中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1397-1405 DOI: 10.7536/PC160423 Previous Articles   Next Articles

• Review and comments •

Enhancement of Intra-Tumor Penetration and Distribution of Nano-Drug Carriers

Han Donglin1, Qi Hongzhao1, Zhao Jin1, Long Lixia1, Ren Yu2, Yuan Xubo1*   

  1. 1. Tianjin Key Laboratory of Composite & Functional Materials, School of Materials Science & Engineering, Tianjin University, Tianjin 30007;
    2. Basic Medical Research Center, Tianjin Medical University, Tianjin 300070, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51303125,51473119).
PDF ( 1782 ) Cited
Export

EndNote

Ris

BibTeX

The tumor therapeutics effect of chemotherapeutant, proteins and genes could be improved when they are loaded in nano-drug carriers. But in some cases the therapeutics effects are modest due to the poor penetration and distribution of nano-carriers in the heterogeneous tumor tissue. During the recent years, increasing efforts have been dedicated to improve the intra-tumor penetration by controlling the size, surface zeta potential, targeting agents, and shape of nano-drug carriers. This paper reviews the progress in enhancement of intra-tumor penetration and distribution of nano-drug carriers through the modification of their components, structures and physicochemical properties. The challenges of nano-drug carriers in tumor treatment are raised and the possible solutions are proposed.

Contents
1 Introduction
2 Inorganic nano-drug carriers
2.1 Meso-porous silicon nano-drug carriers
2.2 Gold nano-drug carriers
3 Organic nano-drug carriers
3.1 Micelles
3.2 Dendrimers
3.3 Liposomes
3.4 Polymer nanocapsule
4 Conclusion

CLC Number: 

[1] Wong C, Stylianopoulos T, Cui J A, Martin J, Chauhan V P, Jiang W, Popovic Z, Jain R K, Bawendi M G, Fukumura D. Proc. Natl. Acad. Sci. U. S. A., 2011, 108:2426.
[2] Chauhan V P, Stylianopoulos T, Martin J D, Popovic Z, Chen O, Kamoun W S, Bawendi M G, Fukumura D, Jain R K. Nature Nanotech., 2012, 7:383.
[3] Dhanikula R S, Argaw A, Bouchard J F, Hildgen P. Mol. Pharm., 2008, 5:105.
[4] Chilkoti A, Dreher M R, Meyer D E, Raucher D. Adv. Drug Deliv. Rev., 2002, 54:613.
[5] Jang S H, Wientjes M G, Lu D, Au L S. Pharm. Res., 2003, 20:1337.
[6] Waite C L, Roth C M. Biotechnology and Bioengineering, 2011, 108:2999.
[7] Andrew I, Minchinton, Tannock L F. Nature Reviews Cancer, 2006, 6:583.
[8] Maeda H, Nakamura H, Fang J. Adv. Drug Deliv. Rev., 2013, 65:71.
[9] Goel S, Duda D G, Xu L, Munn L L, Boucher Y, Fukumura D, Jain R K. Physiol. Rev., 2011, 91:1071.
[10] Kanapathipillai M, Brock A, Ingber D E. Adv. Drug Deliv. Rev., 2014, 79:107.
[11] Jackson D E. FEBs Letters, 2003, 540:7.
[12] Divan A, Lawry J, Dunsmore I R, Parsons A, Royds J A. Cancer Res., 2001, 61:3157.
[13] Trédan O, Galmarini C M, Patel K,Tannock I F. J. Natl. Cancer Inst., 2007, 99:1441.
[14] Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M. Cancer Science, 2003, 94:1021.
[15] Grantab R, Sivananthan S, Tannock I F. Cancer Res., 2006, 66:1033.
[16] Padera T P, Stoll B R, Tooredman J B, Capen D, Tomaso E D, Jain R K. Nature, 2004, 427:695.
[17] Jain R K. Cancer Res., 1987, 47:3039.
[18] Netti P A, Berk D A, Swartz M A, Grodzinsky A J, Jain R K. Cancer Res., 2000, 60:2497.
[19] Brown E B, Boucher Y, Nasser S, Jain R K. Microvascular Research, 2004, 67:231.
[20] Heldin C H, Rubin K, Pietras K, Ostman A. Nat. Rev. Cancer, 2004, 4:806.
[21] Kwon I K, Lee S C, Han B, Park K. J. Controlled Release, 2012, 164:108.
[22] Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M R, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Nat. Nanotechnol., 2011, 6:815.
[23] Lee H, Hoang B, Fonge H, Reilly R M, Allen C. Pharm. Res., 2010, 27:2343.
[24] Ernsting M J, Foltz W D, Undzys E, Tagami T, Li S D, Biomaterials, 2012, 33:3931.
[25] Tong R T, Boucher Y, Kozin S V, Winkler F, Hicklin D J, Jain R K. Cancer Res., 2004, 64:3731.
[26] Khawar I A, Kim J H, Kuh H J. J. Controlled Release, 2015, 201:78.
[27] Jain R K, Stylianopoulos T. Nat. Rev. Clin. Oncol., 2010, 7:653.
[28] Parodi A, Haddix S G, Taghipour N, Scaria S, Taraballi F, Cevenini A, Yazdi I K, Corbo C, Palomba R, Khaled S Z, Martinez J O, Brown B S, Isenhart L, Tasciotti E. ACS Nano, 2014, 8:9874.
[29] Tang L, Fan T M, Borst L B, Cheng J J. ACS Nano, 2012, 6:3954.
[30] Li H J, Du J Z, Du X J, Xu C F, Sun C Y, Wang H X, Cao Z T, Yang X Z, Zhu Y H, Nie S, Wang J. Proc. Natl. Acad. Sci. U.S.A., 2016, 113:4164.
[31] Tang L, Yang X J, Qian Y, Cai K M, Wang H, Chaudhrgy I, Yao C, Zhou Q, Kwon M, Hartman J A, Dobrucki I T, Borst L B, Lezmi S, Helferich W G, Ferguson A L, Fan T M, Cheng J J. Proc. Natl. Acad. Sci. U. S. A., 2014, 111:15344.
[32] Trewyn B G, Nieweg J A, Zhao Y Y, Lin V S Y. Chem. Eng., 2008, 137:23.
[33] Lu X L, Hargrove D, Tran T H, Salner A. J. Nucl. Med., 2014, 5:210.
[34] Cheng Y, Meyers J D, Broome A M, Kenney M E, Basilion J P, Bruda C. J. Am. Chem. Soc., 2011, 133:2583.
[35] Brown S D, Nativo P, Smith J A, Stirling D, Edwards P R, Venugopal B, Flint D J, Plumb J A, Graham D, Wheate N J. J. Am. Chem. Soc., 2010, 132:4678.
[36] Chithrani D B, Jelveh S, Jalali F, Prooijen M V, Allen C, Bristow R G, Hill R P, Jaffray D A. Radiat. Res., 2010, 173:719.
[37] Yohan D, Chithrani B D. Biomed. Nanotechnol., 2014, 10:2371.
[38] Ruan S, Cao X, Cun X, Hu G L, Zhang Y J, Lu L B, He Q, Gao H L. Biomaterials, 2015, 60:100.
[39] Huo S, Ma H, Huang K. Cancer Res., 2013, 73:319.
[40] Goodman T T, Olive P L, Pun S H. Int. J. Nanomedicine, 2007, 2:265.
[41] Huang K, Ma H, Liu J, Huo S D, Kumart A, Weit T, Zhang X, Jin S, Gan Y L, Wang P C, He S T, Zhang X N, Liang X J. ACS Nano, 2012, 6:4483.
[42] Hainfeld J F, O'Connor M J, Lin P, Qian L P, Slatkin D N, Smiliiowitz H M. PloS One, 2014, 9:e88414.
[43] Nam J, Won N, Jin H, Chung H, Kim S. J. Am. Chem. Soc., 2009, 131:13639.
[44] Jin S, Ma X, Ma H, Zheng K, Liu J, Hou S, Meng J, Wang P C, Wu X C, Liang X J. Nanoscale, 2013, 5:143.
[45] England C G, Priest T, Zhang G D, Sun X H, Patel D N, McNally L R, Berkel V V, Gobin A M, Frieboes H B. Inter. J. Nanomed., 2013, 8:3603.
[46] Black K C L, Wang Y, Luehmann H P, Cai W X, Pang B, Zhao Y F, Cutler C S, Wang L V, Liu Y J, Xia Y N. ACS Nano, 2014, 8:4385.
[47] Doshi N, Prabhakarpandian B, Rea-Ramsey A, Pant K, Sundaram S, Mitragotri S. J. Controlled Release, 2010, 146:196.
[48] Tan J, Shah S, Thomas A, Ou-Yang H D, Liu Y. Microfluid Nanofluid, 2013, 14:77.
[49] . Kersey F, Merkel T J, Perry J, Napier M E, DeSimone J M. Langmuir, 2012, 28:8773.
[50] Venkataraman S, Hedrick J L, Ong Z Y, Yang C, Ee P L R, Hammond P T, Yang Y Y. Adv. Drug Deliv. Rev., 2011, 63:1228.
[51] Doshi N, Mitragotri S. PLoS One, 2010, 5:e10051.
[52] . Zhang K, Fang H, Chen Z, Taylor J S A, Wooley K L. Bioconjugate Chem., 2008, 19:1880.
[53] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Deliv. Rev., 2001, 47:113.
[54] Rong T, Houman D H, Robert L, Kohane D S. J. Am. Chem. Soc., 2012, 134:8848.
[55] Jiang X Y, Xin H L, Gu J J, Xu X M, Xia W Y, Chen S, Xie Y K, Chen L C, Chen Y Z, Sha X Y, Fang S Y. Biomaterials, 2013, 34:1739.
[56] He H, Li Y, Jia X R, Du J, Ying X, Lu W L, Lou J N, Wei Y. Biomaterials, 2011, 32:478.
[57] Sunoqrot S, Bugno J, Lantvit D, Burdette J E, Hong S. J. Controlled Release, 2014, 191:115.
[58] Sunoqrot S, Bae J W, Pearson R M, Shyu K, Liu Y, Kim D H, Hong S. Biomacromolecules, 2012, 13:1223.
[59] Koo L Y, Irvine D J, Mayes A M, Lauffenburger D A, Grifffth L G. J. Cell Sci., 2002, 115:1423.
[60] Liu S. Bioconjugate Chem., 2009, 20:2199.
[61] Wang L, Shi J, Kim Y S, Zhai S, Jia B, Zhao H, Liu Z, Wang F, Chen X, Liu S. Mol. Pharm., 2006, 6:231.
[62] Allen T M, Cullis P R. Adv. Drug Deliv. Rev., 2013, 65:36.
[63] Deamer D W. The FASEB Journal, 2014, 24:1308.
[64] Ewer M S, Martin F J, Henderson C, Shapiro C L, Benjamin R S, Gabizon A A. Oncol., 2004, 31:161.
[65] Maruyama K. Adv. Drug Deliv. Rev., 2011, 63:161.
[66] Zhu L, Kate P, Torchilin V P. ACS Nano, 2012, 6:3491.
[67] Thurston G, Mclean J W, Baluk P, Haskell A, Murphy T J, Hanahan D, McDonald D M. J. Clin. Invest., 1998, 101:1401.
[68] Krasnici S, Werner A, Eichhorn M E, Schmitt-Sody M, Pahemik S A, Sauer B, Schulze B, Teifel M, Michaelis Uwe, Naujoks K, Dellian M. Int. J. Cancer, 2003, 105:561.
[69] Kano M R, Bae Y, Morishita Y, Yashiro M, Oka M, Fujii T, Komuro A, Kiyono K, Kaminishi M, Hirakawa K, Ouchi Y, Nishiyama N, Kataoka K, Miyazono K. Proc. Natl. Acad. Sci. U. S. A., 2007, 104:3460.
[70] Yan M, Liang M, Wen J, Liu Y, Lu Y F, Chen I S Y. J. Am. Chem. Soc., 2012, 134:13542.
[71] Yan M, Du J, Gu Z, Liang M, Hu Y F, Zhang W J, Priceman S, Wu L L, Zhou H, Liu Z, Segura T, Tang Y, Lu Y F. Nature Nanotech., 2010, 5:48.
[72] Liu C Y, Wen J, Meng Y B, Zhang K L, Zhu J L, Ren Y, Qian X M, Yuan X B, Lu Y F, Kang C S. Adv. Mater., 27:292.
[73] Du J, Jin J, Yan M, Lu Y. Curr. Drug MeTab., 2012, 13:82.
[74] Torrecilla D, Lozano M V, Lallana E, Neissa J I, Novoa-Carballal N, Vidal A, Fernandez-Megia E, Torres D, Tiguera R, Alonso M J, Dominguez F. Eur. J. Pharm. Biopharm., 2013, 83:330.
[75] Yang P, Li D, Jin S, Ding J, Shi W B, Wang C C. Biomaterials, 2014, 35:2079.
[76] Gu Z, Yan M, Hu B, Joo K I, Biswas A, Lu Y F, Wang P, Tang Y. Nano Lett., 2009, 9:4533.
[77] Zhao M X, Hu B L, Gu Z, Joo K I, Wang P, Tang Y. Nano Today, 2013, 8:11.
[78] Villegas M R, Baeza A, Vallet R M. ACS Appl. Mater. Inter., 2015, 7:24075.
[79] Kong S D, Zhang W, Lee J H, Brammer K, Lal R, Karin M, Jin S H. Nano Lett., 2010, 10:5088.
[80] Kim B, Han G, Toley B J, Kim C K, Rotello V M, Forbes N S. Nature Nanotech., 2010, 5:465.
[81] Adams G P, Schier R, McCall A M, Simmons H H, Horak E M, Alpaugh R K, Marks J D, Weiner L M. Cancer Res., 2001, 61:4750.
[82] Owen M R, Byrne H M, Lewis C E. J. Thero. Biol., 2004, 226:377.
[1] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[4] Jiali Wang, Ling Zhu, Chen Wang, Shengbin Lei, Yanlian Yang. Nanotechnology for Detection of Circulating Tumor Cells and Extracellular Vesicles [J]. Progress in Chemistry, 2022, 34(1): 178-197.
[5] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[6] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[7] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.
[8] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[9] Qixiao Guan, Heze Guo, Hongjing Dou. Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy [J]. Progress in Chemistry, 2021, 33(10): 1823-1840.
[10] Shan Guo, Xiang Zhou. Detection of Circulating Tumor Cell in Vivo:Technology and Application [J]. Progress in Chemistry, 2021, 33(1): 1-12.
[11] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[12] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[13] Zhaoxuan Fan, Liang Zhao, Xueji Zhang. The Detection of Circulating Tumor DNA: From Digitalization to Sequencing [J]. Progress in Chemistry, 2019, 31(10): 1384-1395.
[14] Xiaowei Cao, Shuai Chen, Min Bao, Hongcan Shi, Wei Li. Synthesis and Surface Modifications of Au Nanostars and Their Applications in Biomedical Fields [J]. Progress in Chemistry, 2018, 30(9): 1380-1391.
[15] Xiaoxiao Tan, Guoshuai Li, Qingpeng Wang, Bingquan Wang, Dacheng Li, Peng George Wang. Small Molecular Platinum(Ⅳ) Compounds as Antitumor Agents [J]. Progress in Chemistry, 2018, 30(6): 831-846.