中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (2/3): 331-343 DOI: 10.7536/PC190332 Previous Articles   Next Articles

Biomedical Functional Polymer Based on PHPMA

Fenming Zhang1,2,3, Yushu Tian3, Ji Zheng3, Kun Chen3, Anchao Feng1,2,3,**(), Liqun Zhang1,2,3   

  1. 1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijng 100029, China
    2. Beijing Key Laboratory of preparation and processing of new polymer materials, Beijing University of Chemical Technology, Beijing 100029, China
    3. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received: Online: Published:
  • Contact: Anchao Feng
  • About author:
Richhtml ( 18 ) PDF ( 727 ) Cited
Export

EndNote

Ris

BibTeX

Poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), a water soluble polymer bearing a stable structure, can be metabolized in the human body. Because of that, PHPMA is widely used in anticancer drug’s delivery systems. The drug delivery systems based on the PHPMA have been extensively studied over the past few decades. Scientists use different kinds of functional groups to modify the polymer, which can deliver drugs to targeted tissue or detect pathogenic tissue. In recent studies, scientists enhance the degradability of the polymer and decrease the cytotoxicity, which makes the delivery system based on PHPMA more suitable to be utlized in human body. In this paper, we summarize the recent works about PHPMA and studies of different methods to modify the polymer with drugs or functional groups.

Scheme 1 Scheme 1 Synthesis of HPMA based polymers bearing thiol end groups for radioactive labeling with 72/74As [10]
Scheme 2 Scheme 2 Synthesis of copolymer of HPMA and allyl methacrylate (AMA) via RAFT and subsequent conjugation with thiolated α(1,2)-trimannoside using thiol-ene chemistry [16]
Fig.1 Molecular structure of the PBS/PBDL copolyester-left, PHPMA-chol-middle and PHPMA-chol-DOX-right (top) and schematic representation of the prepared NPs (bottom) (PBS/PBDL-black, PHPMA-blue, cholesterol anchor-yellow, DTXL-green, and DOX-red) [20]
Fig.2 Illustration of acid-specific intracellular backbone degradation and release of doxorubicin (DOX) from cross-linked micelles of HPMA copolymers containing β-sitosterol (β-SITO) [22]
Fig.3 Schematic illustration for the fabrication of multifunctional micellar nanoparticles [23]
Scheme 3 Scheme 3 Synthetic scheme of HPMA copolymer-PTX conjugates. (A) Synthesis of traditional HPMA copolymer-paclitaxel conjugate (P-PTX). (B) Synthesis of multiblock backbone biodegradable HPMA copolymer-paclitaxel conjugate (mP-PTX) [25]
Fig.4 (A) SPECT/CT imaging of mice bearing orthotopic A2780 human ovarian carcinoma after intravenous injection of 125I-labeled P-PTX or mP-PTX. L, liver; S, spleen; B, bladder; T, tumor. (B) Photographs of tumors after treatment with different PTX formulations [25]
Scheme 4 Scheme 4 Structures of HPMA copolymer TAT conjugates [27]
Fig.5 Kinetics of DOX in the blood and tumour after i.v. administration of HPMA copolymer-DOX conjugates. (A) Accumulation of DOX in tumour tissue; (B) Blood clearance of DOX; (C) Tumour to blood ratio[37]
Scheme 5 Scheme 5 Synthetic scheme for P-SS-Mce6 [39]
Scheme 6 Synthesis of reducible HPMA-co-oligolysine copolymers via reversible-addition fragmentation chain transfer (RAFT) polymerization [41]
Fig.6 Synthesis of nano-capsules using gold nanoparticles, (1) assembly of nanoparticles, (2) crosslinking, (3) removal of GNP cores [42]
Fig.7 Using miniemulsion periphery RAFT polymerization (IMEPP) approach to prepare hollow polymeric nanoparticles [43]
Fig.8 (A) Schematic illustration of the structure of the proposed noncovalent poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA)- based polymer therapeutics. (B) Envisioned pathway for the cell uptake of the proposed noncovalent polymer therapeutics and subsequent intracellular release of the cargo. In this illustration, the drug is represented by a red star [45]
Fig.9 (a) synthesis of (CCK)-Polymer; (b) synthesis of Fab’-(CCE) [46]
[1]
Kopeček J, Pavla K . Adv. Drug Delivery Rev., 2009,62(2):122. https://www.ncbi.nlm.nih.gov/pubmed/19919846

doi: 10.1016/j.addr.2009.10.004 pmid: 19919846
[2]
Ehrlich P. Studies in Immunity. New York: Plenum Press, 1906.
[3]
Jatzkewitz H . Z Naturforsch, 1955,10(b):27.
[4]
Panarin E F, Ushakov S N . Pharm. Chem. J., 1968,2(5):260.
[5]
Givental N I, Ushakov S N, Panarin E F, Popova G O . Antibiotiki, 1965,10(8):701. https://www.ncbi.nlm.nih.gov/pubmed/5887624

pmid: 5887624
[6]
Shumikhina K I, Panarin E F, Ushakov S N . Antibiotiki, 1966,11(9):767. https://www.ncbi.nlm.nih.gov/pubmed/4968207

pmid: 4968207
[7]
Mathé G, Loc TB, Bernard J . CR Hebd Seances Acad. Sci., 1958,246(10):1626. https://www.ncbi.nlm.nih.gov/pubmed/13537412

pmid: 13537412
[8]
Ringsdorf H . J. Polym. Sci., Polym. Symp., 1975,51(1):135.
[9]
Duncan R, Kopeček J, Rejmanová P, Lloyd J B . Biochim. Biophys. Acta, 1983,755(3):518. https://www.ncbi.nlm.nih.gov/pubmed/6824743

doi: 10.1016/0304-4165(83)90258-1 pmid: 6824743
[10]
Herth M M, Barz M, Jahn M, Jahn M, Zentel R, Rösch F . Bioorg. Med. Chem. Lett., 2010,20(18):5454. https://www.ncbi.nlm.nih.gov/pubmed/20709549

doi: 10.1016/j.bmcl.2010.07.092 pmid: 20709549
[11]
Barz M, Wolf F K, Canal F, Koynov K, Vicent M J, Frey H, Zentel R . Macromol. Rapid Commun., 2010,31(17):1492. https://www.ncbi.nlm.nih.gov/pubmed/21567557

doi: 10.1002/marc.201000090 pmid: 21567557
[12]
Hemmelmann M, Metz V V, Koynov K, Blank K, Postina R, Zentel R . J. Controlled Release, 2012,163(2):170. https://www.ncbi.nlm.nih.gov/pubmed/22981565

doi: 10.1016/j.jconrel.2012.08.034 pmid: 22981565
[13]
Kunjachan S, Gremse F, Theek B , et al. ACS Nano, 2013,7(1):252. https://www.ncbi.nlm.nih.gov/pubmed/23067565

doi: 10.1021/nn303955n pmid: 23067565
[14]
Etrych T, Šubr V, Strohalm J, Šírová M, $\breve{R}$íhová B, Ulbrich K . J. Controlled Release, 2012,164(3):346. https://www.ncbi.nlm.nih.gov/pubmed/22759979

doi: 10.1016/j.jconrel.2012.06.029 pmid: 22759979
[15]
Gormley A J, Larson N, Banisadr A, Robinson R, Frazier N, Ray A, Ghandehari H . J. Controlled Release, 2013,166(2):130. https://www.ncbi.nlm.nih.gov/pubmed/23262203

doi: 10.1016/j.jconrel.2012.12.007 pmid: 23262203
[16]
Roy D, Ghosn B, Song E H, Ratner D M, Stayton P S . Polym. Chem., 2013,4:1153.
[17]
Liu X M, Quan L D, Tian J, Alnouti Y, Fu K, Thiele G M, Wang D . Pharm. Res., 2008,25(12):2910. https://www.ncbi.nlm.nih.gov/pubmed/18649124

doi: 10.1007/s11095-008-9683-3 pmid: 18649124
[18]
Sedláček O, Hrub$\breve{y}$ M, Studenovsk$\breve{y}$ M, Větvička D, Svoboda J, Kaňková D, Ková$\breve{r}$ J, Ulbrich K . Bioorgan. Med. Chem., 2012,20(13):4056.
[19]
Chytil P, Etrych T, Kostka L, Ulbrich K . Macromol. Chem. Phys., 2012,213(8):858.
[20]
Jäger E, Jäger A, Chytil P, Etrych T, $\breve{R}$íhová B, Giacomelli F C, Štěpánek P, Ulbrich K . J. Controlled Release, 2013,165(2):153. https://www.ncbi.nlm.nih.gov/pubmed/23178950

doi: 10.1016/j.jconrel.2012.11.009 pmid: 23178950
[21]
Nakamura H, Etrych T, Chytil P, Ohkubo M, Fang J, Ulbrich K, Maeda H . J. Controlled Release, 2014,174(1):81.
[22]
Zhou Z, Li L, Yang Y, Xu X, Huang Y . Biomaterials, 2014,35(24):6622. https://www.ncbi.nlm.nih.gov/pubmed/24814427

doi: 10.1016/j.biomaterials.2014.04.059 pmid: 24814427
[23]
Liu T, Li X, Qian Y, Hu X, Liu S . Biomaterials, 2012,33(8):2521. https://www.ncbi.nlm.nih.gov/pubmed/22204981

doi: 10.1016/j.biomaterials.2011.12.013 pmid: 22204981
[24]
Shi J, Schellinger J G, Johnson R N, Choi J L, Chou B, Anghel E L, Pun S H . Biomacromolecules, 2013,14(6):1961. https://www.ncbi.nlm.nih.gov/pubmed/23641942

doi: 10.1021/bm400342f pmid: 23641942
[25]
Zhang R, Luo K, Yang J, Sima M, Sun Y, Janát-Amsbury M M, Kopeček J . J. Controlled Release, 2013,166(1):66. https://www.ncbi.nlm.nih.gov/pubmed/23262201

doi: 10.1016/j.jconrel.2012.12.009 pmid: 23262201
[26]
Jensen K D, Kopecková P, Kopeček J . Bioconjugate Chem., 2002,13(5):975. https://www.ncbi.nlm.nih.gov/pubmed/12236779

doi: 10.1021/bc025559y pmid: 12236779
[27]
Nori A, Jensen K D, Tijerina M, Kopečková P, Kopeček J . Bioconjugate Chem., 2003,14(1):44. https://pubs.acs.org/doi/10.1021/bc0255900

doi: 10.1021/bc0255900
[28]
Pan H, Yang J, Kopečková P, Kopeček J . Biomacromolecules, 2011,12(1):247. https://www.ncbi.nlm.nih.gov/pubmed/21158387

doi: 10.1021/bm101254e pmid: 21158387
[29]
Yang Y, Pan D, Luo K, Li L, Gu Z . Biomaterials, 2013,34(33):8430. 8c05c983-9dc2-4568-a1c8-853327f4b37a http://dx.doi.org/10.1016/j.biomaterials.2013.07.037

doi: 10.1016/j.biomaterials.2013.07.037
[30]
Zhou Y, Yang J, Kopeček J . Biomaterials, 2012,33(6):1863. https://www.ncbi.nlm.nih.gov/pubmed/22138033

doi: 10.1016/j.biomaterials.2011.11.029 pmid: 22138033
[31]
Zhou Y, Yang J, Rhim J S, Kopeček J . J. Controlled Release, 2013,172(3):946. https://www.ncbi.nlm.nih.gov/pubmed/24041709

doi: 10.1016/j.jconrel.2013.09.005 pmid: 24041709
[32]
Zhang R, Yang J, Sima M, Zhou Y, Kopeček J . PNAS, 2014,111(33):12181. https://www.ncbi.nlm.nih.gov/pubmed/25092316

doi: 10.1073/pnas.1406233111 pmid: 25092316
[33]
Yan Z, Jiyuan Y, Rui Z, Kopeček J . Eur. J. Pharm. Biopharm, 2015,89:107. https://www.ncbi.nlm.nih.gov/pubmed/25481033

doi: 10.1016/j.ejpb.2014.11.025 pmid: 25481033
[34]
Zhang R, Yang J, Sima M, Zhou Y, Kopeček J . Macromol. Biosci., 2016,16(1):121. https://www.ncbi.nlm.nih.gov/pubmed/26222892

doi: 10.1002/mabi.201500193 pmid: 26222892
[35]
Yang J, Zhang R, Radford D C, Kopeček J J. Controlled Release, 2015,218:36. https://www.ncbi.nlm.nih.gov/pubmed/26410808

doi: 10.1016/j.jconrel.2015.09.045 pmid: 26410808
[36]
Zhang L, Zhang R, Yang J, Wang J, Kopeček J . J. Controlled Release, 2016,235:306. https://www.ncbi.nlm.nih.gov/pubmed/27266365

doi: 10.1016/j.jconrel.2016.06.004 pmid: 27266365
[37]
Tomalova B, Sirova M, Rossmann P, Pola R, Strohalm J, Chytil P, Cerny V, Tomala J, Kabesova M, Rihova B, Ulbrich K, Etrych T, Kovar M . J. Controlled Release, 2016,223:1. https://www.ncbi.nlm.nih.gov/pubmed/26708020

doi: 10.1016/j.jconrel.2015.12.023 pmid: 26708020
[38]
rová M, Strohalmb J, Chytil P, Lidick$\breve{y}$ O, Tomala J, $\breve{R}$íhová B, Etrych T . J. Controlled Release, 2017,246:1. https://www.ncbi.nlm.nih.gov/pubmed/27940304

doi: 10.1016/j.jconrel.2016.12.004 pmid: 27940304
[39]
Cuchelkar V, Kopecková P, Kopeček J . Macromol. Biosci., 2008,8(5):375. https://www.ncbi.nlm.nih.gov/pubmed/18215003

doi: 10.1002/mabi.200700240 pmid: 18215003
[40]
Shi J, Johnson R N, Schellinger J G, Carlson P M, Pun S H . Int. J. Pharm., 2012,427(1):113. https://www.ncbi.nlm.nih.gov/pubmed/21893178

doi: 10.1016/j.ijpharm.2011.08.015 pmid: 21893178
[41]
Schellinger J G, Pahang J A, Johnson R N, Chu D S H, Sellers D L, Maris D O, Convertine A J, Stayton P S, Horner P J, Pun S H . Biomaterials, 2013,34(9):2318. https://www.ncbi.nlm.nih.gov/pubmed/23261217

doi: 10.1016/j.biomaterials.2012.09.072 pmid: 23261217
[42]
Boyer C, Whittaker M R, Nouvel C, Davis T P . Macromolecules, 2010,43(4):1792.
[43]
Utama R H, Guo Y, Zetterlund P B, Stenzel M H . Chem. Commun., 2012,48(90):11103. https://www.ncbi.nlm.nih.gov/pubmed/23041953

doi: 10.1039/c2cc36116g pmid: 23041953
[44]
Utama R H, Stenzel M H, Zetterlund P B . Macromolecules, 2013,46(6):2118.
[45]
Apostolovic B, Deacon S P, Duncan R, Klok H A . Biomacromolecules, 2010,11(5):1187. https://www.ncbi.nlm.nih.gov/pubmed/20359192

doi: 10.1021/bm901313c pmid: 20359192
[46]
Wu K, Liu J, Johnson R N, Yang J, Kopeček J . Angew. Chem., 2010,122:1493.
[47]
Apostolovic B, Deacon S P E, Duncan R, Klok H A . Macromol. Rapid Commun., 2011,32(1):11. https://www.ncbi.nlm.nih.gov/pubmed/21432965

doi: 10.1002/marc.201000434 pmid: 21432965
[48]
Griffiths P C, Paul A, Apostolovic B, Klok H A, Luca E, King S M, Heenan R K . J. Controlled Release, 2011,153(2):173.
[49]
Novo L, Gaal E V B V, Mastrobattista E, Nostrum C F, Hennink W E . J. Controlled Release, 2013,169(3):246. https://www.ncbi.nlm.nih.gov/pubmed/23583705

doi: 10.1016/j.jconrel.2013.03.035 pmid: 23583705
[50]
Shan W, Zhu X, Liu M, Li L, Zhong J, Sun W, Zhang Z, Huang Y . ACS Nano, 2015,9(3):2345. https://www.ncbi.nlm.nih.gov/pubmed/25658958

doi: 10.1021/acsnano.5b00028 pmid: 25658958
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[3] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[4] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[5] Han Donglin, Qi Hongzhao, Zhao Jin, Long Lixia, Ren Yu, Yuan Xubo. Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers [J]. Progress in Chemistry, 2016, 28(9): 1397-1405.
[6] Liao Rongqiang, Liu Manshuo, Liao Xiali, Yang Bo. Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers [J]. Progress in Chemistry, 2015, 27(1): 79-90.
[7] Liu Peng, Shao Xueguang, Cai Wensheng*. Application of Pesudorotaxanes/Rotaxanes in Drug Carriers [J]. Progress in Chemistry, 2013, 25(05): 692-697.
[8] Zhang Jianjun, Gao Yuan, Sun Wanjin. Albumin as Drug Carriers [J]. Progress in Chemistry, 2011, 23(8): 1747-1754.
[9] Ren Tianbin, Feng Yue, Dong Haiqing, Li Lan, Li Yongyong. Sheddable Nanoparticles for Biomedical Application [J]. Progress in Chemistry, 2011, 23(01): 213-220.
[10] He Junhui1**, Chen Hongmin1,2,Zhang Lin3. Inorganic Hollow Micro/Nanospheres [J]. Progress in Chemistry, 2007, 19(10): 1488-1494.
[11] Li Xiaoran,Yuan Xiaoyan**. Poly(Ethylene Glycol)-Poly(Lactic Acid) Copolymers for Drug Carriers [J]. Progress in Chemistry, 2007, 19(06): 973-981.
[12] Wei Zhang Cuie Yan . Progress in Hyaluronic Acid and Its Derivatives as Drug Carriers [J]. Progress in Chemistry, 2006, 18(12): 1684-1690.