English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 541-551 DOI: 10.7536/PC151020 前一篇   后一篇

• 综述与评论 •

荷正电聚乙烯亚胺纳滤膜的制备与应用

赵凤阳1, 秘一芳1, 安全福1*, 高从堦2   

  1. 1. 教育部高分子合成与功能构造重点实验室 浙江大学高分子科学与工程学系 杭州 310027;
    2. 杭州水处理技术开发中心 杭州 310012
  • 收稿日期:2015-10-01 修回日期:2015-11-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 安全福 E-mail:anqf@zju.edu.cn
  • 基金资助:
    浙江省杰出青年科学基金项目(No. LR15B060001)和国家重点基础研究发展计划项目(No. 2015CB655303)资助

Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane

Zhao Fengyang1, Mi Yifang1, An Quanfu1*, Gao Congjie2   

  1. 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Development Center of Water Treatment Technology, Hangzhou 310012, China
  • Received:2015-10-01 Revised:2015-11-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholars(No. LR15B060001)and the National Basic Research Program of China(No. 2015CB655303).
纳滤是介于超滤与反渗透之间的膜分离技术,具有操作压力低,无相变,分离效率高及运行成本低等优点,广泛地应用于饮用水制备、污水处理、化工、制药和食品等领域.近年来,随着分离体系复杂程度的增加及对膜分离性能要求的提高,荷正电纳滤膜越来越受到研究者的关注.聚乙烯亚胺(PEI)是一类重要的多胺类荷正电纳滤膜材料,具有优异的亲水性、高荷电密度及反应活性.开发具有高分离性、高稳定性、耐酸碱性、耐溶剂性、抗菌性和耐污染性的荷正电PEI纳滤膜(P-PEI-NFM)日益成为研究的热点.本文对近年来P-PEI-NFM的制备方法进行归纳,总结了P-PEI-NFM在水软化、重金属脱除、碱性染料的分离及浓缩、抗生素分离和耐溶剂纳滤的应用.探讨了P-PEI-NFM存在的主要问题,并对未来的研究方向进行了展望.
The nanofiltration is a type of pressure-driven membrane separation technology with properties between ultrafiltration and reverse osmosis. It offers several advantages such as low operation pressure, no phase transition, high separation efficiency, relatively low operation and maintenance costs. The application range of nanofiltration membrane in drinking water production, wastewater treatment, chemical processing, pharmaceutical and food industry and other potential beneficiaries has extended tremendously. Therefore, nanofiltration membranes with good separation performances are required for more complicated applications. To address these requirements, positively charged nanofiltration membranes have received more and more attentions. Polyethyleneimine (PEI) which is an important amine groups function cationic polyelectrolyte, has become one of the most important positively nanofiltration membrane materials because of its superior hydrophilicity, high charge density and reactivity. Preparation of positively PEI NF membranes (P-PEI-NFM) with high separation efficiency, good stability, pH stability, solvent resistance, antibacterial and antifouling properties has become a hot spot in recent years. Recent preparation methods of P-PEI-NFM are reviewed in this paper, and the applications such as in water softening, heavy metal removal, separation and concentration of basic dyes, separation of antibiotics and solvent resistant nanofiltration are summarized. The major problems existed at present are pointed out. In addition, this paper also provides useful information about the development of P-PEI-NFM.

Contents
1 Introduction
2 Preparation methods of positively charged polyethyleneimine nanofiltration membranes
2.1 Interfacial polymerization
2.2 Chemical cross-linking
2.3 Layer-by-layer self-assembly
2.4 Surface modification
2.5 Other preparation methods
3 Applications of positively charged polyethyleneimine nanofiltration membranes
[JP] 3.1 Water softening
3.2 Heavy metal removal
3.3 Separation and concentration of basic dyes
3.4 Separation of antibiotics
3.5 Solvent resistant nanofiltration
4 Conclusion and outlook

中图分类号: 

()
[1] 董航(Dong H), 张林(Zhang L), 陈欢林(Chen H L), 高从堦(Gao C J). 化学进展(Progress in Chemistry), 2014, 26(12): 2007.
[2] 李祥(Li X), 张忠国(Zhang Z G), 任晓晶(Ren X J), 李继定(Li J D). 化工进展(Chemical Industry and Engineering Progress), 2014, 33(5): 1200.
[3] 方彦彦(Fang Y Y), 李倩(Li Q), 王晓琳(Wang X L). 化学进展(Progress in Chemistry), 2012, 24(5): 863.
[4] Ji Y L, An Q F, Zhao Q, Chen H L, Gao C J. J. Membr. Sci., 2011, 376: 254.
[5] Ji Y L, An Q F, Zhao F Y, Gao C J. Desalination, 2015, 357: 8.
[6] 黄瑞华(Huang R H).中国海洋大学博士论文(Doctoral Dissertation of Ocean University of China), 2007.
[7] Mahato M, Kumar P, Sharma A K. Mol. Biosyst., 2013, 9: 780.
[8] Lin Y F, Kan K, W Z Song, Zhang G, Dang L F, Xie Y, Shen P K, Li L, Shi K Y. J. Alloys Compd., 2015, 639: 187.
[9] Li K M, Jiang J G, Yan F, Tian S C, Chen X J. Appl. Energ., 2014, 136: 750.
[10] Chen Z Y, He Y Y, Gao H W. RSC Adv., 2014, 4: 26309.
[11] 袁芳(Yuan F). 天津大学博士论文(Doctoral Dissertation of Tian Jin University), 2012.
[12] Mi Y F, Zhao Q, Ji Y L, An Q F, Gao C J. J. Membr. Sci., 2015, 490: 311.
[13] Li W, Lou L Y, Hai Y Y, Fu C X, Zhang J L. RSC Adv., 2015, 5: 54125.
[14] Chiang Y C, Hsub Y Z, Ruaan R C, Chuang C J, Tung K L. J. Membr. Sci., 2009, 326: 19.
[15] Lee K P, Zheng J M, Bargeman G, Kemperman A J B, Benes N E. J. Membr. Sci., 2015, 478: 75.
[16] Dey T K, Bindal R C, Prabhakar S, Tewari P K. Separ. Sci. Technol., 2011, 46: 933.
[17] Akbari A, Solymani H, Rostami S M M. J. Appl. Polym. Sci., 2015, 132: 41988.
[18] 张林(Zhang L), 林赛赛(Lin S S), 魏平(Wei P), 程丽华(Cheng L H), 陈欢林(Chen H L). 催化学报(Chinese Journal of Catalysis), 2012, 33(10): 1730.
[19] Lau W J, Gray S, Matsuura T, Emadzadeh D, Chen J P, Ismail A F. Water Res., 2015, 80: 306.
[20] 杨皓程(Yang H C), 陈一夫(Chen Y F), 叶辰(Ye C), 万灵书(Wan L S), 徐志康(Xu Z K). 化学进展(Progress in Chemistry), 2015, 27(8): 1014.
[21] Roy S, Ntim S A, Mitra S, Sirkar K K. J. Membr. Sci., 2011, 375: 81.
[22] Zhang H Q, Mao H, Wang J T, Ding R, Du Z, Liu J D, Cao S K. J. Membr. Sci., 2014, 470: 70.
[23] Bai X, Zhang Y T, Wang H, Zhang H Q, Liu J D. Desalination, 2013, 313: 57.
[24] Kebria M S, Jahanshahi M. IJE Transactions B: Application, 2014, 27(8): 1173.
[25] Kebria M R S, Jahanshahi M, Rahimpour A. Desalination, 2015, 367: 255.
[26] Pal A, Dey T K, Singhal A, Bindal R C, Tewari P K. RSC Adv., 2015, 5: 34134.
[27] Ji Y L, An Q F, Zhao Q, Sun W D, Lee K R, Chen H L, Gao C J. J. Membr. Sci., 2012, 390/391: 243.
[28] Tan L Y, Zhang H Q, Liu J D. Asian J. Chem., 2010, 22(10): 4319.
[29] 崔月(Cui Y), 许云秋(Xu Y Q), 姚之侃(Yao Z K), 杜世媛(Du S Y), 赵斌(Zhao B), 朱宝库(Zhu B K), 朱利平(Zhu L P). 功能材料(Journal of Functional Materials), 2014, 24(45): 24050.
[30] Feng C C, Xu J, Li M M, Tang Y Y, Gao C J. J. Membr. Sci., 2014, 451: 103.
[31] Xu J, Zhang L L, Gao X L, Bie H Y, Fu Y P, Gao C J. J. Membr. Sci., 2015, 491: 28.
[32] Xu J, Xu L N, Xu H B, Sun F, Gao X L, Gao C J. J. Membr. Sci., 2015, 496: 21.
[33] 向红兵(Xiang H B), 黄忠(Huang Z), 诸静(Zhu J), 陈蕾(Chen L), 于俊荣(Yu J R), 胡祖明(Hu Z M). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2011, 27(10): 117.
[34] Ba C Y, Langer J, Economy J. J. Membr. Sci., 2009, 327: 49.
[35] Gao J, Sun S P, Zhu W P, Chung T S. J. Membr. Sci., 2014, 452: 300.
[36] Gao J, Sun S P, Zhu W P, Chung T S. Water Res., 2014, 63: 252.
[37] 于致源(Yu Z Y), 丁万德(Ding W D), 王志宁(Wang Z N). 化学进展(Progress in Chemistry), 2015, 27(7): 953.
[38] Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane A G. J. Membr. Sci., 2014, 450: 181.
[39] 李希鹏(Li X P), 胡晓宇(Hu X Y), 张宇峰(Zhang Y F), 陈英波(Chen Y B), 崔灿(Cui C). 化工新型材(New Chemical Materials), 2015, 43(7): 227.
[40] Decher G. Science, 1997, 277: 1232.
[41] 计艳丽(Ji Y L), 安全福(An Q F),钱锦文(Qian J W), 陈欢林(Chen H L), 高从堦(Gao C J). 化学进展(Progress in Chemistry), 2010, 22(1): 119.
[42] Rajabzadeh S, Liu C, Shi L, Wang R. Desalination, 2014, 344: 64.
[43] Guo H X, Chen M M, Liu Q, Wang Z M, Cui S P, Zhang G J. Desalination, 2015, 365: 108.
[44] Chen Q, Yu P P, Huang W Q, Yu S C, Liu M H, Gao C J. J. Membr. Sci., 2015, 492: 312.
[45] Wu D H, Huang Y F, Yu S C, Lawless D, Feng X S. J. Membr. Sci., 2014, 472: 141.
[46] Ba C Y, Ladner D A, Economy J. J. Membr. Sci., 2010, 347: 250.
[47] Zhou Y, Yu S C, Gao C J, Feng X S. Sep. Purif. Technol., 2009, 66: 287.
[48] Xu J, Wang Z, Wang J X, Wang S C. Desalination, 2015, 365: 398.
[49] 黄虎彪(Huang H B). 浙江大学硕士论文(Master Dissertation of Zhejiang University), 2014.
[50] Zhang Y, Zhang S, Chung T S. Environ. Sci. Technol., 2015, 49(16): 10235.
[51] 刘宗光(Liu Z G), 屈树新(Qu S X), 翁杰(Weng J). 化学进展(Progress in Chemistry), 2015, 27(2/3): 212.
[52] 李霞(Li X), 曹义鸣(Cao Y M), 康国栋(Kang G D), 于海军(Yu H J), 刘中楠(Liu Z N). 高等学校化学学报(Chemical Jouranl of Chinese Universities), 2014, 35(9): 2026.
[53] 汪帅(Wang S), 李方(Li F), 李勇(Li Y), 潘婷(Pan T), 杨波(Yang B), 田晴(Tian Q). 膜科学与技术(Membrane Science and Technology), 2015, 35(1): 42.
[54] Lee H, Dellatore S M, Miller W M, Messersmith P B. Sci, 2007, 318: 426.
[55] Zhang R N, Su Y L, Zhao X T, Li Y F, Zhao J J, Jiang Z Y. J. Membr. Sci., 2014, 470: 9.
[56] Li M M, Xu J, Chang C Y, Feng C C, Zhang L L, Tang Y Y, Gao C J. J. Membr. Sci., 2014, 459: 62.
[57] Zhu J Y, Zhang Y T, Tian M M, Liu J D. ACS Sustainable Chem. Eng., 2015, 3: 690.
[58] Lv Y, Yang H C, Liang H Q, Wan L S, Xu Z K. J. Membr. Sci., 2015, 476: 50.
[59] Zhao Q, Ji Y L, Wu J K, Shao L L, An Q F, Gao C J. RSC Adv., 2014, 4: 52808.
[60] 赵凤阳(Zhao F Y), 计艳丽(Ji Y L), 安全福(An Q F), 高从堦(Gao C J). 科技导报(Science & Technology Review), 2015, 33(14): 87.
[61] Zhao F Y, An Q F, Ji Y L, Gao C J. J. Membr. Sci., 2015, 492: 412.
[62] Ouyang L, Malaisamy R, Bruening M L. J. Membr. Sci., 2008, 310: 76.
[63] Low S C, Cheng L P, Hee L S. Desalination, 2008, 221: 168.
[64] Park S J, Cheedrala R K, Diallo M S, Kim C K In S, Goddard Ⅲ W A. J. Nanopart. Res., 2012, 14: 884.
[65] Sun S P, Hatton T A, Chan S Y, Chung T S. J. Membr. Sci., 2012, 401/402: 152.
[66] Fang W X, Shi L, Wang R. J. Membr. Sci., 2013, 430: 129.
[67] Fang W X, Shi L, Wang R. J. Membr. Sci., 2014, 468: 52.
[68] Qin Z P, Geng C L, Guo H X, Du Z A, Zhang G J, Ji S L. J. Mater. Res., 2013, 28(11): 1449.
[69] Thong Z W, Han G, Cui Y, Gao J, Chung T S, Chan S Y, Wei S. Environ. Sci. Technol., 2014, 48(23): 13880.
[70] Wei X Z, Wang S X, Shi Y Y, Xiang H, Chen J Y, Zhu B K. Desalination, 2014, 350: 44.
[71] Wei X Z, Wang S X, Shi Y Y, Xiang H, Chen J Y. Ind. Eng. Chem. Res., 2014, 53: 14036.
[72] Cheng S Y, Oatley D L, Williams P M, Wright C J. Adv. Colloid Interfac., 2011, 164:12.
[73] Cheng S Y, Oatley D L, Williams P M, Wright C J. Water Res., 2012, 46: 33.
[74] Sun S P, Hatton T A, Chung T S. Environ. Sci. Technol., 2011, 45:4003.
[75] 卫旺(Wei W), 相里粉娟(Xiangli F J), 金万勤(Jin W Q), 徐南平(Xu N P). 化学进展(Progress in Chemistry), 2007, 19(10): 1592.
[76] Zhang H Q, Zhang Y J, Li L B, Zhao S, Ni H O, Cao S K, Wang J T. Chem. Eng. Sci., 2014, 106:157.
[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[4] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[7] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[8] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[11] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[12] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[13] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[14] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[15] 靳钧, 林梓恒, 石磊. 一维新型碳的同素异形体:碳链[J]. 化学进展, 2021, 33(2): 188-198.