536/PC141120 前一篇   后一篇

• 综述与评价 •

ATRP大分子引发剂的合成及应用

牟思阳, 郭静*, 于春芳, 宫玉梅, 张森   

  1. 大连工业大学纺织与材料工程学院 大连 116034
  • 收稿日期:2014-11-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 郭静 E-mail:guojing8161@163.com
  • 基金资助:
    国家自然科学基金项目(No. 51373027)资助

Synthesis and Applications of ATRP Macromolecular Initiator

Mu Siyang, Guo Jing*, Yu Chunfang, Gong Yumei, Zhang Sen   

  1. School of Textile & Material Engineering, Dalian Polytechnic University, Dalian 116034, China
  • Received:2014-11-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373027).
原子转移自由基聚合(ATRP)是一种新型的可控/活性聚合技术,现已广泛应用于聚合物分子结构设计、无机材料表面修饰、蛋白质检测以及生物大分子的分离和杀菌防污等.在此类反应过程中涉及的三大要素:单体、引发体系(引发剂、催化剂、配位剂)及反应介质,其中核心要素为ATRP引发剂,其结构与性质是ATRP反应成败的决定因素之一.本文在综述了小分子引发剂的种类与性质及ATRP的反应机理的基础上,着重综述了近年来官能团反应法、偶联反应法及自由基聚合法制备ATRP大分子引发剂的最新进展.同时还综述了大分子引发剂通过ATRP反应在聚合物结构设计中的应用,以及对无机材料和生物材料的表面修饰的最新进展,最后对ATRP引发体系的未来发展与应用进行了展望.
Atom transfer radical polymerization (ATRP), as a new type of controllable/living polymerization reaction, has been applied in many fields widely, such as the structure design of the polymer,the surface modification of inorganic materials, protein detection, biopolymer separation, antibacterial and antifouling, etc. Three major factors are involved in the reaction process:monomer, initiator system (initiator, catalyst, complexant), and reaction medium, the core element of which is the choice of ATRP initiator. The microstructure and performance of the initiator are the key factors for the ATRP reaction. In this paper, we firstly introduce the types and properties of the micromolecule initiator and the reaction mechanism of the ATRP briefly. Then,we emphatically summarize the latest advances about the preparation methods of the ATRP macromolecular initiator in recent years, such as functional group reaction, coupling reaction and free radical polymerization. Moreover, we also review the latest application of the macromolecular initiator through ATRP reaction in the structure design of the polymer, the surface modification of inorganic materials and biological materials. Finally, an outlook for the prospective development of the ATRP initiator system is given.

Contents
1 Introduction
2 Small molecular initiator
3 Preparation of the macromolecular initiator
3.1 Functional group reaction method
3.2 Coupling reaction method
3.3 Free radical polymerization method
4 Application
4.1 Structure design of the polymer
4.2 Surface modification of inorganic materials
4.3 Surface modification of biomolecular
5 Conclusion

中图分类号: 

()
[1] Cianga I, Yagci Y. Des.Monomers Polym.,2007, 10 (6):575.
[2] Gois J R, Konkolewic D,Popov A V, Guliashvili T, Matyjaszewski K, Serraa A, Coelho J F J. Polym. Chem., 2014, 5:4617.
[3] Mendonça P V, Konkolewicz D, Averick S E, Serra A C, Popov A V, Guliashvili T, Matyjaszewski K, Coelho J F J. Polym. Chem.,2014,5:5829.
[4] Brar A,Saini T. Journal of Polymer Science Part A:Polymer Chemistry, 2006,44(6):1975.
[5] Hou C,Ying L,Wang C G. J.Appl. Polym.Sci., 2006, 99(3):1050.
[6] Liu F Y, Seuring J, Agarwal S. Polym. Chem.,2013, 4:3123.
[7] Percec V, Barboiu B,Bera T K,vanderSluis M,Grubbs R B, Fréchet J M J.J.Polym.Sci.,PartA:Polym.Chem.,2000, 38: 4776.
[8] Grigoras C,Percec V. Journal of Polymer Science Part A:Polymer Chemistry, 2005, 43(2):319.
[9] Matyjaszewski K. Macromolecules, 2012, 45:4015.
[10] Song T X, Li Y,Zhang H Q,Zhang A L,Wang X H,Wang Y R. Acta Polvmerica Sinica, 2010, 2:143.
[11] Wu D X,Yang Y F,Cheng X H,Liu L,Tian J,Zhao H Y. Macromolecules, 2006, 39:7513.
[12] Spasova M,MespouilleL, Coulembier O,Paneva D, Manolova N, Rashkov I, Dubois P. Biomacromolecules, 2009, 10:1217.
[13] Schramm O G,Meier M A R, Hoogenboom R,van Erp H P, Gohy J F, Schubert U S. Soft Matter, 2009,5:1662.
[14] Schramm O G,Pavlov G M, van Erp H P,Meier M A R, Hoogenboom R, Schubert U S. Macromolecules,2009,42:1808.
[15] MalmstrÖm E, Carlmark A. Polym. Chem., 2012, 3:1702.
[16] Lin C X, Zhan H Y, Liu M H, Fu S Y, Zhang J J. Carbohydrate Polymers, 2009, 78(3):432.
[17] Carlmark A, Malmstrm E. J. Am.Chem.Soc, 2002, 6:900.
[18] Carlmark A, Malmstrm E. Biomacromolecules, 2003,4:1740.
[19] Tahlawy K E, Hudson S M. Journal of Applied Polymer Science, 2003, 89(4):901.
[20] Li N, Bai R, Liu C. Langmuir, 2005,21(25):11780.
[21] Lindqvist J, Malmström E. Journal of Applied Polymer Science, 2006, 100(5):4155.
[22] Vayachuta L,Phinyocheep P,Derouet D,Pascual S.Journal of Applied Polymer Science, 2011, 121(1):508.
[23] 杨耀华(Yang Y H), 廖建和(Liao J H), 廖禄生(Liao L S), 赵伟(Zhao W), 黄仙红(Huang X H), 陈永平(Chen Y P).合成化学(Chinese Journal of Synthetic Chemistry), 2012, 20:56.
[24] Ross E B, Bryce A W, Brandy L S, Lynn M W, Eric W C. Macromolecules, 2009, 42:1867.
[25] Mauro M, John R P W, Steve E, Steven P A, Simon T. Langmuir, 2010, 26 (15):12684.
[26] Chen X Y, Armes S P. Langmuir,2004, 20:587.
[27] Tang F, Zhang L F, Zhu J, Cheng Z P, Zhu X L. Ind. Eng. Chem. Res., 2009, 48:6216.
[28] 何嫄(He Y), 於麟(Yu L), 谭松巍(Tan S W), 蒋宏亮(Jiang H L), 涂克华(Tu K H), 王利群(Wang L Q).高分子学报(Acta Polymerica Sinica), 2010, 7:897.
[29] Misty D R, Brenton A G H,Stephen G B. Macromolecules, 2008, 41:4147.
[30] Barner L, Quick A S, Vogt A P, Winkler V, Junkers T, Barner K C. Polymer Chemistry, 2012, 3(8):2266.
[31] Wang X L,Ye Q, Gao T T, Liu J X, Zhou F. Langmuir, 2012, 28:2574.
[32] Li A, Ma J, Wooley K L. Macromolecules, 2009, 42:5433.
[33] Mueller L, Jakubowski W, Tang W, Matyjaszewski K. Macromolecules, 2007, 40:6464.
[34] Voter A F, Tillman E S, Findeis P M, Radzinski S C. ACS Macro Lett., 2012, 1(8):1066.
[35] Voter A F, Tillman E S. Macromolecules, 2010, 43 (24):10304.
[36] 胡爱娟(Hu A J), 崔玉双(Cui Y S), 鲁在君(Lu Z J).中国科学:化学(Science China Chemistry),2010, 40(5):476.
[37] Mu X Y, Qiao J, Qi L, Liu Y, Ma H M. ACS Appl. Mater.Interfaces, 2014, 6:12979.
[38] Jiang H, Xu F J. Chem. Soc. Rev., 2013, 42:3394.
[39] Averick S, Simakova A, Park S, Konkolewicz D, Magenau A J D, Mehl R A, Matyjaszewski K. ACS Macro Lett., 2012, 1:6.
[40] Stoffelbach F, Belardi B, Santos J M R C A,Tessier L,Matyjaszewski K, Charleux B. Macromolecules, 2007, 40:8813.
[41] Nicel C E, Jin Y P, Rigoberto C A. Macromolecules, 2010, 43:6588.
[42] Li M, Jahed N M, Min K, Matyjaszewski K. Macromolecules, 2004, 37:2434.
[43] Xu F J, Yuan Z L E, Kang T E, Neoh K G. Langmuir, 2004, 20:8200.
[44] Zhu W P, Zhong M J, Li W W, Dong H C, Matyjaszewski K. Macromolecules, 2011, 44:1920.
[45] Sakellariou G, Priftis D,Baskaranw D. Chem. Soc. Rev., 2013, 42:677.
[46] Zhang W J, Zhou Z, Li Q F, Chen G X. Ind. Eng. Chem. Res., 2014, 53:6699.
[47] Ilcíkova M, Mrlík M, Sedlacek T, Slouf M, Zhigunov A, Koynov K, Mosnacek J. ACS Macro Lett., 2014, 3:999.
[48] Zhao M N, Zhou G W, Zhang L, Li X Y, Li T D, Liu F F. Soft Matter, 2014, 10:1110.
[49] Zhang G W, Lin S D, Wyman I, Zou H L, Hu J W, Liu G J, Wang J D, Li F, Liu F, Hu M L. ACS Appl. Mater. Interfaces, 2013, 5:13466.
[50] Xu Z F, Uddin K M A, Kamra T, Schnadt J, Ye L. ACS Appl. Mater. Interfaces, 2014, 6:1406.
[51] Vasquez E S, Chu I W, Walters K B. Langmuir, 2014, 30:6858.
[52] Bayramoglu G, Arica M Y. Ind. Eng. Chem.Res., 2012, 51:10629.
[53] Majewski A P, Stahlschmidt U, Jerome V, Freitag R, Muller A H E, Schmalz H. Biomacromolecules, 2013,14:3081.
[54] Liu G Q, Cai M R, Wang X L, Zhou F, Liu W M. ACS Appl. Mater. Interfaces, 2014, 6:11625.
[55] Zhang Y, He H K, Gao C. Macromolecules, 2008, 41:9581.
[56] Baskaran D, Mays J W, Bratcher M S. Angew Chem. Int. Ed., 2004, 43:2138.
[57] Narain R, Housni A, Lane L. J. Polym. Sci. Part A Polym. Chem., 2006, 44:6558.
[58] Choi J H, Oh S B, Chang J, Kim I, Ha C S, Kim B G, Han J H, Joo S W, Kim G H, Paik H J. Polym. Bull., 2005, 55:173.
[59] Kruk M, Dufour B, Celer E B, Kowalewski T,Jaroniec M, Matyjaszewski K. Macromolecules, 2008, 41:8584.
[60] Xu F J, Kang E T, Neoh K G. Macromolecules, 2005, 38:1573.
[61] Liu Y, Viktor K, Bogdan Z, Igor L. Langmuir, 2004, 20:6710.
[62] Liu J L, He W W, Zhang L F, Zhang Z B, Zhu J, Yuan L, Chen H, Cheng Z P, Zhu X L. Langmuir, 2011, 27:12684.
[63] Xu L Q, Yao F, Fu G D, Kang E T. Biomacromolecules, 2010, 11:1810.
[64] Qian H, He L. Anal. Chem., 2009, 81:9824.
[65] Jaqueline D W, Katie A R, Jonathan K P. Polym. Chem., 2014, 5(5):1545.
[66] Xu F J, Li Y L, Kang E T, Neoh K G. Biomacromolecules, 2005, 6:1759.
[67] Yang Q, Tian J, Hu M X, Xu Z K. Langmuir, 2007, 23:6684.
[68] Mendonça P V, Averick S E, Konkolewicz D, Serra A C, Popov A V, Guliashvili T, Matyjaszewski K, Coelho J F J. Macromolecules, 2014, 47:4615.
[69] Yang X C, Niu Y L, Zhao N N, Mao C, Xu F J. Biomaterials, 2014, 35(12):3873.
[70] Liu Y, Cheng Q. Anal. Chem. 2012, 84:3179.
[71] Aied A, Zheng Y, Pandit A, Wang W X. ACS Appl. Mater. Interfaces, 2012, 4:826.
[72] Zhu Y H, Xu X W, Brault N D, Keefe A J, Han X, Deng Y, Xu J Q, Yu Q M, Jiang S Y. Anal. Chem., 2014, 86:2871.
[73] Qian H, He L. Anal. Chem., 2009, 81:4536.
[74] Liu Y, Dong Y, Jauw J, Linman M J, Cheng Q. Anal. Chem., 2010, 82:3679.
[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[3] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[4] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[5] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[6] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[7] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[8] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[9] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[10] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[11] 王兆翔, 马君, 高玉瑞, 刘帅, 冯欣, 陈立泉. 稳定富锂层状氧化物正极材料的结构与性能[J]. 化学进展, 2019, 31(11): 1591-1614.
[12] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[13] 林英武. 人工金属酶分子设计新进展:肌红蛋白研究实例分析[J]. 化学进展, 2018, 30(10): 1464-1474.
[14] 王亚立, 李贞, 刘志洪. 上转换荧光纳米材料的水溶性修饰[J]. 化学进展, 2016, 28(5): 617-627.
[15] 杨彩云, 曹长乾, 蔡垚, 张同伟, 潘永信. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1): 91-102.
阅读次数
全文


摘要

ATRP大分子引发剂的合成及应用