中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1734-1748 DOI: 10.7536/PC170832 Previous Articles   Next Articles

• Review •

Microfluidic Fabrication of Liposomes as Drug Carriers

Tianxi He1, Qionglin Liang2*, Jiu Wang1, Guoan Luo2   

  1. 1. Department of Oil, Army Logistics University, Chongqing 401331, China;
    2. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the International Colaborative Program(No.2011DFA31860), the National Major Special Project of Science and Technology (No.2013ZX09507005), the National Natural Science Foundation of China (No.21175080), the Science and Technology Commission of Chongqing Municipality, China (No.cstc2014jcyjA10056), and the Academic Innovation Fund of Army Logistics University (No.YZ15-436).
PDF ( 898 ) Cited
Export

EndNote

Ris

BibTeX

Liposomes are self-assembled phospholipid vesicles with great potential in drug delivery or fabricating artificial cells. As drugs carriers, liposome has many advantages, such as protecting drugs, improving efficacy, minimizing toxicity, reducing off-target effects, etc., thus liposome fabrication has arouse wide interests. However, there are several issues and concerns of conventional manufacturing techniques for their time-consuming processes, use of costly equipments, poor robustness of parameters, complex pre-and post-processing steps, polydispersity, and batch-to-batch inreproducibility. As a result, microfluidics-based techniques have been developed for liposome fabrication. It has been demonstrated that microfluidic techniques offer a range of advantages compared to conventional methods, especially the ability of precise control over the size and polydispersity of liposomes. This review focuses on recent development of microfluidic techniques with comparison of their outcomes of liposome fabrication. The bottlenecks of microfluidic techniques for liposome fabrication are discussed, and the future development for this field is also prospected.
Contents
1 Introduction
2 Microfluidic hydrodynamic focusing
3 Pulsed jetting
4 Droplet microfuluidics
4.1 Double emulsion templates
4.2 Droplet emulsion transfer
5 Other microfluidic methods
6 Conclusion and outlook

CLC Number: 

[1] Bangham A D, Standish M M, Watkins J C. J. Mol. Bio., 1965, 13:238.
[2] Gregoriadis G, Wills E J, Swain C P, Tavill A S. Lancet, 1974, 1(7870):1313.
[3] Shimanouchi T, Umakoshi H, Kuboib R. J. Colloid Interface Sci., 2013, 394:269.
[4] Walde P, Cosentino K, Engel H, Stano P. ChemBioChem, 2010, 11:848.
[5] Jesorka A, Orwar O. Annu. Rev. Anal. Chem., 2008, 1:801.
[6] 古晓晓(Gu X X),杜宝吉(Du B J),李云辉(Li Y H),高莹(Gao Y),李丹(Li D),汪尔康(Wang E K). 化学进展(Progress in Chemistry),2015,8:1093.
[7] Kraft J C, Freeling J P, Wang Z Y, Ho R J Y. J. Pharm. Sci., 2014, 103:29.
[8] Bowey K, Tanguay J F, Tabrizian M. Expert Opin. Drug Delivery, 2012, 9(2):249.
[9] Jahn A, Vreeland W N, Gaitan M, Locascio L E. J. Am. Chem. Soc., 2004, 126:2674.
[10] Jahn A, Reiner J E, Vreeland W N, DeVoe D L, Locascio L E, Gaitan M. J. Nanopart. Res., 2008, 10:925.
[11] Jahn A, Stavis S M, Hong J S, Vreeland W N, DeVoe D L, Gaitan M. ACS Nano, 2010, 4:2077.
[12] 张磊(Zhang L),刘晓燕(Liu X Y),沈晶晶(Shen J J),卢晓梅(Lu X M),范曲立(Fan Q L),黄雄(Huang X).化学进展(Progress in Chemistry), 2013, 8:1375.
[13] Mayer L D, Tai L C, Ko D S, Masin D, Ginsberg R S, Cullis P R, Bally M B. Cancer Res., 1989, 49(21):5922.
[14] Rossier O, Cuvelier D, Borghi N, Puech P, Derenyi I, Buguin A, Nassoy P, Brochard-Wyart F. Langmuir, 2003, 19:575.
[15] 景婧(Jing J),李轶(Li Y),刘剑(Liu J),展思辉(Zhan S H). 化学进展(Progress in Chemistry), 2011,12:2598.
[16] Pott T, Bouvrais H, Meleard P. Chem. Phys. Lipids, 2008, 154:115.
[17] Pautot S, Frisken B, Weitz D. Langmuir, 2003, 19:2870.
[18] Long M, Cans A, Keating C. J. Am. Chem. Soc., 2008, 130:756.
[19] Freiberg S, Zhu X. Int. J. Pharm., 2004, 282:1.
[20] Marre S, Jensen K F. Chem. Soc. Rev., 2010, 39:1183.
[21] Hood R R, DeVoe D L, Atencia J, Vreeland W N, Omiatek D M. Lab Chip, 2014, 14:2403.
[22] Carugo D, Bottaro E, Owen J, Stride E, Nastruzzi C. Sci. Rep., 2016, 6:25876.
[23] Maulucci G, De Spirito M, Arcovito G, Boffi F, Castellano A C, Briganti G. Biophys. J., 2005, 88:3545.
[24] Weibel D B, Whitesides G M. Curr. Opin. Chem.Biol., 2006, 10:584.
[25] Andar A U, Hood R R, Vreeland W N, Devoe D L, Swaan P W. Pharm. Res., 2014, 31:401.
[26] Luo G S, Du L, Wang Y J, Lu Y C, Xu J H. China Particuology, 2011, 6:545.
[27] 林炳承(Lin B C). 分析化学(Chinese Journal of Analytical Chemistry), 2016, 4:491.
[28] Jahn A, Vreeland W N, DeVoe D L, Locascio L E, Gaitan M. Langmuir, 2007, 23:6289.
[29] Wi R, Oh Y, Chae C, Kim D H. Kor. Aust. Rheol. J., 2012, 24:129.
[30] Lo C, Jahn A, Locascio L, Vreeland W. Langmuir, 2010, 26:8559.
[31] Zook J M, Vreeland W N. Soft Matter, 2010, 6:1352.
[32] Leng J, Egelhaaf S U, Cates M E. Biophys. J., 2003, 85:1624.
[33] Jahn A, Lucas F, Wepf R W, Dittrich P S. Langmuir, 2013, 29:1717.
[34] Hood R R, Vreeland W N, DeVoe D L. Lab Chip, 2014, 14:3359.
[35] Tien Sing Young R V, Tabrizian M. Biomicrofluidics, 2015, 9:046501.
[36] Conde A J, Batalla M, Cerda B, Mykhaylyk O, Plank C, Podhajcer O, Cabaleiro J M, Madrid R E, Policastro L. Lab Chip, 2014, 14:4506.
[37] Kennedy M J, Ladouceur H D, Moeller T, Kirui D, Batt C A. Biomicrofluidics, 2012, 6:044119.
[38] Phapal S, Sunthar P. Chem. Phys. Lipids, 2013, 172/173:20.
[39] Vladisavljevic G T, Laouinia A, Charcosset C, Fessi H, Bandulasena H C H, Holdich R G. Colloids and Surfaces A:Physicochem. Eng. Aspects, 2014, 458:168.
[40] Hood R R, DeVoe D L. Small, 2015, 11(43):5790.
[41] Yaralioglu G, Wygant I, Marentis T, Khuri-Yakub B. Anal. Chem., 2004, 76:3694.
[42] Glasgow I, Aubry N. Lab Chip, 2003, 3:114.
[43] Huang X, Caddell R, Yu B, Xu S, Theobald B, Lee L J, Lee R J. Anticancer Res., 2010, 30:463.
[44] Yamashita K, Nagata M P B, Miyazaki M, Nakamura H, Maeda H. Chem. Eng. J., 2010, 165:324.
[45] Hettiarachchi K, Talu E, Longo M L, Dayton P A, Lee A P. Lab Chip, 2007, 7:463.
[46] Talu E, Hettiarachchi K, Powell R L, Lee A P, Dayton P A, Longo M L. Langmuir, 2008, 24:1745.
[47] Hettiarachchi K, Zhang S, Feingold S, Lee A P, Dayton P A. Biotechnol. Prog., 2009, 25:938.
[48] Carugo D, Ankrett D N, Glynne-Jones P, Capretto L, Boltryk R J, Zhang X, Townsend P A, Hill M. Biomicrofluidics, 2011, 5:044108.
[49] Funakoshi K, Suzuki H, Takeuchi S. J. Am. Chem. Soc., 2007, 129:12608.
[50] Stachowiak J C, Richmond D L, Li T H, Liu A P, Parekh S H, Fletcher D A. Proc. Natl. Acad. Sci., 2008, 105:4697.
[51] Richmond D L, Schmid E M, Martens S, Stachowiak J C, Liska N, Fletcher D A. Proc. Natl. Acad. Sci., 2011, 108:9431.
[52] Stachowiak J C, Richmond D L, Li T H, Brochard-Wyart F, Fletcher D A. Lab Chip, 2009, 9:2003.
[53] Ota S, Yoshizawa S, Takeuchi S. Angew. Chem. Int. Ed. 2009, 48:6533.
[54] Kurakazu T, Takeuchi S. 23rd International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2010. 1115.
[55] 闫嘉航(Yan J H),赵磊(Zhao L),申少斐(Shen S W),马超(Ma C),王进义(Wang J Y). 分析化学(Chinese Journal of Analytical Chemistry), 2016, 4:562.
[56] 陈九生(Chen J S),蒋稼欢(Jiang J H). 分析化学(Chinese Journal of Analytical Chemistry), 2012, 8:1293.
[57] 秦建华(Qin J H). 色谱(Chinese Journal of Chromatography), 2010, 28(11):1009.
[58] Zhang K, Liang Q L, Ma S, He T X, Ai X N, Hu P, Wang Y M, Luo G A. Microfluidics Nanofluidics, 2010, 4/5:995.
[59] Zhang K, Liang Q L, Ma S, Mu X, Hu P, Wang Y M, Luo G A. Lab Chip, 2009, 20:2992.
[60] Ai X N, Zhou W P, Liang Q L, McGrath P T, Lu H. Lab Chip, 2014, 14:1746.
[61] Zhang K, Liang Q L, Ai X N, Hu P, Wang Y M, Luo G A. Lab Chip, 2011, 11:1271.
[62] Zhang K, Liang Q L, Ai X N, Hu P, Wang Y M, Luo G A. Anal. Chem., 2011, 20:8209.
[63] He T X, Liang Q L, Zhang K, Mu X, Luo T T, Wang Y M, Luo G A. Microfluidic Nanofluidic, 2011, 10:1289.
[64] Zhang Q Q, Zeng S J, Qin J H, et al. J. Mater. Chem.,2011,21(8):2466.
[65] Marre S, Jensen K F. Chem. Soc. Rev., 2010, 39(3):1183.
[66] 马静云(Ma J Y), 姜雷(Jiang L), 秦建华(Qin J H). 色谱(Chinese Journal of Chromatography), 2011, 29(9):890.
[67] van Swaay D, DeMello A. Lab Chip, 2013, 13:752.
[68] Shum H C, Lee D, Yoon I, Kodger T, Weitz D A. Langmuir, 2008, 24:7651.
[69] Utada A, Lorenceau E, Link D, Kaplan P, Stone H, Weitz D. Science, 2005, 308:537.
[70] Tan Y C, Hettiarachchi K, Siu M, Pan Y R, Lee A P. J. Am. Chem. Soc., 2006, 128:5656.
[71] Teh S Y, Khnouf R, Fan H, Lee A P. Biomicrofluidics, 2011, 5:044113.
[72] Davies R T, Kim D, Park J. J. Micromech. Microeng., 2012, 22:055003.
[73] Seo M, Paquet C, Nie Z, Xu S, Kumacheva E. Soft Matter, 2007, 3:986.
[74] Mizuno M, Toyota T, Konishi M, Kageyama Y, Yamada M, Seki M. Langmuir, 2015, 31:2334.
[75] Deng N N, Yelleswarapu M, Huck W T S, J. Am. Chem.Soc., 2016, 138:7584.
[76] Deng N N, Yelleswarapu M, Zheng L F, Huck W T S. J. Am. Chem.Soc., 2017, 139:587
[77] Deng N N, Huck W T S. Angew. Chem.Int.Ed., 2017, 129:9868
[78] Li Y, Lipowsky R, Dimova R, J. Am. Chem. Soc., 2008, 130:12252.
[79] Nishimura K, Suzuki H, Toyota T, Yomo T. J. Colloid Interface Sci., 2012, 376:119.
[80] Hamada T, Miura Y, Komatsu Y, Kishimoto Y, Vestergaard M D, Takagi M. J. Phys. Chem. B, 2008, 112:14678.
[81] Teh S Y, Lin R, Hung L H, Lee A P. Lab Chip, 2008, 8:198.
[82] Hu P C, Li S, Malmstadt N. ACS Appl. Mater. Interfaces, 2011, 3:1434.
[83] Matosevic S, Paegel B M. J. Am. Chem. Soc., 2011, 133:2798.
[84] Karamdad K, Law R V, Seddon J M, Brooks N J, Ces O. Lab Chip, 2015, 15:557.
[85] Kubatta E, Rehage H. Colloid Polym. Sci., 2009, 287:1117.
[86] Abkarian M, Loiseau E, Massiera G. Soft Matter, 2011, 7:4610.
[87] Edwards K A, Baeumner A J. Talanta, 2006, 68:1432.
[88] Kirchner S R, Ohlinger A, Pfeiffer T, Urban A S, Stefani F D, Deak A, Lutich A A, Feldmann J. J.Biophotonics, 2012, 5:40.
[89] Peiro-Salvador T, Ces O, Templer R H, Seddon A M. Biochemistry, 2009, 48:11149.
[90] Patil Y P, Jadhav S. Chem.Phys. Lipids, 2014,177:8.
[91] Maeki M, Saito T, Sato Y, Yasui T, Kaji N, Ishida A, Tani H, Baba Y, Harashima H, Tokeshi M. RSC Adv., 2015, 5:46181.
[92] Kastner E, Kaur R, Lowry D, Moghaddam B, Wilkinson A, Perrie Y. Inter. J. Pharm., 2015, 477:361.
[93] Kastner E, Verma V, Lowry D, Perrie Y. Inter. J. Pharm., 2015, 485:122.
[94] 王振宇(Wang Z Y),王琼(Wang Q),王万刚(Wang W G),李文满(Li W M),胡宁(Hu N),杨军(Yang J). 分析化学(Chinese Journal of Analytical Chemistry), 2015, 8:1113.
[95] Kazayama Y, Teshima T, Osaki T, Takeuchi S, Toyota T. Anal. Chem., 2016,88:1111.
[96] Inglis D W, Davis J A, Austin R H, Sturm J C. Lab Chip, 2006, 6:655.
[97] 褚良银(Chu L Y),汪伟(Wang W),巨晓洁(Ju X J),谢锐(Xie R).化工进展(Chemical Industry and Engineering Progress), 2014, 33:2229.
[98] Polte J, Erler R, Thunemann A F, Sokolov S, Ahner T T, Rademann K, Emmerling F, Kraehnert R. ACS Nano, 2010, 4:1076.
[99] Tarabella G, Balducci A G, Coppedè N, Marasso S, DAngelo P, Barbieri S, Cocuzza M, Colombo P, Sonvico F, Mosca R. Biochim. Biophys. Acta Gen. Subj., 2013, 1830:4374.
[100] Kim Y, Chung Lee B, Ma M, Mulder W J, Fayad Z A, Farokhzad O C, Langer R. Nano Lett., 2012, 12:3587.
[101] Anton N, Bally F, Serra C A, Ali A, Arntz Y, Mely Y, Zhao M, Marchioni E, Jakhmola A, Vandamme T F. Soft Matter, 2012, 8:10628.
[102] Kim S H, Kim J W, Kim D H, Han S H, Weitz D A. Microfluid. Nanofluid., 2013, 14:509.
[103] 何天稀(He T X). 清华大学博士论文(Doctoral Dissertation of Tsinghua University), 2011.
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[3] Di Feng, Guanghua Wang, Wenlai Tang, Jiquan Yang. Application of Microfluidic Impedance Cytometer in Single-Cell Detection [J]. Progress in Chemistry, 2021, 33(4): 555-567.
[4] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[5] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[6] Chen Ni, Di Jiang, Youlin Xu, Wenlai Tang. Application of Viscoelastic Fluid in Passive Particle Manipulation Technologies [J]. Progress in Chemistry, 2020, 32(5): 519-535.
[7] Huitiao Li, Jianzhang Pan, Qun Fang. Development and Application of Digital PCR Technology [J]. Progress in Chemistry, 2020, 32(5): 581-593.
[8] Xin Ni, Yang Zhou, Ruiqin Tan, Yongbo Kuang. Fabrication and Modification of Ferrite Photocathodes for Photoelectrochemical Water Splitting [J]. Progress in Chemistry, 2020, 32(10): 1515-1534.
[9] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[10] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[11] Sheng Feng, Fang Yang, Mengyao Liu, Hongxian Fan, Nian Xu. Carriers of Docetaxel: An Anticancer Drug [J]. Progress in Chemistry, 2019, 31(2/3): 368-380.
[12] Jinbo Fei, Qi Li, Jie Zhao, Junbai Li. Optical Properties and Potential Applications of Diphenylalanine Dipeptide-Based Assemblies [J]. Progress in Chemistry, 2019, 31(1): 30-37.
[13] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[14] Jie Tang, Renfa Liu, Zhifei Dai*. Multifunctional Liposomal Drug Delivery Technology [J]. Progress in Chemistry, 2018, 30(11): 1669-1680.
[15] Yufu Chen, Xianggao Li, Yin Xiao, Shirong Wang. Solution Processed Large-Scale Small Molecular Organic Field-Effect Transistors [J]. Progress in Chemistry, 2017, 29(4): 359-372.