English
新闻公告
More
化学进展 2016, Vol. 28 Issue (4): 401-414 DOI: 10.7536/PC151024 前一篇   后一篇

• 综述与评论 •

异核氧化物团簇与小分子的反应研究

赵艳霞, 何圣贵*   

  1. 中国科学院化学研究所 分子动态与稳态结构国家重点实验室 北京分子科学国家实验室 北京 100190
  • 收稿日期:2015-10-01 修回日期:2015-12-01 出版日期:2016-04-15 发布日期:2016-01-17
  • 通讯作者: 何圣贵 E-mail:shengguihe@iccas.ac.cn
  • 基金资助:
    国家自然科学基金项目(No. 21325314, 21273247, 21303215, 21573247)资助

Reactivity of Heteronuclear Oxide Clusters with Small Molecules

Zhao Yanxia, He Shenggui*   

  1. Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2015-10-01 Revised:2015-12-01 Online:2016-04-15 Published:2016-01-17
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21325314, 21273247, 21303215, 21573247).
研究气态条件下异核氧化物团簇与小分子的反应,可从分子水平揭示多组分氧化物催化剂中的各组分在化学转化中的作用,为理性设计和氧化物催化剂改进提供理论基础.本文综述了异核氧化物团簇活化和转化小分子的研究新进展,讨论了异核掺杂引起的氧化物团簇局部电荷环境、局部自旋环境以及成键结构的变化对一些重要活性氧物种的反应性的调控,展示了氧化物团簇掺杂贵金属原子所带来的奇特化学反应以及新的反应机理.
Gas phase study of the chemical reactions between heteronuclear oxide clusters and small molecules permits to address the behavior of oxides composed of multiple components in catalytic reactions at a strictly molecular level. In this review, we summarize the recent progress in activation and transformation of small molecules by heteronuclear oxide clusters. The local charge, local spin, and structural effects on the reactivity of important reactive oxygen species are discussed. The novel reaction pathways and reaction mechanisms appearing after doping with noble metals are also presented.

Contents
1 Introduction
2 Reactivity of heteronuclear oxide clusters doping with non-noble metals
2.1 Tune the local charge on atomic oxygen radicals
2.2 Tune the local spin on atomic oxygen radicals
2.3 Tune the reactivity of peroxide ions
3 Reactivity of heteronuclear oxide clusters doping with noble metals
3.1 The promotion role of noble metal atoms
3.2 The dominant role of noble metal atoms
3.3 The single atom catalysis
4 Conclusion and outlook

中图分类号: 

()
[1] Fierro J L G. Metal Oxides Chemistry and Applications. London:Taylor & Francis, 2006.
[2] Kung H H. Stud. Surf. Sci. Catal., 1989, 45: 1.
[3] Grzybowska-?wierkosz B. Top. Catal., 2000, 11/12: 23.
[4] Copéret C. Chem. Rev., 2010, 110: 656.
[5] Ertl G, Knözinger H, Schüth F, Weitkamp J. Handbook of Heterogeneous Catalysis. Weinheim:Wiley-VCH, 2008.
[6] Gawande M B, Pandey R K, Rajesh K, Jayaram R V. Catal. Sci. Technol., 2012, 2: 1113.
[7] McFarland E W, Metiu H. Chem. Rev., 2013, 113: 4391.
[8] Wachs I E. Catal. Today, 2005, 100: 79.
[9] Keller D E, Airaksinen S M K, Krause A O, Weckhuysen B M, Koningsberger D C. J. Am. Chem. Soc., 2007, 129: 3189.
[10] Su D S, Zhang B, Schlögl R. Chem. Rev., 2015, 115: 2818.
[11] Chang T Y, Tanaka Y, Ishikawa R, Toyoura K, Matsunaga K, Ikuhara Y, Shibata N. Nano Lett., 2014, 14: 134.
[12] Nilius N, Risse T, Schauermann S, Shaikhutdinov S, Sterrer M, Freund H J. Top. Catal., 2011, 54: 4.
[13] Kuhlenbeck H, Shaikhutdinov S, Freund H J. Chem. Rev., 2013, 113: 3986.
[14] Stacchiola D J. Acc. Chem. Res., 2015, 48: 2151.
[15] Böhme D K, Schwarz H. Angew. Chem. Int. Ed., 2005, 442336.
[16] Castleman A W Jr. Catal. Lett., 2011, 141: 1243.
[17] Yin S, Bernstein E R. Int. J. Mass Spectrom., 2012,321/322: 49.
[18] Schwarz H. Isr. J. Chem., 2014, 54: 1413.
[19] 刘清宇(Liu Q Y), 何圣贵(He S G). 高等学校化学学报(Chem. J. Chin. Univ.), 2014, 35: 665.
[20] Ding X L, Wu X N, Zhao Y X, He S G. Acc. Chem. Res., 2012, 45: 382.
[21] Schwarz H. Angew. Chem. Int. Ed., 2015, 54: 2.
[22] Nöβler M, Mitri? R, Bona ?i?-Koutecký V, Johnson G E, Tyo E C, Castleman A W Jr. Angew. Chem., Int. Ed., 2010, 49: 407.
[23] Li J, González-Navarrete P, Schlangen M, Schwarz H. Chem.-Eur. J., 2015, 21: 7780.
[24] Meng J H, He S G. J. Phys. Chem. Lett., 2014, 5: 3890.
[25] Nakamura I, Mantoku H, Furukawa T, Fujitani T. J. Phys. Chem. C, 2011, 115: 16074.
[26] Sun K, Kohyama M, Tanaka S, Takeda S. J. Phys. Chem. C, 2014, 118: 1611.
[27] Wang Z C, Wu X N, Zhao Y X, Ma J B, Ding X L, He S G. Chem. Phys. Lett., 2010, 489: 25.
[28] Ding X L, Zhao Y X, Wu X N, Wang Z C, Ma J B, He S G. Chem.-Eur. J., 2010, 16: 11463.
[29] Ma J B, Wu X N, Zhao Y X, Ding X L, He S G. Phys. Chem. Chem. Phys., 2010, 12: 12223.
[30] Dietl N, Höckendorf R F, Schlangen M, Lerch M, Beyer M K, Schwarz H. Angew. Chem. Int. Ed., 2011, 50: 1430.
[31] Li Z Y, Zhao Y X, Wu X N, Ding X L, He S G. Chem.-Eur.J., 2011, 17: 11728.
[32] Ma J B, Wang Z C, Schlangen M, He S G, Schwarz H. Angew. Chem. Int. Ed., 2012, 51: 5991.
[33] Wu X N, Li X N, Ding X L, He S G. Angew. Chem. Int. Ed., 2013, 52: 2444.
[34] Wang L N, Zhou Z X, Li X N, Ma T M, He S G. Chem.-Eur.J., 2015, 21: 6957.
[35] Wang Z C, Liu J W, Schlangen M, Weiske T, Schröder D, Sauer J, Schwarz H. Chem.-Eur. J., 2013, 19: 11496.
[36] Zhao Y X, Li Z Y, Yuan Z, Li X N, He S G. Angew. Chem. Int. Ed., 2014, 53: 9482.
[37] Li J,Wu X N, Zhou S, Tang S, Schlangen M, Schwarz H. Angew. Chem., Int. Ed., 2015, 54: 12298.
[38] Li J, Wu X N, Schlangen M, Zhou S, González-Navarrete P, Tang S, Schwarz H. Angew. Chem. Int. Ed., 2015, 54: 5074.
[39] Wang Z C, Wu X N, Zhao Y X, Ma J B, Ding X L, He S G. Chem.-Eur. J., 2011, 17: 3449.
[40] Li X N, Wu X N, Ding X L, Xu B, He S G. Chem.-Eur. J., 2012, 18: 10998.
[41] Li Y K, Meng J H, He S G. Int. J. Mass Spectrom., 2015, 381/382: 10.
[42] Dietl N, Wende T, Chen K, Jiang L, Schlangen M, Zhang X, Asmis K R, Schwarz H. J. Am. Chem. Soc., 2013, 135: 3711.
[43] Zhao Y X, Wu X N, Ma J B, He S G, Ding X L. J. Phys. Chem. C, 2010, 114:12271.
[44] Wang Z C, Yin S, Bernstein E R. J. Chem. Phys., 2013, 139: 194313.
[45] Ma J B, Yuan Z, Meng J H, Liu Q Y, He S G. ChemPhysChem, 2014, 15: 4117.
[46] Ma J B, Meng J H, He S G. Dalton Trans., 2015, 44: 3128.
[47] Wang Z C, Dietl N, Kretschmer R, Weiske T, Schlangen M, Schwarz H. Angew. Chem. Int. Ed., 2011, 50: 12351.
[48] Himeno H, Miyajima K, Yasuike T, Mafuné F. J. Phys. Chem. A, 2011, 115: 11479.
[49] Wang Z C, Yin S, Bernstein E R. J. Phys. Chem. Lett., 2012, 3: 2415.
[50] Ma J B, Wang Z C, Schlangen M, He S G, Schwarz H. Angew. Chem. Int. Ed., 2013, 52: 1226.
[51] Li Z Y, Yuan Z, Li X N, Zhao Y X, He S G. J. Am. Chem. Soc., 2014, 136: 14307.
[52] Yuan Z, Li X N, He S G. J. Phys. Chem. Lett., 2014, 5: 1585.
[53] Li X N, Yuan Z, He S G. J. Am. Chem. Soc., 2014, 136: 3617.
[54] Wang L N, Li Z Y, Liu Q Y, Meng J H, He S G, Ma T M. Angew. Chem. Int. Ed., 2015, 54: 11720.
[55] Li X N, Yuan Z, Meng J H, Li Z Y, He S G. J. Phys. Chem. C, 2015, 119: 15414.
[56] Janssens E, Lang S M, Brümmer M, Niedziela A, Santambrogio G, Asmis K R, Sauer J. Phys. Chem. Chem. Phys., 2012, 14: 14344.
[57] Che M, Tench A J. Adv. Catal., 1983, 32: 1.
[58] Che M, Tench A J. Adv. Catal., 1982, 31: 77.
[59] Li C, Domen K, Maruya K, Onishi T. J. Am. Chem. Soc., 1989, 111: 7683.
[60] Crabtree R H. Chem. Rev., 1995, 95: 987.
[61] Palmer M S, Neurock M, Olken M M. J. Am. Chem. Soc.,2002, 124: 452.
[62] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Sci., 2003, 301: 935.
[63] Guzman J, Carrettin S, Corma A. J. Am. Chem. Soc., 2005, 127: 3286.
[64] Panov G I, Dubkov K A, Starokon E V. Catal. Today, 2006, 117: 148.
[65] Thomas F. Eur. J. Inorg. Chem., 2007, 2379.
[66] Buckel W. Angew. Chem. Int. Ed., 2009, 48: 6779.
[67] Zhao Y X, Wu X N, Ma J B, He S G, Ding X L. Phys. Chem. Chem. Phys., 2011, 13: 1925.
[68] Zhao Y X, Ding X L, Ma Y P, Wang Z C, He S G.Theor. Chem. Acc., 2010, 127: 449.
[69] Ma Y P, Zhao Y X, Li Z Y, Ding X L, He S G. Chin. J. Chem. Phys., 2011, 24: 586.
[70] Dietl N, Schlangen M, Schwarz H. Angew. Chem. Int. Ed., 2012, 51: 5544.
[71] Zhao Y X, Wu X N, Wang Z C, He S G, Ding X L. Chem. Commun., 2010, 46: 1736.
[72] Tian L H, Ma T M, Li X N, He S G. Dalton Trans., 2013, 42: 11205.
[73] Tian L H, Meng J H, Wu X N, Zhao Y X, Ding X L, He S G, Ma T M. Chem.-Eur. J., 2014, 20: 1167.
[74] Meng J H, Zhao Y X, He S G. J. Phys. Chem. C, 2013, 117: 17548.
[75] Meng J H, Deng X J, Li Z Y, He S G, Zheng W J. Chem.-Eur. J., 2014, 20: 5580.
[76] Xu B, Zhao Y X, Ding X L, He S G. Int. J. Mass Spectrom., 2013, 334: 1.
[77] Xu B, Zhao Y X, Li X N, Ding X L, He S G. J. Phys. Chem. A. 2011, 115: 10245.
[78] Yuan Z, Zhao Y X, Li X N, He S G. Int. J. Mass Spectrom., 2013, 354/355: 105.
[79] Wu X N, Ding X L, Li Z Y, Zhao Y X, He S G. J. Phys. Chem. C, 2014, 118: 24062.
[80] Wu X N, Xu B, Meng J H, He S G. Int. J. Mass Spectrom., 2012, 310: 57.
[81] Wu X N, Zhao Y X, Xue W, Wang Z C, He S G, Ding X L. Phys. Chem. Chem. Phys., 2010, 12: 3984.
[82] Irikura K K, Beauchamp J L. J. Am. Chem. Soc., 1989, 111: 75.
[83] Schröder D, Fiedler A, Hrušák J, Schwarz H. J. Am. Chem. Soc., 1992, 114: 1215.
[84] Ryan M F, Fiedler A, Schröder D, Schwarz H. J. Am. Chem. Soc., 1995, 117: 2033.
[85] Kretzschmar I, Fiedler A, Harvey J N, Schröder D, Schwarz H. J. Phys. Chem. A, 1997, 101: 6252.
[86] Harvey J N, Diefenbach M, Schröder D, Schwarz H. Int. J. Mass Spectrom., 1999, 182/183: 85.
[87] Schröder D, Roithová J. Angew. Chem. Int. Ed., 2006, 45: 5705.
[88] Feyel S, Döbler J, Schröder D, Sauer J, Schwarz H. Angew.Chem. Int. Ed., 2006, 45: 4681.
[89] Feyel S, Döbler J, Höckendorf R, Beyer M K, Sauer J, Schwarz H. Angew. Chem. Int. Ed., 2008, 47: 1946.
[90] de Petris G, Troiani A, Rosi M, Angelini G, Ursini O. Chem.-Eur. J., 2009, 15: 4248.
[91] Dietl N, Engeser M, Schwarz H. Angew. Chem. Int. Ed., 2009, 48: 4861.
[92] Dietl N, Engeser M, Schwarz H. Chem.-Eur. J., 2009, 15: 11100.
[93] Dietl N, van der Linde C, Schlangen M, Beyer M K, Schwarz H. Angew. Chem. Int. Ed., 2011, 50: 4966.
[94] Zhang X. Schwarz H. ChemCatChem, 2010, 2: 1391.
[95] Chen K, Wang Z C, Schlangen M, Wu Y D, Zhang X, Schwarz H. Chem.-Eur. J., 2011, 17: 9619.
[96] Schröder D, Roithová J, Alikhani E, Kwapien K, Sauer J.Chem.-Eur. J., 2010, 16: 4110.
[97] Bo?ovi? A, Bohme D K. Phys. Chem. Chem. Phys., 2009, 11: 5940.
[98] Wang Z C, Kretschmer R, Dietl N, Ma J B, Weiske T, Schlangen M, Schwarz H. Angew. Chem. Int. Ed., 2012, 51: 3703.
[99] Ma J B, Zhao Y X, He S G, Ding X L. J. Phys. Chem. A, 2012, 116: 2049.
[100] De Petris G, Cartoni A, Troiani A, Angelini G, Ursini O. Phys. Chem. Chem. Phys., 2009, 11: 9976.
[101] Bo?ovic? A, Bohme D K. Phys. Chem. Chem. Phys., 2009, 11: 5940.
[102] Ma Y P, Ding X L, Zhao Y X, He S G. ChemPhysChem, 2010, 11: 1718.
[103] Dietl N, Engeser M, Schwarz H. Chem.-Eur. J., 2010, 16: 4452.
[104] Yuan Z, Li Z Y, Zhou Z X, Liu Q Y, Zhao Y X, He S G. J. Phys. Chem. C, 2014, 118: 14967.
[105] Justes D R, Mitri? R, Moore N A, Bona?i?-Koutecký V, Castleman A W Jr. J. Am. Chem. Soc., 2003, 125: 6289.
[106] Dong F, Heinbuch S, Xie Y, Rocca J J, Bernstein E R, Wang Z C, Deng K, He S G. J. Am. Chem. Soc., 2008, 130: 1932.
[107] Tyo E C, Nöβler M, Mitri? R, Bona?i?-Koutecký V, Castleman A W Jr. Phys. Chem. Chem. Phys., 2011, 13: 4243.
[108] Johnson G E, Mitri? R, Tyo E C, Bona?i?-Koutecký V, Castleman A W Jr. J. Am. Chem. Soc., 2008, 130: 13912.
[109] Johnson G E, Mitri? R, Nössler M, Tyo E C, Bona?i?-Koutecký V, Castleman A W Jr. J. Am. Chem. Soc., 2009, 131: 5460.
[110] Wu X N, Ding X L, Bai S M, Xu B, He S G. J. Phys. Chem. C, 2011, 115: 13329.
[111] Ma J B, Xu B, Meng J H, Wu X N, Ding X L, Li X N, He S G. J. Am. Chem. Soc., 2013, 135, 2991.
[112] Tyo E C, Nossler M, Harmon C L, Mitri? R, Bona?i?- Koutecký V, Castleman A W Jr. J. Phys. Chem. C, 2011, 115: 21559.
[113] Ma J B, Wu X N, Zhao Y X, He S G, Ding X L. Acta Phys.-Chim. Sin., 2010, 26: 1761.
[114] Ma J B, Wu X N, Zhao Y X, Ding X L, He S G. J. Phys. Chem. A, 2010, 114: 10024.
[115] Ma J B, Wu X N, Zhao Y X, Ding X L, He S G. Chin. J. Chem. Phys., 2010, 23: 133.
[116] Wu X N, Ding X L, Bai S M, Xu B, He S G, Shi Q. J. Phys. Chem. C, 2011, 115: 13329.
[117] Johnson G E, Tyo E C, Castleman A W Jr. J. Phys. Chem. A, 2008, 112: 4732.
[118] Johnson G E, Reilly N M, Castleman A W Jr. Int. J. Mass Spectrom., 2009, 280: 93.
[119] Johnson G E, Reveles J U, Reilly N M, Tyo E C, Khanna S N, Castleman A W Jr. J. Phys. Chem. A, 2008, 112: 11330.
[120] Zemski K A, Justes D R, Bell R C, Castleman A W Jr. J. Phys. Chem. A, 2001, 105: 4410.
[121] Pyykkö P. Angew. Chem. Int. Ed., 2004, 43: 4412.
[122] Schwarz H. Angew. Chem. Int. Ed., 2003, 42: 4442.
[123] Schröder D, Diefenbach M, Schwarz H, Schier A, Schmidbaur H. Relativistic Effects in Heavy-Element Chemistry and Physics. Hess B A Ed. Weinheim:Wiley-VCH, 2003, chap. 7.
[124] Gorin D J, Toste F D. Nature, 2007, 446: 395.
[125] Wang L S. Phys. Chem. Chem. Phys., 2010, 12: 8694.
[126] Allred A L. J. Inorg. Nucl. Chem., 1961, 17: 215.
[127] Jansen M. Chem. Soc. Rev., 2008, 37: 1826.
[128] Citir M, Metz R B, Belau L, Ahmed M. J. Phys. Chem. A, 2008, 112: 9584.
[129] McCarthy M C, Field R W, Engleman R, Bernath P F. J. Mol. Spectrosc., 1993, 158: 208.
[130] Carroll J J, Weisshaar J C, Siegbahn P E M, Wittborn C A M, Blomberg M R A. J. Phys. Chem., 1995, 99: 14388.
[131] Campbell M L. J. Chem. Soc. Faraday Trans., 1998, 94: 353.
[132] Perera M, Metz R B, Kostko O, Ahmed M. Angew. Chem. Int. Ed., 2013, 52: 888.
[133] Heinemann C, Wesendrup R, Schwarz H. Chem. Phys. Lett., 1995, 239: 75.
[134] Zhang X G, Liyanage B, Armentrout P B. J. Am. Chem. Soc., 2001, 123: 5563.
[135] Achatz U, Berg C, Joos S, Fox B S, Beyer M K, Niedner-Schatteburg G, Bondybey V E. Chem. Phys. Lett., 2000, 320: 53.
[136] Johnson G E, Tyo E C, Castleman A W Jr. J. Phys. Chem. A, 2008, 112 : 4732.
[137] Wang Z C, Yin S, Bernstein E R. Phys. Chem. Chem. Phys., 2013, 15: 10429.
[138] Socaciu L D, Hagen J, Bernhardt T M, Wöste L, Heiz U, Häkkinen H, Landman U. J. Am. Chem. Soc., 2003, 125: 10437.
[139] Wallace W T, Whetten R L. J. Am. Chem. Soc., 2002, 124: 7499.
[140] Socaciu L D, Hagen J, Roux J L, Popolan D, Bernhardt T M, Wöste L, Vajda Š J. Chem. Phys., 2004, 120: 2078.
[141] Xie Y, Dong F, Bernstein E R. Catal. Today, 2011, 177: 64.
[142] Shi Y, Ervin K M. J. Chem. Phys., 1998, 108: 1757.
[143] Lang S, Fleischer M I, Bernhardt T M, Barnett R N, Landman U. J. Am. Chem. Soc., 2012, 134: 20654.
[144] Yang X F, Wang A, Qiao B, Li J, Liu J, Zhang T. Acc. Chem. Res., 2013, 46: 1740.
[145] Green I X, Tang W, Neurock M, Yates J T Jr. Sci., 2011, 333: 736.
[146] Guzman J, Carrettin S, Fierro-Gonzalez J C, Hao Y L, Gates B C, Corma A. Angew. Chem. Int. Ed., 2005, 44: 4778.
[147] Widmann D, Liu Y, Schüth F, Behm R J. J. Catal., 2010, 276: 292.
[148] Yoon B, Häkkinen H, Landman U, Wörz A S, Antonietti J M, Abbet S, Judai K, Heiz U. Sci., 2005, 307: 403.
[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[3] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[4] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[5] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[6] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[9] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[10] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[11] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[12] 康伟, 李璐, 赵卿, 王诚, 王建龙, 滕越. 新型析氢析氧电化学催化剂在固体聚合物水电解体系的应用[J]. 化学进展, 2020, 32(12): 1952-1977.
[13] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[14] 杨萍, 刘敏节, 张昊, 郭雯婷, 吕朝阳, 刘迪. 硝基芳烃与醇还原胺化:催化剂和催化机制[J]. 化学进展, 2020, 32(1): 72-83.
[15] 白睿, 田晓春, 王淑华, 严伟富, 冮海银, 肖勇. 贵金属纳米颗粒的微生物合成[J]. 化学进展, 2019, 31(6): 872-881.