English
新闻公告
More
化学进展 2016, Vol. 28 Issue (2/3): 375-390 DOI: 10.7536/PC150604 前一篇   后一篇

• 综述与评论 •

催化甘油脱水氧化连串反应制丙烯酸

花东龙1, 庄晓煜1, 童东绅1, 俞卫华1, 周春晖1,2*   

  1. 1. 浙江工业大学化学工程学院 催化新材料研究所 杭州 310014;
    2. 南昆士兰大学农业和环境研究所 图文巴 4350
  • 收稿日期:2015-06-01 修回日期:2015-07-01 出版日期:2016-03-15 发布日期:2016-01-07
  • 通讯作者: 周春晖 E-mail:clay@zjut.edu.cn,Chun.Zhou@usq.edu.au
  • 基金资助:
    国家自然科学基金项目(No.21373185)和浙江省自然科学基金杰出青年项目(No.R4100436)资助

Catalytic Oxidehydration of Glycerol to Acrylic Acid

Hua Donglong1, Zhuang Xiaoyu1, Tong Dongshen1, Yu Weihua1, Zhou Chunhui1,2*   

  1. 1. Institute for Advanced Catalytic Materials, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
    2. Institute for Agriculture and Environment, University of Southern Queensland, Toowoomba QLD 4350, Australia
  • Received:2015-06-01 Revised:2015-07-01 Online:2016-03-15 Published:2016-01-07
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21373185) and the Distinguished Young Scholar Grants from the Natural Scientific Foundation of Zhejiang Province (No.R4100436).
本文综述了近年来单反应器中甘油脱水氧化连串反应制备丙烯酸的研究进展。文中简介了甘油来源及丙烯酸的需求背景;概括了当前对单反应器中的催化体系、反应温度、接触时间、氧气分压及甘油浓度等的研究状况;重点讨论了单、双床层气固相体系中复合氧化物型催化剂和分子筛负载型催化剂的催化性能及其影响因素,涉及的催化剂有V-P、Fe-P、W-V、Mo-V、CsPW-Nb、VMo-SiC等复合氧化物和V2O5/BEA、V2O5/MFI分子筛负载型催化剂等;总结了当前研究对气固相催化反应机理和可能发生的副反应的认识;评述了催化剂的失活现象与再生问题;此外,还讨论了液固相体系中Cu/SiO2-MnO2 和POM/Al2O3催化剂的催化特点及反应机理。最后分析了单反应器中甘油脱水氧化连续反应制丙烯酸反应过程尚存的难题,从反应体系的选取、催化剂性能的改进以及催化剂积炭消除等方面展望了可能的解决途径和方向。
This article deals with the recent research and development on catalytic oxidehydration of glycerol into acrylic acid in a single reactor. The biorenewable glycerol as a platform chemical for the production of acrylic acid is introduced. The reaction parameters such as temperature, contact time, partial pressure of oxygen and glycerol concentration in the gas-solid systems and the liquid-solid systems are examined. The catalytic performances of oxide composites and molecular sieve-supported catalysts in a single-bed system and a double-bed gas-solid system are discussed. The catalysts include V-P, Fe-P, W-V, Mo-V, CsPW-Nb, VMo-SiC oxide composites, V2O5/BEA and V2O5/MFI. The postulated reaction mechanisms and probable side reactions in the gas-solid system are presented, followed by the discussion on the issues of catalyst deactivation and regeneration. Then the catalytic characteristics of Cu/SiO2-MnO2 and POM/Al2O3 catalysts and the reaction mechanism in the liquid-solid system are remarked. The problems and the prospects in the selection of catalytic system, the improvement of catalysts and the elimination of coking of catalysts are commented.

Contents
1 Introduction
2 Gas-solid catalytic reactions
2.1 Gas-solid catalytic reactions in a single-bed reactor
2.2 Gas-solid catalytic reactions in a double-bed reactor
2.3 Mechanism of gas-solid catalytic reactions
2.4 Deactivation and regeneration of catalysts
3 Liquid-solid catalytic reactions
3.1 Reaction conditions of liquid-solid catalytic reactions
3.2 Catalysts of liquid-solid catalytic reactions
3.3 Mechanism of liquid-solid catalytic reactions
4 Conclusion

中图分类号: 

()
[1] Talebian-Kiakalaieh A, Amin N A S, Hezaveh H. Renew. Sust. Energ. Rev., 2014, 40:28.
[2] Katryniok B, Paul S, Capron M, Dumeignil F. ChemSusChem., 2009, 2(8):719.
[3] Sereshki B R, Balan S J, Patience G S, Dubois J L. Ind. Eng. Chem. Res., 2009, 49(3):1050.
[4] McKendry P. Bioresource Technol., 2002, 83(1):55.
[5] Demirbas A. Appl. Energ., 2009, 86:S108.
[6] Zhou C H, Xia X, Lin C X, Tong D S, Beltramini J. Chem. Soc. Rev., 2011, 40(11):5588.
[7] 冯建(Feng J),袁茂林(Yuan M L), 陈华(Chen H),李贤均(Li X J). 化学进展(Progress in Chemistry), 2007, 19(5):651.
[8] 李明燕(Li M Y),周春晖(Zhou C H), Beltramini J N,俞卫华(Yu W H),范永仙(Fan Y C). 化学进展(Progress in Chemistry), 2008, 20(10):1474.
[9] Ilyushin V V, Motiyenko R A, Lovas F J, Plusquellic D F. J. Mol. Spectrosc., 2008, 251(1):129.
[10] Israel A U, Obot I B, Asuquo J E. J. Chem., 2008, 5(4):940.
[11] Díaz G C, Tapanes N C O, Câmara L D T, Aranda D A G. Renew. Energ., 2014, 64:113.
[12] Saleh J, Tremblay A Y, Dubé M A. Fuel, 2010, 89(9):2260.
[13] Beerthuis R, Rothenberg G, Shiju N R. Green Chem., 2015, 17(3):1341.
[14] Arroyo-López F N, Pérez-Torrado R, Querol A, Barrio E. Food Microbial., 2010, 27(5):628.
[15] Modig T, Granath K, Adler L, Liden G. Appl. Microbial. Biotechnol., 2007, 75(2):289.
[16] Seo H B, Yeon J H, Jeong M H, Kang D H, Lee H Y, Jung K H. Biotechnol. Bioproc. E., 2009, 14(5):599.
[17] Wang Z, Zhu G J, Fang H, Prior B A. Biotechnol. Adv., 2001, 19(3):201.
[18] Zhao H, Zhou C H, Wu L M, Lou J Y, Li N, Yang H M, Tong D S, Yu W H. Appl. Clay Sci., 2013, 74:154.
[19] Johnson D T, Taconi K A. Environ. Prog., 2007, 26(4):338.
[20] Tan K T, Lee K T, Mohamed A R. Bioresource Technol., 2010, 101(3):965.
[21] OECD-FAO. OECD-FAO Agricultural Outlook 2014~2023. OECD Publishing. 2014, 111.
[22] Yaakob Z,Mohammad M,Alherbawi M, Alherbawi M, Alam Z, Sopian K.Renew. Sust. Energ. Rev., 2013, 18:184.
[23] Jerzykiewicz M, Cwielag I, Jerzykiewicz W. J. Chem. Technol. Biot., 2009, 84(8):1196.
[24] Sharninghausen L S, Campos J, Manas M G, Crabtree R H. Nat. Commun., 2014, 5:5084.
[25] Possato L G, Cassinelli W H, Garetto T, Pulcinelli S H, Santilli C V, Martins L. Appl. Catal. A:Gen., 2015, 492:243.
[26] Zhou C H, Zhao H, Tong D S, Wu L M, Yu W H. Catal. Rev., 2013, 55(4):369.
[27] Katryniok B, Paul S, Dumeignil F. ACS Catal., 2013, 3(8):1819.
[28] Raksaphort S, Pengpanich S, Hunsom M. React. Kinet. Catal. Lett., 2014, 55(4):434.
[29] Viswanadham B, Pavankumar V, Chary K V R. Catal. Lett., 2014, 144(4):744.
[30] Zhou C H, Beltramini J N, Fan Y X, Lu G Q. Chem. Soc. Rev., 2008, 37(3):527.
[31] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina C D. Angew. Chem. Int. Ed., 2007, 46(24):4434.
[32] Wang Z C, Wang L Z, Jiang Y J, Hunger M, Huang J. ACS Catal., 2014, 4(4):1144.
[33] Rajan N P, Rao G S, Putrakumar B, Chary K V R. RSC Adv., 2014, 4(96):53419.
[34] Cui Y, Galvita V, Rihko-Struckmann L, Lorenz H, Sundmacher K. Appl. Catal. B:Environ., 2009, 90(1):29.
[35] Ciriminna R, Palmisano G, Della Pina C, Rossi M, Pagliaro M. Tetrahedron Lett., 2006, 47(39):6993.
[36] Zhang Y, Gao F, Zhang S P, Su Z G, Ma G H,Wang P. Bioresource Technol., 2011, 102(2):1837.
[37] Feng X Z, Sun B, Yao Y, Su Q, Ji W J, Au C T. J. Catal., 2014, 314:132.
[38] Abdel-Halim E S, Al-Hoqbani A A. Bioresources, 2015, 10(2):3112.
[39] Schwenk E, Gehrke M, Aichner F. US 1916743, 1933.
[40] Vitry D, Morikawa Y, Dubois J L, Ueda W. Appl. Catal. A:Gen., 2003, 251(2):411.
[41] Han S, Frick C D, Kraptchetov D A, Martenak D J, Quiros N I, Donnelly T J. US20140243554 A1, 2012.
[42] Soares R R, Simonetti D A, Dumesic J A. Angew. Chem. Int. Ed., 2006, 118(24):4086.
[43] Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C. Angew. Chem. Int. Ed., 2007, 119(24):4516.
[44] Kampe P, Giebeler L, Samuelis D, Kunert J, Drochner A, Haaß F, Adams A H, Ott J, Endres S, Schimanke G, Buhrmester T, Martin M, Fuess H, Vogel H. Phys. Chem. Chem. Phys., 2007, 9(27):3577.
[45] Manosak R, Limpattayanate S, Hunsom M. Fuel Process. Technol., 2011, 92(1):92.
[46] López J Á S, Santos M Á M, Pérez A F C, Martin A M. Bioresource Technol., 2009, 100(23):5609.
[47] Devi P, Bethala L A, Gangadhar K N, Sai Prasad P S, Jagannadh B, Prasad R B. ChemSusChem., 2009, 2(7):617.
[48] Ayoub M, Abdullah A Z. Renew. Sust. Energ. Rev., 2012, 16(5):2671.
[49] Zhou C H, Beltramini J N, Lin C X, Xu Z P, Lu G Q, Tanksale A. Catal. Sci. Technol., 2011, 1(1):111.
[50] Wang F, Xu J, Dubois J L, Ueda W. ChemSusChem., 2010, 3(12):1383.
[51] Chieregato A, Basile F, Concepción P, Guidetti S, Liosi G, Soriano M D, Nieto J M L. Catal. Today, 2012, 197(1):58.
[52] Arntz D, Höpp M, Jacobi S, Sauer J, Ohara T, Sato T, Wei B O. Acrolein and Methacrolein. NJ:Wiley-VCH. 2012.
[53] Sithambaram S, Kumar R, Son Y C, Suib S L. J. Catal., 2008, 253(2):269.
[54] Bohmer N, Roussiere T, Kuba M, A Schunk S. Comb. Chem. High T. Scr., 2012, 15(2):123.
[55] Nimlos M R, Blanksby S J, Qian X, Himmel M E, Johnson D K. J. Phys. Chem. A, 2006, 110(18):6145.
[56] Fritz-Langhals E. Org. Process Res. Dev., 2005, 9(5):577.
[57] Soriano M D, Concepción P, Nieto J M L, Cavani F, Guidetti S, Trevisanut C. Green Chem., 2011, 13(10):2954.
[58] Yun Y S, Lee K R, Park H, Kim T Y,Yun D, Han J W,Yi J. ACS Catal., 2014, 5(1):82.
[59] Shen L Q, Yin H G, Wang A L, Lu X F, Zhang C H. Chem. Eng. J., 2014, 244:168.
[60] Chieregato A, Soriano M D, Basile F, Liosi G, Zamora S, Concepción P, Nieto J M L. Appl. Catal. B:Environ., 2014, 150:37.
[61] Possato L G, Cassinelli W H, Garetto T, Pulcinelli S H, Santilli C V, Martins L. Appl. Catal. A:Gen., 2015, 492:243.
[62] Khenkin A M, Neumann R. Angew. Chem. Int. Ed., 2000, 39(22):4088.
[63] Khenkin A M, Weiner L, Wang Y, Neumann R. J. Am. Chem. Soc., 2001, 123(35):8531.
[64] Vannice M A. Catal. Today, 2007, 123(1):18.
[65] Efremenko I, Neumann R. J. Am. Chem. Soc., 2012, 134(51):20669.
[66] Ennaciri S A, Malka K, Louis C, Barboux P, R'Kha C, Livage J. Catal. Lett., 1999, 62(1):79.
[67] Wang F, Dubois J L, Ueda W. J. Catal., 2009, 268(2):260.
[68] Kamiya Y, Nishiyama H, Yashiro M, Satsuma A, Hattori T. J. Jpn. Petrol. Inst., 2003, 46(1):62.
[69] Coulston G W, Thompson E A, Herron N. J. Catal., 1996, 163(1):122.
[70] Liu R, Wang T, Cai D, Jin Y. Ind. Eng. Chem. Res., 2014, 53(21):8667.
[71] Muneyama E, Kunishige A, Ohdan K, Ai M. J. Mol. Catal., 1994, 89(3):371.
[72] Ai M. J. Mol. Catal. A-Chem., 1996, 114(1):3.
[73] Ai M, Ohdan K. Appl. Catal. A:Gen, 1999, 180(1):47.
[74] Deleplanque J, Dubois J L, Devaux J F, Ueda W. Catal. Today, 2010, 157(1):351.
[75] Muneyama E, Kunishige A, Ohdan K, Ai, M. J. Mol. Catal., 1994, 89(3):371.
[76] Millet J, Bouchard A, Édelin C. Acta biotheor., 1998, 46(1):1.
[77] Song H, Sun Y, Jia X. Mater. Charact., 2015, 107:182.
[78] 王峰(Wang F), 徐杰(Xu J). CN102249890A, 2011.
[79] Vitry D, Morikawa Y, Dubois J L, Ueda W. Appl. Catal. A:Gen, 2003, 251(2):411.
[80] Ueda W, Vitry D, Katou T. Catal. Today, 2005, 99(1):43.
[81] Sadakane M, Yamagata K, Kodato K, Endo K, Toriumi K, Ozawa Y, Ueda W. Angew. Chem. Int. Ed., 2009, 121(21):3840.
[82] Chieregato A, Soriano M D, García-González E, Puglia G, Basile F, Concepción P, Bandinelli C, López Nieto J M, Cavani F. ChemSusChem, 2014, 8(2):398.
[83] Liu L C, Wang B, Du Y H, Zhong Z Y, Borgna A. Appl. Catal. B, Environ., 2015, 174:1.
[84] Atia H, Armbruster U, Martin A. Appl. Catal. A, Gen., 2011, 393(1):331.
[85] Paniagua M, Saravanamurugan S, Melian-Rodriguez M, Melero J A, Riisager A. ChemSusChem, 2015, 8(6):1088.
[86] Vjunov A, Hu M Y, Feng J, Camaioni D M, Mei D, Hu J Z, Lercher J A. Angew. Chem. Int. Ed., 2014, 53(2):479.
[87] Mahdavi V, Soleimani S. Mater. Res. Bull., 2014, 51:153.
[88] Sutradhar M, Martins L M, da Silva M F C G, Pombeiro A J. Coordin. Chem. Rev., 2015.
[89] Price S P, Tong X, Ridge C, Neilson H L, Buffon J W, Robins J, Buratto S K.J. Phys. Chem. A, 2014, 118(37):8309.
[90] Pestana C F M, Guerra A C O, Ferreira G B, Turcia C C, Mota C J A. J. Brazil. Chem. Soc., 2013, 24(1):100.
[91] Witsuthammakul A, Sooknoi T. Appl. Catal. A, Gen., 2012, 413:109.
[92] Ovsitser O, Uchida Y, Mestl G, Weinberg G, Blume A, Jäger J, Dieterle M, Hibst H, Schlögl R. J.Mol. Cataly. A:Chem., 2002, 185(1):291.
[93] Adams A H, Haaß F, Buhrmester T, Kunert J, Ott, Vogel H, Fuess H. J. Mol. Catal. A:Chem., 2004, 216(1):67.
[94] Katou T, Vitry D, Ueda W. Catal. Today, 2004, 91:237.
[95] Guliants V V, Bhandari R, Swaminathan B, Vasudevan V K, Brongersma H H, Knoester A, Han S. J. Phys. Chem. B, 2005, 109(50):24046.
[96] Katou T, Vitry D, Ueda W. Chem. Lett., 2003, 32(11):1028.
[97] Kuznetsova T G, Andrushkevich T V, Gorshkova T P. React. Kinet. Catal. L., 1986, 30(1):149.
[98] Okuhara T, Watanabe H, Nishimura T, Inumaru K, Misono M. Chem. Mater., 2000, 12(8):2230.
[99] Kamiya Y, Okuhara T, Misono M, Miyaji A, Tsuji K, Nakajo T. Catal. Surv. Asia, 2008, 12(2):101.
[100] Chai S H, Wang H P, Liang Y, Xu B Q. J.Catal., 2007, 250(2):342.
[101] Tsukuda E, Sato S, Takahashi R, Sodesawa T. Catal. Commun., 2007, 8(9):1349.
[102] Keulks G W, Krenzke L D, Notermann T M. Adv. Catal., 1979, 27:183.
[103] Corma A, Huber G W, Sauvanaud L, O'Connor P. J. Catal., 2008, 257(1):163.
[104] Suprun W, Lutecki M, Haber T, Papp H. J. Mol. Catal. A:Chem., 2009, 309(1):71.
[105] Alhanash A, Kozhevnikova E F, Kozhevnikov I V. Appl. Catal. A:Gen., 2010, 378(1):11.
[106] Chai S H, Wang H P, Liang Y, Xu B Q. Green Chem., 2007, 9(10):1130.
[107] Martinuzzi I, Azizi Y, Devaux J F, Tretjak S, Zahraa O, Leclerc J P. Chem. Eng. Sci., 2014, 116:118.
[108] Erfle S, Armbruster U, Bentrup U, Martin A, Brückner A. Appl. Catal. A:Gen., 2011, 391(1-2):102.
[109] Katryniok B, Paul S, Bellière-Baca V, Rey P, Dumeignil F. Green Chem., 2010, 12(12):2079.
[110] Park H, Yun Y S, Kim T Y, Lee K R, Baek J, Yi J. Appl. Catal. B:Environ., 2015, 176:1.
[111] Dubois J L, Duquenne C, Hoelderich W. WO 2006087083, 2006.
[112] O'Connor P, Corma C, Huber G, Savanaud L. WO 2008052993, 2008.
[113] Painter R M, Pearson D M, Waymouth R M. Angew. Chem. Int. Ed., 2010, 49(49):9456.
[114] Sarkar B, Pendem C, Konathala L N S, Tiwari R, Sasaki T, Bal R. Chem. Commun., 2014, 50(68):9707.
[115] Thanasilp S, Schwank J W, Meeyoo V, Pengpanich S, Hunsom M. J. Mol. Catal. A:Chem., 2013, 380:49.
[116] Hoffman R V, Bishop R D, Fitch P M, Hardenstein R. J. Org. Chem., 1980, 45(5):917.
[117] Ragupathi C, Vijaya J J, Kumar R T L, Kennedy J. J.Mol. Struct., 2015, 1079:182.
[118] Tenten A, Weidlich P. US 5446004. 1995.
[119] Tran B L, Driess M, Hartwig J F. J. Am. Chem. Soc., 2014, 136(49):17292.
[120] Seubsai A, Kahn M, Zohour B, Noon D, Charoenpanich M, Senkan S. Ind. Eng. Chem. Res., 2015, 54(10):2638.
[121] Pope M T, Müller A. Angew. Chem. Int. Ed., 1991, 30(1):34.
[122] Nishiyama Y, Nakagawa Y, Mizuno N. Angew. Chem. Int. Ed., 2001, 40(19):3639.
[123] Long D L, Burkholder E, Cronin L. Chem. Soc. Rev., 2007, 36(1):105.
[124] Li Y, Wu X, Wu Q, Ding H, Yan W. Dalton T., 2014, 43(36):13591.
[125] Atia H, Armbruster U, Martin A. J. Catal., 2008, 258(1):71.
[126] Shen L, Yin H, Wang A, Feng Y G, Shen Y T, Wu Z N, Jiang T S. Chem. Eng. J., 2012, 180:277.
[127] Thanasilp S, Schwank J W, Meeyoo V, Pengpanich S, Hunsom M. Chem. Eng. J., 2015, 275:113.
[128] Ott L, Bicker M, Vogel H. Green Chem., 2006, 8(2):214.
[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[8] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[9] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[13] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[14] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[15] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.