中文
Announcement
More
Original article

Research on Flexible Pressure Sensor based on Polydimethylsiloxane

  • Guang Yang ,
  • Demei Yu , *
Expand
  • School of Chemistry, Xi 'an Jiaotong University, Xi 'an 710115, China
* The work was supported by Shaanxi Provincial Department of Science and Technology, General Project-Youth Project (2022 JQ-485) (Research on high-performance flexible pressure sensor based on bionic interlocking porous microstructure conductive elastomer) Corresponding author e-mail:

Received date: 2024-10-08

  Revised date: 2024-11-19

  Online published: 2025-03-19

Abstract

With the advancement of technology, flexible pressure sensors have been widely utilized in wearable device fields such as medical monitoring and motion monitoring, primarily due to their thinness, lightness, flexibility, good ductility, as well as their faster response speed and higher sensitivity compared to traditional rigid sensors. When subjected to external forces, the elastic elements within these sensors undergo deformation, converting mechanical signals into electrical signals. Consequently, the choice of elastic elements significantly impacts the overall performance of flexible pressure sensors. Polydimethylsiloxane (PDMS) is extensively used as a flexible substrate in sensors because of its stable chemical properties, good thermal stability, low preparation cost, and excellent biocompatibility. By collecting relevant information, this paper reviews the sensing mechanisms of PDMS-based flexible pressure sensors, introduces preparation techniques to improve the properties of PDMS materials, including the recently popular methods of introducing porous structures and constructing surface architectures, and discusses the applications of PDMS-based flexible pressure sensors in medical monitoring, electronic skin, and other fields. Finally, the challenges faced by PDMS-based flexible sensors and their future opportunities are prospected.

Contents

1 Introduction

2 Flexible pressure sensor

3 Fabrication technology of flexible sensor with improved performance

3.1 Pore structure

3.2 Surface Micro-Nano Structures

4 Application of flexible pressure sensor based on PDMS

4.1 Health monitoring

4.2 Electronic skin

5 Conclusion and outlook

Cite this article

Guang Yang , Demei Yu . Research on Flexible Pressure Sensor based on Polydimethylsiloxane[J]. Progress in Chemistry, 2025 . DOI: 10.7536/PC241001

[1]
Zhang J, Zhang Y, Li Y, Ye X, Wang P, Xu Y. ACS Applied Electronic Materials, 2021, 3 (7): 3177.

[2]
Hosseini E S, Manjakkal L, Shakthivel D, Dahiya R. ACS Applied Materials, Interfaces, 2020, 12 (8): 9008.

[3]
Ha K H, Zhang W, Jang H, Kang S, Wang L, Tan P, Hwang H, Lu N. Advanced Materials, 2021, 33 (48): 2103320.

[4]
Hu Y, Zheng Z. Nano Energy, 2019, 56 (2): 16.

[5]
Liu Z, Wang H, Huang P, Huang J, Zhang Y, Wang Y, Yu M, Chen S, Qi D, Wang T, Jiang Y, Chen G, Hu G, Li W, Yu J, Luo Y, Loh X J, Liedberg B, Li G, Chen X. Advanced Materials, 2019, 3 (7): 3177.

[6]
Bartlett M D, Dickey M D, Majidi C. NPG Asia Materials, 2019, 11 (1): 21.

[7]
Kang J, Tok J B H, Bao Z. Nature Electronics, 2019, 2 (4): 144.

[8]
Tang X, Wu C, Gan L, Zhang T, Zhou T, Huang J, Wang H, Xie C, Zeng D.Small, 2019, 15 (10): 1804559.

[9]
Dan L, Shi S, Chung H-J, Elias A. ACS Applied Nano Materials, 2019, 2 (8): 4869.

[10]
Gao J, Zhao B, Chen X, Gu M, Zhang W, Wang L, Wei L, Yang C & Chen M.Small, 2024, 19: 5772.

[11]
Gu M, Zhao B, Gao J, Zhou X, Huang L, Wang J, Wei L, Yang C & Chen M. Advanced Functional Materials, 2024, 34 (33): 2400494.

[12]
He C, Wu L, Gu G, Wei L, Yang C & Chen M. Nano Letters, 2024, 24 (23): 7040.

[13]
Hou Y, Wang L, Sun R, Zhang Y, Gu M, Zhu Y, Tong Y, Liu X, Wang Z, Xia J, Hu Y, Wei L, Yang C & Chen M. ACS Nano, 2022, 16 (5): 8358.

[14]
Wang Z, Wang S, Zeng J, Ren X, Chee A J Y, Yiu B Y S, Chung W C, Yang Y, Yu A C H, Roberts R C, Tsang A C O, Chow K W, Chan P K L. Small, 2016, 12 (28): 3827.

[15]
Zhu Y, Cai H, Ding H, Pan N, Wang X. ACS Applied Materials, Interfaces, 2019, 11 (6): 6195.

[16]
Li H, Wu K, Xu Z, Wang Z, Meng Y, Li L. ACS Applied Materials, Interfaces, 2018, 10 (24): 20826.

[17]
Ha M, Lim S, Cho S, Lee Y, Na S, Baig C, Ko H. ACS Nano, 2018, 12 (4): 3964.

[18]
Monta A D, Razan F, Cam J-B L, Chagnon G. Sensors and Actuators A: Physical, 2018, 28: 107.

[19]
Giri R, Naskar K, Nando G B. Radiation Physics and Chemistry, 2012, 81 (12): 1930.

[20]
Montazerian H, Mohamed M G A, Montazeri M M, Kheiri S, Milani A S, Kim K, Hoorfar M. Acta Biomaterialia, 2019, 96 (15): 149

[21]
Shi Y, Hu M, Xing Y, Li Y.Materials, Design, 2020, 185: 108219.

[22]
Chen X. Small Methods, 2017, 1 (4): 1600029.

[23]
Sheng XU Y Z, Lin J, Kylee M K J, Jeonghyun K, Haoran FU, Xian H, Pranav C, Renhan W, Sanat B, Lizhe W, Yoon J N, Yue G, Matthew F, Zhe S, Huang Y G, John A.Science, 2014, 344 (6179): 70.

[24]
Mishra S, Mohanty S, Ramadoss A. ACS Sensors, 2022, 7 (9): 2495.

[25]
Takei K, Takahashi T, Ho J C, Ko H, Gillies A G, Leu P W, Fearing R S, Javey A. Nature Materials, 2010, 9 (10): 821.

[26]
Shi M, Zhang J, Chen H, Han M, Shankaregowda S A, Su Z, Meng B, Cheng X, Zhang H. ACS Nano, 2016, 10 (4): 4083.

[27]
Park S, Kim H, Vosgueritchian M, Cheon S, Kim H, Koo J H, Kim T R, Lee S, Schwartz G, Chang H, Bao Z. Advanced Materials, 2014, 26 (43): 7324.

[28]
Wang J, Lu C, Zhang K.Energy, Environmental Materials, 2019, 3 (1): 80.

[29]
Wang C, Hwang D, Yu Z, Takei K, Park J, Chen T, Ma B, Javey A. Nature Materials, 2013, 12 (10): 899.

[30]
Gao Q, Cheng T, Wang Z L. Extreme Mechanics Letters, 2021, 42: 101100.

[31]
Zhan J, Wang Z Y, Mo L X, Meng X Y, Li L H, Peng Z C. Progress in Chemistry, 2022, 34(10): 2202.

( 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 化学进展, 2022, 34(10): 2202 )

[32]
Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W. Nature Communications, 2014, 5 (1):.3132.

[33]
Shuai X, Zhu P, Zeng W, Hu Y, Liang X, Zhang Y, Sun R, Wong C. ACS Applied Materials, Interfaces, 2017, 9 (31): 26314.

[34]
Kim J, Lee M, Shim H J, Ghaffari R, Cho H R, Son D, Jung Y H, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S-T, Kim J H, Choi S H, Hyeon T, Kim D-H. Nature Communications, 2014, 5 (1): 5747.

[35]
Wan S, Bi H, Zhou Y, Xie X, Su S, Yin K, Sun L.Carbon, 2017, 114: 216.

[36]
Sarwar M S, Dobashi Y, Preston C, Wyss J K M, Mirabbasi S, Madden J D W. Science Advances, 2017, 3 (3): 1602200.

[37]
Kim H, Kim G, Kim T, Lee S, Kang D, Hwang M S, Chae Y, Kang S, Lee H, Park H G, Shim W.Small, 2018, 14 (8): 1703432.

[38]
He Z, Gao B, Li T, Liao J, Liu B, Liu X, Wang C, Feng Z, Gu Z. ACS Sustainable Chemistry, Engineering, 2018, 7 (1): 1745.

[39]
Sultana A, Alam M M, Garain S, Sinha T K, Middya T R, Mandal D. ACS Applied Materials, Interfaces, 2015, 7 (34): 19091.

[40]
Fan F R, Tian Z Q, Lin W Z. Nano Energy, 2012, 1 (2): 328.

[41]
Viry L, Levi A, Totaro M, Mondini A, Mattoli V, Mazzolai B, Beccai L. Advanced Materials, 2014, 26 (17): 2659.

[42]
Das S, Heasman P, Ben T, Qiu S. Chemical Reviews, 2016, 117 (3): 1515.

[43]
Slater A G, Cooper A I. Science, 2015, 348 (6238): 8075.

[44]
Ozkan E, Garren M, Manuel J, Douglass M, Devine R, Mondal A, Kumar A, Ashcraft M, Pandey R, Handa H. ACS Applied Materials, Interfaces, 2023, 15 (5): 7610.

[45]
Guo B F, Wang P H, Cao C F, Qu Z H, Lv L Y, Zhang G D, Gong L X, Song P, Gao J F, Mai Y W, Tang L C. Composites Part B: Engineering, 2022, 247: 110290.

[46]
Yu C, Yu C, Cui L, Song Z, Zhao X, Ma Y, Jiang L. Advanced Materials Interfaces, 2016, 4 (3): 1600862.

[47]
Hinton T J, Hudson A, Pusch K, Lee A, Feinberg A W. ACS Biomaterials Science, Engineering, 2016, 2 (10): 1781.

[48]
Woo R, Chen G, Zhao J, Bae J. ACS Applied Polymer Materials, 2021, 3 (7): 3496.

[49]
Duan S, Yang K, Wang Z, Chen M, Zhang L, Zhang H, Li C. ACS Applied Materials, Interfaces, 2016, 8 (3): 2187.

[50]
Oropallo W, Piegl L A. Engineering with Computers, 2015, 32 (1): 135.

[51]
Ishigami T, Nii Y, Ohmukai Y, Rajabzadeh S, Matsuyama H.Membranes, 2014, 4 (1): 113.

[52]
Ulbricht M.Polymer, 2006, 47 (7): 2217.

[53]
Kim J K, Taki K, Ohshima M.Langmuir, 2007, 23 (24): 2312397.

[54]
Jung S, Kim J H, Kim J, Choi S, Lee J, Park I, Hyeon T, Kim D H. Advanced Materials, 2014, 26 (28): 4825.

[55]
Abshirini M, Saha M C, Altan M C, Liu Y, Cummings L, Robison T. Journal of Applied Polymer Science, 2021, 138 (29): 50688.

[56]
Lee H, Yoo J K, Park J H, Kim J H, Kang K, Jung Y S. Advanced Energy Materials, 2012, 2 (8): 976.

[57]
Keller A, Zainulabdeen K, Warren H, in het Panhuis M. MRS Advances, 2022, 7 (23): 495.

[58]
McCall W R, Kim K, Heath C, La Pierre G, Sirbuly D J. ACS Applied Materials, Interfaces, 2014, 6 (22): 19504.

[59]
A. Stein, F Li and N. R. Denny, Chem. Mater., 2007, 20: 649.

[60]
Zhao X, Li L, Li B, Zhang J, Wang A.J. Mater. Chem. A, 2014, 2 (43): 18281.

[61]
Liu W, Chen Z, Zhou G, Sun Y, Lee H R, Liu C, Yao H, Bao Z, Cui Y. Advanced Materials, 2016, 28 (18): 3578.

[62]
Pharino U, Sinsanong Y, Pongampai S, Charoonsuk T, Pakawanit P, Sriphan S, Vittayakorn N, Vittayakorn W. Radiation Physics and Chemistry, 2021, 189: 109720.

[63]
Zhang J, Yang X, Xu R, Li S, Qi G, Tan X. Materials Letters, 2024, 357: 135686.

[64]
Wu M, Gao Z, Yao K, Hou S, Liu Y, Li D, He J, Huang X, Song E, Yu J, Yu X. Materials Today Energy, 2021, 20: 100657.

[65]
Kang S, Lee J, Lee S, Kim S, Kim J K, Algadi H, Al‐Sayari S, Kim D E, Kim D, Lee T. Advanced Electronic Materials, 2016, 2 (12): 1600356.

[66]
Calabrese L, Bonaccorsi L, Freni A, Proverbio E. Sustainable Materials and Technologies, 2017, 12:27.

[67]
Chruściel J J, Leśniak E. Journal of Applied Polymer Science, 2010, 119 (3): 1696.

[68]
Long Y, Zhao X, Jiang X, Zhang L, Zhang H, Liu Y, Zhu H.FlatChem, 2018, 10: 1.

[69]
Hong S, Kim H, Qaiser N, Baumli P, Hwang B. Journal of Natural Fibers, 2023, 20 (2): 160200.

[70]
Zhao D S, Li Y W, Zhang Z D, Xu T, Ye C, Shi T Q and Wang Y T. Mater. Horiz., 2023, 10: 1121.

[71]
Qian L, Zhang H. Journal of Chemical Technology, Biotechnology, 2011, 86 (2): 172.

[72]
Feng Z, He Q, Wang X, Lin Y, Qiu J, Wu Y, Yang J. ACS Applied Materials, Interfaces, 2023, 15 (4): 6217.

[73]
Chen M, Li K, Cheng G, He K, Li W, Zhang D, Li W, Feng Y, Wei L, Li W, Zhong G, Yang C. ACS Applied Materials, Interfaces, 2018, 11 (2): 2551.

[74]
Park J, Kim J, Hong J, Lee H, Lee Y, Cho S, Kim S-W, Kim J J, Kim S Y, Ko H. NPG Asia Materials, 2018, 10 (4): 163.

[75]
Wang Z, Zhang L, Liu J, Jiang H, Li C.Nanoscale, 2018, 10 (22): 10691.

[76]
Park H, Jeong Y R, Yun J, Hong S Y, Jin S, Lee S-J, Zi G, Ha J S. ACS Nano, 2015, 9(10): 9974.

[77]
Park J, Lee Y, Hong J, Lee Y, Ha M, Jung Y, Lim H, Kim S Y, Ko H. ACS Nano, 2014, 8(12): 12020.

[78]
Trung T Q, Lee N E. Advanced Materials, 2016, 28 (22): 4338.

[79]
Mannsfeld S C B, Tee B C K, Stoltenberg R M, Chen C V H H, Barman S, Muir B V O, Sokolov A N, Reese C, Bao Z. Nature Materials, 2010, 9 (10): 859.

[80]
Tee B C K, Chortos A, Dunn R R, Schwartz G, Eason E, Bao Z. Advanced Functional Materials, 2014, 24 (34): 5427.

[81]
Choong C L, Shim M B, Lee B S, Jeon S, Ko D S, Kang T H, Bae J, Lee S H, Byun K E, Im J, Jeong Y J, Park C E, Park J J, Chung U I. Advanced Materials, 2014, 26 (21): 3451.

[82]
Chung J Y, Nolte A J, Stafford C M. Advanced Materials, 2010, 23 (3): 349.

[83]
Mu J, Hou C, Wang G, Wang X, Zhang Q, Li Y, Wang H, Zhu M. Advanced Materials, 2016, 28 (43): 9491.

[84]
Pang C, Lee G-Y, Kim T-i, Kim S M, Kim H N, Ahn S-H, Suh K-Y. Nature Materials, 2012, 11 (9): 795.

[85]
Chen X, Shao J, Tian H, Li X, Wang C, Luo Y, Li S. Advanced Materials Technologies, 2020, 5 (7): 2000046.

[86]
Bae G Y, Pak S W, Kim D, Lee G, Kim D H, Chung Y, Cho K. Advanced Materials, 2016, 28 (26): 5300.

[87]
Park J, Lee Y, Hong J, Ha M, Jung Y-D, Lim H, Kim S Y, Ko H. ACS NANO, 2014, 8(5): 4689.

[88]
Wang J, Tenjimbayashi M, Tokura Y, Park J-Y, Kawase K, Li J, Shiratori S. ACS Applied Materials, Interfaces, 2018, 10 (36): 30689.

[89]
Wang X, Xia Z, Zhao C, Huang P, Zhao S, Gao M, Nie J. Sensors and Actuators A: Physical, 2020, 312: 112147.

[90]
Li T, Luo H, Qin L, Wang X, Xiong Z, Ding H, Gu Y, Liu Z, Zhang T.Small, 2016, 12 (36): 5042.

[91]
Hu Y, Huang T, Zhang H, Lin H, Zhang Y, Ke L, Cao W, Hu K, Ding Y, Wang X, Rui K, Zhu J, Huang W. ACS Applied Materials, Interfaces, 2021, 13 (20): 23905.

[92]
Bai S, Zhang K, Wang L, Sun J, Luo R, Li D, Chen A.J. Mater. Chem. A, 2014, 2 (21): 7927.

[93]
Ji B, Zhou Q, Wu J, Gao Y, Wen W, Zhou B. ACS Applied Materials, Interfaces, 2020, 12 (27): 31021.

[94]
Shi L, Chu Z, Liu Y, Jin W, Xu N. Advanced Functional Materials, 2014, 24 (44): 7032.

[95]
Xiong Y X, Hu Y G, Zhu P L, Sun R, Wang Z P. Progress in Chemistry, 2019, (06): 800.

( 熊耀旭, 胡友根, 朱朋莉, 孙蓉, 汪正平. 化学进展, 2019, 31(06): 800 )

[96]
Ananthasubramanian P, Sahay R & Raghavan N. RSC Advances, 2024, 14 (22): 15249

[97]
Chen S, Song Y, Xu F. ACS Applied Materials, Interfaces, 2018, 10 (40): 34646.

[98]
Park J, Lee Y, Ha M, Cho S, Ko H. Journal of Materials Chemistry B, 2016, 4 (18): 2999.

[99]
Guo X L, Liu X, Hu H C, Hu C A. Light Industry Machinery, 2023, 41(02): 34.

( 郭鑫雷, 刘鑫, 胡汉春, 胡呈安. 轻工机械, 2023, 41(02): 34 )

[100]
Pang C, Koo J H, Nguyen A, Caves J M, Kim M G, Chortos A, Kim K, Wang P J, Tok J B H, Bao Z. Advanced Materials, 2014, 27 (4): 634.

[101]
Kim K, Jung M, Kim B, Kim J, Shin K, Kwon O-S, Jeon S. Nano Energy, 2017, 41: 301.

[102]
Hua Q, Sun J, Liu H, Bao R, Yu R, Zhai J, Pan C, Wang Z L. Nature Communications, 2018, 9 (1): 244.

[103]
Chen H, Miao L, Su Z, Song Y, Han M, Chen X, Cheng X, Chen D, Zhang H. Nano Energy, 2017, 40: 65.

Options
Outlines

/