English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 552-563 DOI: 10.7536/PC151031 前一篇   后一篇

• 综述与评论 •

核-壳型分子印迹聚合物的制备与应用

明魏娜1,2, 王晓艳2,3, 明永飞4, 李金花2, 陈令新1,2*   

  1. 1. 曲阜师范大学化学与化工学院 山东省生命有机分析重点实验室 曲阜 273165;
    2. 中国科学院烟台海岸带研究所 中国科学院海岸带环境过程与生态修复重点实验室 烟台 264003;
    3. 滨州医学院药学院 烟台 264003;
    4. 鲁东大学生命科学学院 烟台 264025
  • 收稿日期:2015-10-01 修回日期:2015-11-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 陈令新 E-mail:lxchen@yic.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 21275158, 21477160)资助

Preparation and Applications of Core-Shell Molecularly Imprinted Polymers

Ming Weina1,2, Wang Xiaoyan2,3, Ming Yongfei4, Li Jinhua2, Chen Lingxin1,2*   

  1. 1. Key Laboratory of Life-Organic Analysis of Shandong Province, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China;
    2. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003;
    3. School of Pharmacy, Binzhou Medical University, Yantai 264003, China;
    4. School of Life Science, Ludong University, Yantai 264025, China
  • Received:2015-10-01 Revised:2015-11-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21275158, 21477160).
分子印迹聚合物是具有与模板分子形状、大小及官能团完全匹配的特异识别位点的高分子聚合物,能选择性识别、有效富集目标分析物(模板分子)并去除干扰物,已广泛应用于样品前处理、化学/生物传感、药物输送等领域.然而,在合成过程中,仍存在模板分子洗脱困难、有效识别位点少、结合容量低、传质速率慢等问题.核-壳型分子印迹聚合物即在核层颗粒表面进行分子印迹,即表面印迹,印迹位点仅存在于壳层结构中,利于模板分子洗脱及扩散,能够增加有效识别位点并提高印迹容量.依据核层材料的不同,本文详细介绍了以磁性材料及非磁性材料为核的核-壳型分子印迹聚合物的合成与应用,探讨了中空核-壳分子印迹聚合物的制备与发展,并对核-壳印迹聚合物的发展前景进行了展望.
Molecularly imprinted polymers (MIPs) are a new kind of smart polymers with molecular recognition sites complementary to the template molecules in shape, size and functional groups. MIPs can selectively recognize and effectively concentrate target analytes (template molecules) as well as reduce matrices interferences, and they have been widely applied in many fields such as sample pretreatment, chemical/biological sensors, and drug delivery. However, there are still some problems during the traditional synthesis processes of MIPs, such as incomplete template removal, low binding capacity, slow mass transfer and binding kinetic. Surface imprinting is a very effective way to solve the problems, and the resultant core-shell MIPs have cavities at the polymer surface or close to the surface, which can facilitate the elution and diffusion of the template molecules, and increase effective recognition sites and improve imprinting capacities. This review summarizes several types of core-shell MIPs including magnetic core and non-magnetic core, focusing on their preparation and applications. Also, the preparation and development of hollow core-shell MIPs are discussed. Finally, the future outlook of core-shell MIPs is proposed.

Contents
1 Introduction
2 Core-shell molecularly imprinted polymers
2.1 Magnetic core-shell MIPs
2.2 Non-magnetic core-shell MIPs
3 Hollow core-shell MIPs
4 Conclusion and outlook

中图分类号: 

()
[1] Turiel E, Martin-Esteban A. Anal. Chim. Acta, 2010, 668: 87.
[2] Chen L X, Xu S F, Li J H. Chem. Soc. Rev., 2011, 40: 2922.
[3] Xu S F, Lu H Z, Zheng X W, Chen L X. J. Mater. Chem. C, 2013, 1: 4406.
[4] 张明磊(Zhang M L), 张朝晖(Zhang Z H), 张立吉(Zhang L J), 刘丽(Liu L), 聂丽华(Nie L H). 化学通报(Chemistry Online), 2010, 2: 160.
[5] Pichon V. J. Chromatogr. A, 2007, 1152: 41.
[6] Li L, He X W, Chen L X, Zhang Y K. Chem. Asian J., 2009, 4: 286.
[7] Lu F G, Yang J L, Sun M, Fan L L, Qiu H M, Li X J, Luo C N. Anal. Bioanal.Chem., 2012, 404: 79.
[8] Tan L, Li W M, Li H, Tang Y W. J. Chromatogr. A, 2014, 1336: 59.
[9] Liu H L, Liu D R, Fang G Z, Liu F F, Liu C C, Yang Y K, Wang S. Anal. Chim. Acta, 2013, 762: 76.
[10] Shen X T, Zhu L H, Li J, Tang H Q. Chem. Commun., 2007, 11: 1163.
[11] Wang P, Zhang A X, Jin Y, Zhang Q, Zhang L Y, Peng Y, Du S H. RSC Adv., 2014, 4: 26063.
[12] 李金花(Li J H), 温莹莹(Wen Y Y), 陈令新(Chen L X). 色谱(Chinese Journal of Chromatography), 2013, 31: 181.
[13] Gao D M, Zhang Z P, Wu M H, Xie C G, Guan G J, Wang D P. J. Am. Chem. Soc., 2007, 129: 7859.
[14] 丛姣姣(Cong J J), 罗静(Luo J), 高雅涵(Gao Y H), 刘晓亚(Liu X Y). 高分子通报(Polymer Bulletin), 2015, 5: 10.
[15] 杨卫海(Yang W H), 吴瑶(Wu Y), 张轶(Zhang Y), 卫晨(Wei C), 严守雷(Yan S L), 王清章(Wang Q Z). 化学进展(Progress in Chemistry), 2010, 22: 1819.
[16] 张进(Zhang J), 曹丹(Cao D), 陈家美(Chen J M), 王超英(Wang C Y). 材料导报(Materials Review), 2013, 19: 55.
[17] Lu C H, Zhou W H, Han B, Yang H H, Chen X, Wang X R. Anal. Chem., 2007, 79: 5457.
[18] Li J H, Dong R C, Wang X Y, Xiong H, Xu S F, Shen D Z, Song X L, Chen L X. RSC Adv., 2015, 5: 10611.
[19] Zhang Z, Li J H, Fu L W, Liu D Y, Chen L X. J. Mater. Chem. A, 2015, 3: 7437.
[20] Ning F J, Peng H L, Dong L L, Zhang Z, Li J H, Chen L X, Xiong H. J. Agric. Food Chem., 2014, 62: 11138.
[21] Liu D J, Yang Q, Jin S S, Song Y Y, Gao J F, Wang Y, Mi H F. Acta Biomater., 2014, 10: 769.
[22] Zhang Z, Li J H, Wang X Y, Shen D Z, Chen L X. ACS Appl. Mater. Interfaces, 2015, 7: 9118.
[23] Dan L,Wang H F. Anal. Chem., 2013, 85: 4844.
[24] Liu H L, Fang G Z, Li C M, Pan M F, Liu C C, Fan C, Wang S. J. Mater. Chem., 2012, 22: 19882.
[25] Guan G J, Liu R Y, Mei Q S, Zhang Z P. Chem. Eur. J., 2012, 18: 4692.
[26] Zhang Z, Chen L X, Yang F F, Li J H. RSC Adv., 2014, 4: 31507.
[27] Gao R X, Mu X R, Hao Y, Zhang L L, Zhang J J, Tang Y H. J. Mater. Chem. B, 2014, 2: 1733.
[28] Jin G Y, Li W, Yu S N, Peng Y Y, Kong J L. Analyst, 2008, 133: 1367.
[29] Liu J Z, Wang W Z, Xie Y F, Huang Y Y, Liu Y L, Liu X J, Zhao R, Liu G Q, Chen Y. J. Mater. Chem., 2011, 21: 9232.
[30] Yavuz C T, Prakash A, Mayo J T, Colvin V L. Chem. Eng. Sci., 2009, 64: 2510.
[31] Chen L G, Zhang X P, Sun L, Xu Y, Zeng Q L, Wang H, Xu H Y, Yu A M, Zhang H Q, Ding L. J. Agric. Food Chem., 2009, 57: 10073.
[32] Deng Y H, Qi D W, Deng C H, Zhang X M, Zhao D Y. J. Am. Chem. Soc., 2008, 130: 28.
[33] Tan C J,Tong Y W. Anal. Chem., 2007, 79: 299.
[34] Frickel N, Messing R, Gelbrich T, Schmidt A M. Langmuir, 2010, 26: 2839.
[35] Zhang M L, Zhang Z H, Liu Y N, Yang X, Luo L J, Chen J T, Yao S Z. Chem. Eng. J., 2011, 178: 443.
[36] Hu C H, Deng J, Zhao Y B, Xia L S, Huang K H, Ju S Q, Xiao N. Food Chem., 2014, 158: 366.
[37] Gao R X, Mu X R, Zhang J J, Tang Y H. J. Mater. Chem. B, 2014, 2: 783.
[38] Jing T, Du H R, Dai Q, Xia H, Niu J W, Hao Q L, Mei S R, Zhou Y K. Biosens. Bioelectron., 2010, 26: 301.
[39] Gai Q Q, Qu F, Liu Z J, Dai R J, Zhang Y K. J. Chromatogr. A, 2010, 1217: 5035.
[40] Lu F G, Li H J, Sun M, Fan L L, Qiu H M, Li X J, Luo C N. Anal. Chim. Acta, 2012, 718: 84.
[41] Li Y, Li X, Chu J, Dong C K, Qi J Y, Yuan Y X. Environ. Pollut., 2010, 158: 2317.
[42] Li Y, Dong C J, Chu J, Qi J Y, Li X. Nanoscale, 2011, 3: 280.
[43] Xu S F, Lu H Z, Chen L X, Wang X C. RSC Adv., 2014, 4: 45266.
[44] Han S, Li X, Wang Y, Su C. Anal. Methods, 2014, 6: 2855.
[45] Lin Z K, Cheng W J, Li Y Y, Liu Z R, Chen X P, Huang C J. Anal. Chim. Acta, 2012, 720: 71.
[46] Lin Z K, He Q Y, Wang L T, Wang X D, Dong Q X, Huang C J. J. Hazard. Mater., 2013, 252: 57.
[47] Xu S F, Li J H, Song X L, Liu J S, Lu H Z, Chen L X. Anal. Methods, 2013, 5: 124.
[48] Zhang Z, Li J H, Fu J Q, Chen L X. RSC Adv., 2014, 4: 20677.
[49] Titirici M M,Sellergren B. Chem. Mater., 2006, 18: 1773.
[50] Yu D J, Zeng Y B, Qi Y X, Zhou T S, Shi G Y. Biosens. Bioelectron., 2012, 38: 270.
[51] Zhang Z H, Liu L, Li H, Yao S Z. Appl. Surf. Sci., 2009, 255: 9327.
[52] Kan X W, Geng Z R, Wang Z L, Zhu J J. J. Nanosci. Nanotechnol., 2009, 9: 2008.
[53] Xu S F, Li J H, Chen L X. J. Mater. Chem., 2011, 21: 4346.
[54] Ma J, Yuan L H, Ding M J, Wang S, Ren F, Zhang J, Du S H, Li F, Zhou X M. Biosens. Bioelectron., 2011, 26: 2791.
[55] Zhang W, Qin L, He X W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 4560.
[56] Dakova I, Yordanova T, Karadjova I. J. Hazard. Mater., 2012, 231: 49.
[57] Pérez N, Whitcombe M J, Vulfson E N. Macromolecules, 2001, 34: 830.
[58] Qin L, He X W, Zhang W, Li W Y, Zhang Y K. J. Chromatogr. A, 2009, 1216: 807.
[59] Carlson C A, Lloyd J A, Dean S L, Walker N R, Edmiston P L. Anal. Chem., 2006, 78: 3537.
[60] Li J H, Kendig C E, Nesterov E E. J. Am. Chem. Soc., 2007, 129: 15911.
[61] Tu R Y, Liu B H, Wang Z Y, Gao D M, Wang F, Fang Q L, Zhang Z P. Anal. Chem., 2008, 80: 3458.
[62] Deng Z T, Tong L, Flores M, Lin S, Cheng J X, Yan H, Liu Y. J. Am. Chem. Soc., 2011, 133: 5389.
[63] Erwin S C, Zu L J, Haftel M I, Efros A L, Kennedy T A, Norris D J. Nature, 2005, 436: 91.
[64] Tan L, Rang C C, Xu S Y, Tang Y W. Biosens. Bioelectron., 2013, 48: 216.
[65] Xu S F, Lu H Z, Li J H, Song X L, Wang A X, Chen L X, Han S B. ACS Appl. Mater. Interfaces, 2013, 5: 8146.
[66] Xu S F, Lu H Z. Chem. Commun., 2015, 51: 3200.
[67] Liu H L, Fang G Z, Wang S. Biosens. Bioelectron., 2014, 55: 127.
[68] Shen X T, Zhu L H, Liu G X, Yu H W, Tang H Q. Environ. Sci. Technol., 2008, 42: 1687.
[69] Shen X T, Zhu L H, Huang C X, Tang H Q, Yu Z W, Deng F. J. Mater. Chem., 2009, 19: 4843.
[70] Han D M, Dai G L, Jia W P, Liang H D. Micro & Nano Letters, 2010, 5: 76.
[71] Xu S F, Lu H Z, Chen L X. J. Chromatogr. A, 2014, 1350: 23.
[72] Xu S F, Chen L X, Li J H, Qin W, Ma J P. J. Mater. Chem., 2011, 21: 12047.
[73] Zhang Z, Xu S F, Li J H, Xiong H, Peng H L, Chen L X. J. Agric. Food Chem., 2012, 60: 180.
[74] Dong R C, Li J H, Xiong H, Lu W H, Peng H L, Chen L X. Talanta, 2014, 130: 182.
[75] Wang X Y, Kang Q, Shen D Z, Zhang Z, Li J H, Chen L X. Talanta, 2014, 124: 7.
[76] Xie C G, Li H F, Li S Q, Gao S. Microchim. Acta, 2011, 174: 311.
[77] Zhao P N, Liu S Q, Yu J H. J. Inorg. Organomet. Polym. Mater., 2011, 21: 846.
[78] Li J, Zhang X B, Liu Y X, Tong H W, Xu Y P, Liu S M. Talanta, 2013, 117: 281.
[79] Chen Y, He X W, Mao J, Li W Y, Zhang Y K. J. Sep. Sci., 2013, 36: 3449.
[80] Zhao Q, Li H Y, Xu Y, Zhang F S, Zhao J H, Wang L, Hou J, Ding H, Li Y, Jin H Y, Ding L. J. Chromatogr. A, 2015, 1376: 26.
[81] Guan G J, Zhang Z P, Wang Z Y, Liu B H, Gao D, Xie C G. Adv. Mater., 2007, 19: 2370.
[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 刘育坚, 刘智敏, 许志刚, 李攻科. 搅拌棒吸附萃取技术[J]. 化学进展, 2020, 32(9): 1334-1343.
[3] 谢晓纹, 马晓国, 郭丽慧. 分子印迹聚合物用于环境内分泌干扰物的检测与去除[J]. 化学进展, 2019, 31(12): 1749-1758.
[4] 吕春晖, 王硕, 方国臻, 汤轶伟, 王岁楼. 分子印迹在仿生免疫吸附分析中的应用[J]. 化学进展, 2012, 24(05): 844-851.
[5] 张慧, 何华, 李洁, 李卉, 姚誉阳. 分子印迹水相分离技术及其在分析化学中的应用[J]. 化学进展, 2011, 23(10): 2140-2150.
[6] 杨卫海 吴瑶 张轶 卫晨 严守雷 王清章. 磁性分子印迹聚合物核壳微球的制备及应用*[J]. 化学进展, 2010, 22(09): 1819-1825.
[7] 阚显文 尹宇新 耿志荣 王志林. 基于硅材料的分子印迹聚合物的制备及应用* [J]. 化学进展, 2010, 22(01): 107-112.
[8] 王学军,许振良,杨座国,邴乃慈. 水相识别分子印迹技术[J]. 化学进展, 2007, 19(05): 805-812.