English
新闻公告
More
化学进展 2015, Vol. 27 Issue (9): 1167-1181 DOI: 10.7536/PC150210 前一篇   后一篇

• 综述与评论 •

轻金属配位氢化物储氢体系

刘新1, 吴川1,2, 吴锋1,2, 白莹1,2*   

  1. 1. 北京理工大学材料学院 环境科学与工程北京市重点实验室 北京 100081;
    2. 国家高技术绿色材料发展中心 北京 100081
  • 收稿日期:2015-02-01 修回日期:2015-04-01 出版日期:2015-09-15 发布日期:2015-06-24
  • 通讯作者: 白莹 E-mail:membrane@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21476027),教育部博士点基金项目(No. 20121101110042)和教育部新世纪优秀人才支持计划项目(No. NCET-13-0033)资助

Light Metal Complex Hydride Hydrogen Storage Systems

Liu Xin1, Wu Chuan1,2, Wu Feng1,2, Bai Ying1,2*   

  1. 1. Beijing Key Laboratory of Environment Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received:2015-02-01 Revised:2015-04-01 Online:2015-09-15 Published:2015-06-24
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476027), the Research Fund for the Doctoral Program of Higher Education of China (No. 20121101110042), and the Program for New Century Excellent Talents in University (No. NCET-13-0033).
实现氢能有效利用的关键技术是开发安全、经济、高效的氢能储运体系。在目前所有的储氢技术中,固态材料化学储氢因其储氢密度大、可循环使用、安全方便储运等优势成为人们关注的焦点;配位氢化物储氢材料是现有储氢材料中体积和质量储氢密度最高的储氢材料。其中,具有高储氢密度、储氢性能优良的轻金属配位氢化物储氢材料是配位氢化物储氢领域研究的重点,目前已经取得了大量成果。本文论述了主要轻金属配位氢化物储氢体系的研究进展,包括硼氢化物储氢体系、铝氢化物储氢体系、氨基化物储氢体系等,阐述和总结了其热解反应机理、动力学性能、晶体结构、最新研究现状,最后对该领域的研究方向进行了总结和展望,指出二元或多元复合储氢体系、高效纳米粒子催化剂和储氢反应环境的综合协同效应将会成为储氢领域未来的研究趋势和重要研究方向。
The key technology for hydrogen energy effectively is to develop safe, economical and efficient hydrogen storage system. Among all the hydrogen storage technologies at present, solid-state hydrogen storage material has got a lot of attentions because of its outstanding advantages including high density, excellent cycle property, safe and convenient storage mode. Complex hydride material has the highest hydrogen storage density; and light metal complex hydride hydrogen storage systems (LMCHHSS) which have high hydrogen storage density and excellent hydrogen storage property are the research emphasis with good achievements. The decomposition mechanisms, thermodynamic and kinetic properties, cycling performances, crystal structures, research status of LMCHHSS, including borohydride system, alanate system and amide system, are discussed in the paper. At last, some promising research directions to reduce thermodynamic stability, improve kinetic property and cycling hydrogen storage property, such as binary or multicomponent composite system, efficient catalyst nanoparticle, superior reaction environment, or the comprehensive synergistic effect of the above, are suggested for the developing trends of the domain in the future.

Contents
1 Introduction
2 Light metal borohydride hydrogen storage system
2.1 LiBH4 hydrogen storage system
2.2 NaBH4 hydrogen storage system
2.3 KBH4 hydrogen storage system
2.4 Mg(BH4)2 hydrogen storage system
3 Light metal alanate hydrogen storage system
3.1 LiAlH4 hydrogen storage system
3.2 NaAlH4 hydrogen storage system
3.3 Mg(AlH4)2 hydrogen storage system
4 Alkali metalamide hydrogen storage system
4.1 LiNH2 hydrogen storage system
4.2 NaNH2 hydrogen storage system
5 Conclusion and outlook

中图分类号: 

()
[1] US Department of Energy. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan-Section 3.3 Hydrogen Storage, 2012. http://energy.gov/sites/prod/files/2014/11/f19/fcto_myrdd_storage.pdf, 2014.
[2] Vajeeston P, Ravindran P, Kjekshus A, Fjellvag H. J. Alloys Compd., 2005, 387: 97.
[3] Smith M B, Bass G E. J. Chem. Eng. Data., 1963, 8(3): 342.
[4] 龙飞(Long F). 北京理工大学硕士论文(Master Dissertation of Beijing Institute of Technology), 2011.
[5] Züttel A, Wenger P, Rensch S, Sudan P, Ph Mauron, Ch Emmenegger. J. Power Sources, 2003, 118(1/2): 1.
[6] Guo L J, Jiao L F, Li L, Wang Q H, Liu G, Du H M, Wu Q, Du J, Yang J Q, Yan C, Wang Y J, Yuan H T. Int. J. Hydrogen Energy, 2013, 38(1): 162.
[7] Xu J, Meng R R, Cao J Y, Gu X F, Qi Z Q, Wang W C, Chen Z D. Int. J. Hydrogen Energy, 2013, 38(6): 2796.
[8] Xu J, Meng R R, Cao J Y, Gu X F, Song W L, Qi Z Q, Wang W C, Chen Z D. J. Alloys Compd., 2013, 564(5): 84.
[9] Yuan P P, Liu B H, Zhu H P, Pan W Y, Li Z P. J. Alloys Compd., 2013, 557: 124.
[10] Meggouh M, Grant D M, Deavin O, Brunelli M, Hansen T C, Walker G S. Int. J. Hydrogen Energy, 2015, 40(7): 2989.
[11] Zhao Y P, Jiao L F, Liu Y C, Guo L J, Li L, Liu H Q, Wang Y J, Yuan H T. Int. J. Hydrogen Energy, 2014, 39(2): 917.
[12] Vajo J J, Skeith S L, Mertens F. J. Phys. Chem. B, 2005, 109(9): 3719.
[13] Ibikunle A A, Sabitu S T, Goudy A J. J. Alloys Compd., 2014, 556: 45.
[14] Kou H Q, Sang G, Huang Z Y, Luo W H, Chen L X, Xiao X Z, Hu C W, Zhou Y L. Int. J. Hydrogen Energy, 2014, 39(13): 7050.
[15] Nakamori Y, Matsuo M, Yamada K, Tsutaoka T, Orimo S. J. Alloys Compd., 2007, 446: 698.
[16] Leng H Y, Wei J, Li Q, Chou K C. J. Alloys Compd., 2014, 597: 136.
[17] Song M Y, Kwak Y J, Lee S H, Park H R. Mater. Res. Bull., 2013, 48(7): 2476.
[18] Wang J S, Han S M, Zhang W, Liang D, Li Y, Zhao X, Wang R B. Int. J. Hydrogen Energy, 2013, 38(34): 14631.
[19] Crosby K, Shaw L L. Int. J. Hydrogen Energy, 2010, 35(14): 7519.
[20] Utke R G, Nielsen T K, Pranzas K, Saldan I, Pistidda C, Karimi F, Laipple D, Skibsted J, Jensen T R, Klassen T, Dornheim M. J. Phys. Chem. C, 2012, 116(1): 1526.
[21] Utke R G, Milanese C, Javadian P, Jepsen J, Laipple D, Karmi F, Puszkiel J, Jensen T R, Marini A, Klassen T, Dornheim M. Int. J. Hydrogen Energy, 2013, 38(8): 3275.
[22] Utke R G, Milanese C, Javadian P, Girella A, Laipple D, Puszkiel J, Cattaneo A S, Ferrara C, Wittayakhun J, Skibsted J, Jensen T R, Marini A, Klassen T, Dornheim M. J. Alloys Compd., 2014, 599: 78.
[23] Wang K K, Kang X D, Luo J H, Hu C H, Wang P. Int. J. Hydrogen Energy, 2013, 38(9): 3710.
[24] Wang K K, Kang X D, Zhong Y J, Hu C H, Wang P. Int. J. Hydrogen Energy, 2014, 39(25): 13369.
[25] Zhong Y J, Kang X D, Wang K K, Wang P. Int. J. Hydrogen Energy, 2014, 39(5): 2187.
[26] Luo J H, Wu H, Zhou W, Kang X D, Wang P. Int. J. Hydrogen Energy, 2013, 38(1): 197.
[27] Tan Y B, Tang Z W, Li S F, Li Q, Yu X B. Int. J. Hydrogen Energy, 2012, 37(23): 18101.
[28] Chen J, He T, Wu G T, Xiong Z T, Chen P. Int. J. Hydrogen Energy, 2013, 38(25): 10944.
[29] Zhang Y, Xiong Z T, Cao H J, Wu G T, Chen P. Int. J. Hydrogen Energy, 2014, 39(4): 1710.
[30] Varin R A, Parviz R. Int. J. Hydrogen Energy, 2012, 37(2): 1584.
[31] Varin R A, Zbroniec L, Polanski M, Filinchuk Y, Cerny R. Int. J. Hydrogen Energy, 2012, 37(21): 16056.
[32] Liu R X, Reed D, Book D. J. Alloys Compd., 2012, 515: 32.
[33] Liu D A, Yang J, Ni J, Drews A. J. Alloys Compd., 2012, 514: 103.
[34] Retnamma R, Novais A Q, Rangel C M. Int. J. Hydrogen Energy, 2011, 36(16): 9772.
[35] Muir S S, Yao X D. Int. J. Hydrogen Energy, 2011, 36(10): 5983.
[36] Amendola S C, Sharp-Goldman S L, Janjua M S, Kelly M T, Petillo P J, Binder M. J. Power Sources, 2000, 85(2): 186.
[37] 许炜(Xu W), 陶占良(Tao Z L), 陈军(Chen J). 化学进展(Progress in Chemistry), 2006, 18(2): 200.
[38] Bennici S, Garron A, Auroux A. Int. J. Hydrogen Energy, 2010, 35(16): 8621.
[39] Kojima Y, Suzuki K I, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H. Int. J. Hydrogen Energy, 2002, 27(10): 1029.
[40] Delmas J, Laversenne L, Rougeaux I, Capron P, Garron A, Bennici S, Swierczynski D, Auroux A. Int. J. Hydrogen Energy, 2011, 36(3): 2145.
[41] Netskina O V, Ozerova A M, Komova O V, Odegova G V, Simagina V I. Catal. Today, 2014.
[42] Chang J, Tian H J, Du F L. Int. J. Hydrogen Energy, 2014, 39(25): 13087.
[43] Sim J H, Lee C J, Kim T. Energy Proced, 2014, 61: 2058.
[44] Wu C, Bai Y, Liu D X, Wu F, Pang M L, Yi B L. Catal. Today, 2011, 170(1): 33.
[45] Chinnappan A, Jadhav A H, Puguan J M, Ntiamoah R A, Kim H. Energy, 2015, 79: 482.
[46] Eom K, Cho E, Kim M, Oh S, Nam S W, Kwon H. Int. J. Hydrogen Energy, 2013, 38(6): 2804.
[47] Yang B G, Li S L, Jiang Y Y, Wang H. Mater. Sci. Eng. Powder Metall., 2013, 18(4): 516.
[48] Choudhury P, Bhethanabotla V R, Stefanakos E. Phys. Rev. B, 2008, 77(13): 134302.
[49] Kurko S, Aurora A, Gattia D M, Contini V, Montone A, Lovre? R, Novakovi D? J G. Int. J. Hydrogen Energy, 2013, 38(27): 12140.
[50] Guo Y J, Jia J F, Wang X H, Ren Y, Wu H S. Chem. Phys., 2013, 418: 22.
[51] Dovgaliuk I, Hagemann H, Leyssens T, Devillers M, Filinchuk Y. Int. J. Hydrogen Energy, 2014, 39(34): 19603.
[52] Liu R X, Book D. Int. J. Hydrogen Energy, 2014, 39(5): 2194.
[53] Liu R X, Reed D, Book D. J. Alloy Compd., 2012, 515: 32.
[54] Durojaiye T, Ibikunle A, Goudy A J. Int. J. Hydrogen Energy, 2013, 35(19): 10329.
[55] Jiang J J, Wei J, Leng H Y, Li Q, Chou K C. Int. J. Hydrogen Energy, 2013, 38(25): 10919.
[56] Liu Y F, Yang Y J, Zhou Y F, Zhang Y, Gao M X, Pan H G. Int. J. Hydrogen Energy, 2012, 37(22): 17137.
[57] Paduani C. J. Mater. Chem. A, 2015, 3: 819.
[58] Remhof A, Yan Y G, Rentsch D, Borgschulte A, Jensen C M, Züttel A. J. Mater. Chem. A, 2014, 2: 7244.
[59] Dilts J A, Ashby E C. Inorg. Chem., 1972, 11: 1230.
[60] Mustafa N S, Ismail M. Int. J. Hydrogen Energy, 2014, 39(15): 7834.
[61] Li L, Qiu F Y, Wang Y J, Xu Y N, An C H, Liu G, Jiao L F, Yuan H T. Int. J. Hydrogen Energy, 2013, 38(9): 3695.
[62] Fu J, Tegel M, Kieback B, R?ntzsch L. Int. J. Hydrogen Energy, 2014, 39(4): 16362.
[63] Liu S S, Li Z B, Jiao C L, Si X L, Yang L N, Zhang J, Zhou H Y, Huang F L, Gabelica Z, Schick C, Sun L X, Xu F. Int. J. Hydrogen Energy, 2013, 38(6): 2770.
[64] 任晓(Ren X), 王新华(Wang X H),李寿权(Li S Q), 葛红卫(Ge H W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2011, 32(6): 1330.
[65] Zhang J, Bai C G, Pan F S, Luo X D. Ordnance Mater. Sci. Eng., 2008, 31(6): 90.
[66] Bogdanovi D? B, Schwickardi M. J. Alloys Compd., 1997, 253.
[67] Bergemann N, Pistidda C, Milanese C, Girella A, Hansen B R S, Wurr J, Jepsen J, Jensen T R, Marini A, Klassen T, Dornheim M. Int. J. Hydrogen Energy, 2014, 39(18): 9877.
[68] Rongeat C, Jansa I L, Oswald S, Shultz L, Gutfleisch O. Acta. Mater., 2009, 57(18): 5563.
[69] Rongeat C, Scheerbaum N, Schultz L, Gutfleisch O. Acta. Mater., 2011, 59(4): 1725.
[70] Li L, Wang Y, Qiu F Y, Wang Y J, Xu Y N, An C H, Jiao L F, Yuan H T. J. Alloys Compd., 2013, 566: 137.
[71] Wang Y P, Ren Q L, Wang Y J, Li L, Song D W, Jiao L F, Yuan H T. Int. J. Hydrogen Energy, 2010, 35(20): 11004.
[72] Li L, Wang Y J, Wang Y P, Liu G, Han Y, Qiu F Y, Yan C, Song D W, Jiao L F, Yuan H T. J. Alloys Compd., 2011, 509S: 747.
[73] Rafiuddin, Qu X H, Zahid G H, Asghar Z, Shahzad M, Iqbal M, Ahmad E. J. Alloys Compd., 2014, 604: 317.
[74] Bhatnagar A, Pandey S K, Dixit V, Shukla V, Shahi R R, Shaz M A, Srivastava O N. Int. J. Hydrogen Energy, 2014, 39(26): 14240.
[75] Fan X L, Xiao X Z, Chen L X, Li S Q, Wang Q D. J. Alloys Compd., 2011, 509S: 750.
[76] Fan X L, Xiao X Z, Chen L X, Han L Y, Li S Q, Ge H W, Wang Q D. Int. J. Hydrogen Energy, 2011, 36(17): 10861.
[77] Fan X L, Xiao X Z, Shao J, Zhang L T, Li S Q, Ge H W, Wang Q D, Chen L X. Nano Energy, 2013, 2(5): 995.
[78] Minella C B, Lindemann I, Nolis P, Kieling A, Baro M D, Klose M, Giebeler L, Rellinghaus B, Eckert J, Schultz L, Gutfleisch O. Int. J. Hydrogen Energy, 2013, 38(21): 8829.
[79] Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M, Sun D. Acta. Mater., 2011, 59(4): 1829.
[80] Kim Y Y, Lee E K, Shima J H. J. Alloys Compd., 2006, 422: 283.
[81] Mamatha M, Bogdanovic B, Felderhoff M, Pommerin A, Schmidt W, Schueth F, Weidenthaler C. J. Alloys Compd., 2006, 407: 78.
[82] Wang Y, Li L, Qiu F Y, An C H, Wang Y J, Jiao L F, Yuan H T. J. Energy Chem., 2014, 23(6): 60205.
[83] Wang Y, Wang Y J, Wang X F, Zhang H, Jiao L F, Yuan H T. Int. J. Hydrogen Energy, 2014, 39(31): 17747.
[84] Chen P, Xiong Z T, Luo J Z, Lin J Y, Tan K L. Nature, 2002, 420(6913): 302.
[85] Ichikawa T, Isobe S, Hanada N, Fujii H. J. Alloys Compd., 2004, 365: 271.
[86] Ichikawa T, Hanada N, Isobe S, Leng H Y, Fujii H. J. Alloys Compd., 2005, 404: 435.
[87] Wei J, Leng H Y, Li Q, Chou K C. Int. J. Hydrogen Energy, 2014, 39(25): 13609.
[88] Luo J H, Kang X D, Wang P. Int. J. Hydrogen Energy, 2013, 38(11): 4648.
[89] Chen Y, Wu C Z, Wang P, Cheng H M. Int. J. Hydrogen Energy, 2006, 31(9): 1236.
[90] Ma L P, Wang P, Dai H B, Cheng H M. J. Alloys Compd., 2009, 468: 21.
[91] Niemann M U, Srinivasan S S, Kumar A, Stefanakos E K, Goswami D Y, Mcgrath K. Int. J. Hydrogen Energy, 2009, 34(19): 8086.
[92] Bürger I, Hu J J, Vitillo J G, Kalantzopoulos G N, Deledda S, Fichtner M, Baricco M, Linder M. Int. J. Hydrogen Energy, 2014, 39(16): 8283.
[93] Chu H L, Xiong Z T, Wu G T, Guo J P, Zheng X L, He T, Wu C Z, Chen P. J. Chem. Asian., 2010, 5: 1594.
[94] 何轶伦(He Y L), 杨宝刚(Yang B G), 李松林(Li S L), 姜圆圆(Jiang Y Y), 王行(Wang H). 湖南科技大学学报(自然科学版)(Journal of Hunan University of Science & Techndogy (Natural Science Edition)), 2014, 29(1): 93.
[95] Pireddu G, Valentoni A, Minella C B, Pistidda C, Milanese C, Enzo S, Mulas G, Garroni S. Int. J. Hydrogen Energy, 2015, 40(4): 1829.
[96] Zhang Y, Tian Q F. Int. J. Hydrogen Energy, 2011, 36(16): 9733.
[97] Chater P A, Anderson P A, Prendergast J W, Walton A, Mann V S J, Book D, David W I F, Johnson S R, Edwards P P. J. Alloys Compd., 2007, 446: 350.
[98] Somer M, Acar S, Aydemir U. J. Alloys Compd., 2010, 491: 98.
[99] Wu C, Bai Y, Yang J H, Wu F, Long F. Int. J. Hydrogen Energy, 2012, 37(1): 889.
[100] Bai Y, Wu C, Wu F, Yang J H, Zhao L L, Long F, Yi B L. Int. J. Hydrogen Energy, 2012, 37(17): 12973.
[101] Bai Y, Zhao L L, Wang Y, Liu X, Wu F, Wu C. Int. J. Hydrogen Energy, 2014, 39(25): 13576.
[1] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[2] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[3] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[4] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[5] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 刘玥, 吴忆涵, 庞宏伟, 王祥学, 于淑君, 王祥科. 石墨相氮化碳材料在水环境污染物去除中的研究[J]. 化学进展, 2019, 31(6): 831-846.
[8] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[9] 葛明, 李振路. 基于银系半导体材料的全固态Z型光催化体系[J]. 化学进展, 2017, 29(8): 846-858.
[10] 沈晓骏, 黄攀丽, 文甲龙, 孙润仓. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
[11] 姚臻, 戴博恩, 于云飞, 曹堃. 巯基-环氧点击化学及其在高分子材料中的应用[J]. 化学进展, 2016, 28(7): 1062-1069.
[12] 赵艳霞, 何圣贵. 异核氧化物团簇与小分子的反应研究[J]. 化学进展, 2016, 28(4): 401-414.
[13] 花东龙, 庄晓煜, 童东绅, 俞卫华, 周春晖. 催化甘油脱水氧化连串反应制丙烯酸[J]. 化学进展, 2016, 28(2/3): 375-390.
[14] 杨越, 刘琪英, 蔡炽柳, 谈金, 王铁军, 马隆龙. 木质纤维素催化转化制备DMF和C5/C6烷烃[J]. 化学进展, 2016, 28(2/3): 363-374.
[15] 谢利娟, 石晓燕, 刘福东, 阮文权. 菱沸石在柴油车尾气NOx催化净化中的应用[J]. 化学进展, 2016, 28(12): 1860-1869.
阅读次数
全文


摘要

轻金属配位氢化物储氢体系