English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 363-374 DOI: 10.7536/PC150820 前一篇   后一篇

• 综述与评论 •

木质纤维素催化转化制备DMF和C5/C6烷烃

杨越1,2, 刘琪英1, 蔡炽柳1,3, 谈金1, 王铁军1, 马隆龙1,2*   

  1. 1. 中国科学院广州能源研究所 中国科学院可再生能源重点实验室 广州 510640;
    2. 中国科学技术大学化学系 合肥 230026;
    3. 中国科学院大学 北京 100049
  • 收稿日期:2015-08-01 修回日期:2015-10-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 马隆龙 E-mail:mall@ms.giec.ac.cn
  • 基金资助:
    国家自然科学基金项目(No.51576199),国家重点基础研究发展计划(973)项目(No.2012CB215304)和广东省科技计划(No.2014A010106019)资助

Advances in DMF and C5/C6 Alkanes Production from Lignocellulose

Yang Yue1,2, Liu Qiying1, Cai Chiliu1,3, Tan Jin1, Wang Tiejun1, Ma Longlong1,2*   

  1. 1. key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2015-08-01 Revised:2015-10-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51576199), the National Basic Research Program of China (973 Program) (No.2012CB215304),and the Science and Technology Plan Key Project in Guangdong Province of China (No.2014A010106019).
生物质是一类重要的可再生资源,将其转化为高品质燃料在能源替代、环境保护等方面具有重要意义。在高品质燃料中,2,5-二甲基呋喃(DMF)具有较高的能量密度、高辛烷值和较高的沸点,是一种非常具有应用前景的可再生含氧液体燃料,掺混后可促进汽油的燃烧;C5/C6烷烃是现有汽油的重要组分,在提高汽油辛烷值和调节蒸汽压等方面不可或缺。本文以木质纤维素生物质典型组分纤维素为起始原料,系统总结了纤维素转化为5-羟甲基糠醛(HMF),HMF选择性加氢脱氧为DMF以及完全加氢脱氧为C5/C6液体烷烃等转化过程的反应介质、催化体系及反应路径。反应介质包括水、离子液体、极性非质子有机溶剂、含水的双相体系;催化体系包括无机酸、金属盐、固体酸及负载型催化剂。本文对DMF和C5/C6烷烃液体燃料高效合成的研究前景进行了展望和评述,以期为纤维素类生物质高效转化为高值液体燃料提供思路和参考。
Lignocellulosic biomass is an important renewable resource, and has potential application in high quality biofuels to substitute fossil energy and reduce green house gas emission. Among those high quality biofuels, oxygen-contained 2,5-dimethyl furan (DMF) and C5/C6 alkanes show particular interests because these two kinds fuels could be produced from biomass via 5-hydroxymethyl furfural (HMF) intermediate. DMF is an ideal replacement and/or dopant for the presently used gasoline by enhancing combustion efficiency and reducing contaminant emission because of its higher energy density, higher octane number and higher boiling point. On the other hand, C5/C6 alkanes are the important gasoline components for adjusting the octane number and volatile properties. In this paper, combining our studies, we systematically summarize the status-of-the-art technologies for HMF synthesis from cellulose, and DMF and C5/C6 alkanes production by selective and complete hydrodeoxygenation of HMF respectively, depended on reaction medium, catalyst and pathway. The reaction mediums include water, ionic liquid, polar aprotic organic solvent and water contained biphasic solvent; and catalysts include inorganic acid, metal salt, solid acid and supported catalyst. Finally, the future of biomass derived DMF and C5/C6 alkanes production is remarked and prospected.

Contents
1 Introduction
2 HMF from cellulose
2.1 Mechanism
2.2 Reaction medium
2.3 Catalysic system
2.4 Side reaction
3 DMF from HMF through selective hydrogenolysis
3.1 Mechanism
3.2 Reaction medium
3.3 Catalysic system
4 C5/C6 alkanes from cellulose
4.1 Pathway of alkanes
4.2 Catalysic system
5 Conclusion and outlook

中图分类号: 

()
[1] 张华(Zhang H), 魏晓平(Wei X P).北京理工大学学报(Journal of Beijing Institute of Technology), 2014, 16:42.
[2] 王晓明(Wang X M), 唐兰(Tang L), 赵黛青(Zhao D Q), 郝海清(Hao H Q), 王欢(Wang H),王云鹤(Wang Y H), 朱赤晖(Zhu C H). 环境影响评价(Environmental Impact Assessment), 2010, 32:38.
[3] Corma A, Iborra S, Velty A. Chem. Rev., 2007, 107:2411.
[4] 胡磊(Hu L), 孙勇(Sun Y), 林鹿(Lin L). 化学进展(Progress in Chemistry), 2011, 23:2079.
[5] Climent M J, Corma A, Iborra S. Green Chem., 2014, 16:516.
[6] 王军(Wang J), 张春鹏(Zhang C P), 欧阳平凯(Ouyang P K). 化工进展(Chemical Industry and Engineering Progress), 2008, 27:702.
[7] Zhao H B, Holladay J E, Science, 2007, 316:1597.
[8] Binder J B, Cefali A V, Blank J J, Raines R T. Energy Environ. Sci., 2010, 3:765.
[9] Antal M J, Mok W S L, Richards G N. Carbohydr. Res., 1990, 199:91.
[10] Guan J, Cao Q A, Guo X C, Mu X D. Comput. Theor. Chem., 2011, 963:453.
[11] Amarasekara A S, Williams L D. Carbohyd Res., 2008, 343:3021.
[12] Asghari F S, Yoshida H. Carbohyd Res., 2006, 341:2379.
[13] Ohno H, Fukaya Y. Chem. Lett., 2009, 38:2.
[14] Li C Z, Zhang Z H, Zhao Z B K. Tetrahedron Lett., 2009, 50:5403.
[15] Ding Z D, Shi J C, Xiao J J, Gu W X, Zheng C G, Wang H J. Carbohyd Polym., 2012, 90:792.
[16] Binder J B, Raines R T. J. Am. Chem. Soc., 2009, 131:1979.
[17] Chen T M, Lin L. Chinese. J. Chem., 2010, 28:1773.
[18] Yan H P, Yang Y, Tong D M, Xiang X, Hu C W. Catal. Commun., 2009, 10:1558.
[19] Bicker M, Hirth J, Vogel H. Green Chem., 2003, 5:280.
[20] Yamaguchi K, Sakurada T, Ogasawara Y, Mizuno N. Chem. Lett., 2011, 40:542.
[21] Hansen T S, Mielby J, Riisager A. Green Chem., 2011, 13:109.
[22] Yang F L, Liu Q S, Bai X F, Du Y G. Bioresource Technol., 2011, 102:3424.
[23] Nikolla E, Roman-Leshkov Y, Moliner M, Davis M E. ACS Catal., 2011, 1:408.
[24] Yang Y, Hu C W, Abu-Omar M M. Green Chem., 2012, 14:509.
[25] Shi N, Liu Q Y, Zhang Q, Wang T J, Ma L L. Green Chem., 2013, 15(7):1967.
[26] Roman-Leshkov Y, Barrett C J, Liu Z Y, Dumesic J A. Nature, 2007, 447(7147):982.
[27] Girisuta B, Janssen L P B M, Heeres H J. Chem. Eng. Res. Des., 2006, 84:339.
[28] Xiang Q, Lee Y Y, Torget R W. Appl. Biochem. Biotechnol., 2004, 113:1127.
[29] Chheda J N, Roman-Leshkov Y, Dumesic J A. Green Chem., 2007, 9:342.
[30] Zhang Z H, Wang Q A, Xie H B, Liu W J, Zhao Z B. ChemSusChem., 2011, 4:131.
[31] Zheng B H, Fang Z J, Cheng J, Jiang Y H. Naturforsch., B:Chem. Sci., 2010, 65:168.
[32] Deng T S, Cui X J, Qi Y Q, Wang Y X, Hou X L, Zhu Y L. Chem. Commun., 2012, 48:5494.
[33] Moliner M, Roman-Leshkov Y, Davis M E. Natl. Acad. Sci. U.S.A., 2010, 107:6164.
[34] Yang F L, Liu Q S, Yue M, Bai X F, Du Y G. Chem. Commun., 2011, 47:4469.
[35] Zhao Q A, Wang L, Zhao S, Wang X H, Wang S T. Fuel, 2011, 90:2289.
[36] Qi X H, Watanabe M, Aida T M, Smith R L. ChemSusChem., 2010, 3:1071.
[37] Zhao S, Cheng M X, Li J Z, Tian J A, Wang X H. Chem Commun., 2011, 47:2176.
[38] Ehara K, Saka S. J. Wood Sci., 2005, 51:148.
[39] Asghari F S, Yoshida H. Carbohyd Res., 2010, 345:124.
[40] Tan M X, Zhao L, Zhang Y G. Biomass Bioenerg., 2011, 35:1367.
[41] Yu S, Brown H M, Huang X W, Zhou X D, Amonette J E, Zhang Z C. Appl. Catal. A, Gen., 2009, 361:117.
[42] Qi X H, Watanabe M, Aida T M, Smith R L. ChemSusChem., 2010, 3:1071.
[43] Wang P, Yu H B, Zhan S H, Wang S Q. Bioresource Technol., 2011, 102:4179.
[44] McNeff C V, Nowlan D T, McNeff L C, Yan B W, Fedie R L. Appl. Catal. A, Gen., 2010, 384:65.
[45] Horvat J, Klaic B, Metelko B, Sunjic V. Tetrahedron Lett.,1985, 26:2111.
[46] Dee S J, Bell A T. ChemSusChem., 2011, 4:1166.
[47] Patil S K R, Lund C R F. Energ. Fuel, 2011, 25:4745.
[48] Sumerskii I V, Krutov S M, Zarubin M Y. Russ. J. Appl. Chem., 2010, 83:320.
[49] Hu L, Lin L, Liu S J. Ind Eng Chem Res., 2014, 53:9969.
[50] Tamura M, Tokonami K, Nakagawa Y, Tomishige K. Chem Commun., 2013, 49:7034.
[51] Chidambaram M, Bell A T. Green Chem., 2010, 12:1253.
[52] Thananatthanachon T, Rauchfuss T B. Agnew. Chem. Int. Ed., 2010, 49(37):6616.
[53] Jae J, Zheng W Q, Lobo R F, Vlachos D G. ChemSusChem., 2013, 6:1158.
[54] Wang J J, Liu X H, Hu B C, Lu G Z, Wang Y Q. RSC Adv., 2014, 4:31101.
[55] Zu Y H, Yang P P, Wang J J, Liu X H,Ren J W, Lu G Z,Wang Y Q. Appl. Catal. B, Environ., 2014, 146:244.
[56] Huang Y B, Chen M Y, Yan L, Guo Q X, Fu Y. ChemSusChem., 2014, 7:1068.
[57] Kong X, Zhu Y F, Zheng H Y, Dong F, Zhu Y L, Li Y W. RSC Adv., 2014, 4:60467.
[58] Zhang J H, Lin L, Liu S J. Energ. Fuel, 2012, 26:4560.
[59] Saha B, Bohn C M, Abu-Omar M M. ChemSusChem., 2014, 7:3095.
[60] Yang P P, Cui Q Q, Zu Y H, Liu X H, Lu G Z, Wang Y Q. Catal. Commun., 2015, 66:55.
[61] Huber G W, Dumesic J A. Catal. Today, 2006, 111:119.
[62] Li N, Huber G W. J. Catal., 2010, 270:48.
[63] Zhang Q, Wang T J, Li B, Jiang T, Ma L L, Zhang X H, Liu Q Y. Appl. Energ., 2012, 97:509.
[64] Zhang Q, Qiu K, Li B, Jiang T, Zhang X H, Ma L L, Wang T J. Fuel, 2011, 90:3468.
[65] de Beeck B O, Dusselier M, Geboers J, Holsbeek J, Morre E, Oswald S, Giebeler L, Sels B F. Energy Environ. Sci., 2015, 8:230.
[66] Huber G W, Cortright R D, Dumesic J A. Angew. Chem. Int. Ed., 2004, 43:1549.
[67] West R M, Tucker M H, Braden D J, Dumesic J A. Catal. Commun., 2009, 10:1743.
[68] Davda R R, Shabaker J W, Huber G W, Cortright R D, Dumesic J A. Appl. Catal. B, Environ., 2005, 56:171.
[69] Kunkes E L, Simonetti D A, West R M, Serrano-Ruiz J C, Gartner C A, Dumesic J A. Science, 2008, 322:417.
[70] Liu S B, Tamura M, Nakagawa Y, Tomishige K. ACS Sustain. Chem. Eng., 2014, 2:1819.
[71] Liu Y, Chen L G, Wang T J, Zhang X H, Long J X, Zhang Q, Ma L L. Rsc Adv., 2015, 5:11649.
[72] Dutta S, Pal S. Biomass Bioenerg., 2014, 62:182.
[73] Anet E F L J. Adv. Carbohyd. Chem., 1964, 19:181.
[74] Li C Z, Zhao Z B K, Cai H L, Wang A Q, Zhang T. Biomass Bioenerg., 2011, 35:2013.
[75] Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem Commun., 2009, 41:6276.
[76] Ohara M, Takagaki A, Nishimura S, Ebitani K. Appl. Catal. A, Gen., 2010, 383:149.
[77] Li C Z, Cai H L, Zhang B, Li W Z, Pei G X, Dai T, Wang A Q, Zhang T. Chin. J. Catal., 2015, 36:1638.
[78] Shi N, Liu Q Y, Wang T J, Zhang Q, Tu J L, Ma L L. Chin. J. Chem. Phys., 2014, 27:711.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[14] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[15] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.