中文
Announcement
More
Original article

Construction and Application of ONOO Small Molecule Fluorescent Probes in Pathophysiological Processes

  • Ting Ma 1, 2, 3 ,
  • Chunyu Deng 1, 2, 3 ,
  • Jie Li 1, 2, 3 ,
  • Zhouyu Wang , 1, 2, 3, * ,
  • Qian Zhou 1, 2, 3, * ,
  • Xiaoqi Yu , 1, 2, 3, *
Expand
  • 1 School of Science, Xihua University
  • 2 Sichuan Engineering Research Center for Molecular Targeted Diagnostic & Therapeutic Drugs
  • 3 Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu, 610039, China
* Corresponding author e-mail: (Zhou-Yu Wang);zhouq@mail.xhu.edu.cn(Qian Zhou);xqyu@scu.edu.cn(Xiao-Qi Yu)

Received date: 2024-09-04

  Revised date: 2025-01-20

  Online published: 2025-03-19

Supported by

the National Natural Science Foundation of China(22307104)

Sichuan Science and Technology Program(2023NSFSC0637)

Sichuan Science and Technology Program(2023NSFSC1977)

Abstract

ONOO, produced by the diffusion-controlled reaction of nitric oxide and superoxide radicals, is a strong oxidizing and nitrating agent that causes damage to DNA, proteins, and other biomolecules in cells. Since ONOO is characterized by its short lifetime, high reactivity, and low concentration under physiological conditions, and the pathophysiological roles it plays in biological systems are not yet fully understood, it is of great significance to develop highly sensitive and selective detection technologies to achieve real-time dynamic monitoring of ONOO. In this paper, we review the research progress of ONOO fluorescent probes in disease-related processes in the recent 5 years, revealing the potential role of ONOO in various diseases, such as inflammation, tumors, liver injury, and brain diseases. Finally, the bottlenecks in the development of ONOO probes and future trends are discussed, which will promote the application of ONOO probes in chemistry, biology, and pharmacology.

Contents

1 Introduction

2 Design strategy of ONOO fluorescent probe

3 Detection and imaging of ONOO by fluorescent probes in disease-related processes

3.1 Detection and imaging of ONOO in inflammation

3.2 Detection and imaging of ONOO in tumors

3.3 Detection and imaging of ONOO in Liver Injuries

3.4 Detection and Imaging of ONOO in Brain diseases

3.5 Detection and imaging of ONOO in other disease models

4 Conclusion and outlook

Cite this article

Ting Ma , Chunyu Deng , Jie Li , Zhouyu Wang , Qian Zhou , Xiaoqi Yu . Construction and Application of ONOO Small Molecule Fluorescent Probes in Pathophysiological Processes[J]. Progress in Chemistry, 2025 . DOI: 10.7536/PC240815

[1]
Szabó C, Ischiropoulos H, Radi R. Nat Rev Drug Discov, 2007, 6: 662-680.

[2]
Ferrer-Sueta G, Radi R. ACS Chem. Biol., 2009, 4: 161-177.

[3]
Piacenza L, Zeida A, Trujillo M, Radi R. Physiological Reviews, 2022, 102: 1881-1906.

[4]
Prolo C, Piacenza L, Radi R. Current Opinion in Chemical Biology, 2024, 80: 102459.

[5]
Ferrer-Sueta G, Campolo N, Trujillo M, Bartesaghi S, Carballal S, Romero N, Alvarez B, Radi R. Chem. Rev., 2018, 118: 1338-1408.

[6]
Tcyganov E N, Sanseviero E, Marvel D, Beer T, Tang H-Y, Hembach P, Speicher D W, Zhang Q, Donthireddy L R, Mostafa A, Tsyganova S, Pisarev V, Laufer T, Ignatov D, Ferrone S, Meyer C, Maby-El Hajjami H, Speiser D E, Altiok S, Antonia S, Xu X, Xu W, Zheng C, Schuchter L M, Amaravadi R K, Mitchell T C, Karakousis G C, Yuan Z, Montaner L J, Celis E, Gabrilovich D I. Cancer Cell, 2022, 40: 1173-1189.e6.

[7]
Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, Savino B, Colombo P, Jonjic N, Pecanic S, Lazzarato L, Fruttero R, Gasco A, Bronte V, Viola A. Journal of Experimental Medicine, 2011, 208: 1949-1962.

[8]
Barker C E, Thompson S, O’Boyle G, Lortat-Jacob H, Sheerin N S, Ali S, Kirby J A. Sci Rep, 2017, 7: 44384.

[9]
Logan I E, Nguyen K T, Chatterjee T, Manivannan B, Paul N P, Kim S R, Sixta E M, Bastian L P, Marean-Reardon C, Karajannis M A, Fernández-Valle C, Estevez A G, Franco M C. Redox Biology, 2024, 75: 103249.

[10]
Franco M C, Ye Y, Refakis C A, Feldman J L, Stokes A L, Basso M, Melero Fernández De Mera R M, Sparrow N A, Calingasan N Y, Kiaei M, Rhoads T W, Ma T C, Grumet M, Barnes S, Beal M F, Beckman J S, Mehl R, Estévez A G. Proc. Natl. Acad. Sci. U.S.A., 2013, 110:.

[11]
Jandy M, Noor A, Nelson P, Dennys C N, Karabinas I M, Pestoni J C, Singh G D, Luc L, Devyldere R, Perdomo N, Mitchell C E, Adams L, Fuse M A, Mendoza F A, Marean-Reardon C L, Mehl R A, Estevez A G, Franco M C. Redox Biology, 2022, 50: 102247.

[12]
Wiseman H, Halliwell B. Biochemical Journal, 1996, 313: 17-29.

[13]
Schieke S M, Briviba K, Klotz L O, Sies H. FEBS Letters, 1999, 448: 301-303.

[14]
Salminen A, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Progress in Neurobiology, 2009, 87: 181-194.

[15]
Grivennikov S I, Greten F R, Karin M. Cell, 2010, 140: 883-899.

[16]
Shuhendler A J, Pu K, Cui L, Uetrecht J P, Rao J. Nat Biotechnol, 2014, 32: 373-380.

[17]
Prolo C, Rios N, Piacenza L, Álvarez M N, Radi R. Free Radical Biology and Medicine, 2018, 128: 59-68.

[18]
Li M L, Gong X J, Li H W, Han H, Shuang S M, Song S M, Dong C. Analytica Chimica Acta, 2020, 1106: 96-102.

[19]
Yermilov V, Rubio J, Ohshima H. FEBS Letters, 1995, 376: 207-210.

[20]
Vasilescu A, Gheorghiu M, Peteu S. Microchim Acta, 2017, 184: 649-675.

[21]
Wu X F, Shi W, Li X H, Ma H M. Acc. Chem. Res., 2019, 52: 1892-1904.

[22]
Yang J, Chi Z G, Zhu W H, Tang B Z, Li Z. Sci. China Chem., 2019, 62: 1090-1098.

[23]
Zhang J, Wang N N, Ji X, Tao Y F, Wang J M, Zhao W L. Chemistry A European J, 2020, 26: 4172-4192.

[24]
Gao L Q, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble M A, Xiao Q C, Yao S Q. Chem. Soc. Rev., 2021, 50: 1219-1250.

[25]
Yang D, Wang H L, Sun Z N, Chung N W, Shen J G. J. Am. Chem. Soc., 2006, 128: 6004-6005.

[26]
Jing X T, Yu F B, Chen L G. Progress in Chemistry, 2000, 12: 332.

[27]
Zhu B C, Zhang M, Wu L, Zhao Z Y, Liu C Y, Wang Z K, Duan Q X, Wang Y W, Jia P. Sensors and Actuators B: Chemical, 2018, 257: 436-441.

[28]
Cheng D, Peng J J, Lv Y, Su D D, Liu D J, Chen M, Yuan L, Zhang X B. J. Am. Chem. Soc., 2019, 141: 6352-6361.

[29]
Cheng J, Li D, Sun M L, Wang Y, Xu Q Q, Liang X G, Lu Y B, Hu Y Z, Han F, Li X. Chem. Sci., 2020, 11: 281-289.

[30]
Wang Z, Li X, Li Y Y, Wang Q, Lu X M, Fan Q L. Progress in Chemistry, 2022, 34: 198.

[31]
Crusz S M, Balkwill F R. Nat Rev Clin Oncol, 2015, 12: 584-596.

[32]
Zarrin A A, Bao K, Lupardus P, Vucic D. Nat Rev Drug Discov, 2021, 20: 39-63.

[33]
Wu Y Q, Shi A P, Li Y Y, Zeng H, Chen X Y, Wu J, Fan X L. Analyst, 2016, 141: 100-110.

[34]
Li Y Y, Wu Y Q, Chen L Y, Zeng H, Chen X Y, Lun W C, Fan X L, Wong W Y. J. Mater. Chem. B, 2019, 7: 7612-7618.

[35]
Wang G Y, Wang Y, Wang C C, Huang C S, Jia N Q. Analyst, 2020, 145: 828-835.

[36]
Su H H, Wang N N, Wang J M, Wang H, Zhang J, Zhao W L. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 252: 119502.

[37]
Su H H, Ji X, Zhang J, Wang N N, Wang H, Liu J Y, Jiao J R, Zhao W L. Journal of Molecular Structure, 2022, 1265: 133443.

[38]
Ou P H, Ran H Y, Ye X P, Wang J Y, Pang M L, Zhao L L, Chen M Z, Li X, Ma Y P, Wang P, Chen J, Luo Q, Peng Y B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 291: 122381.

[39]
Liu F Y, Li M M, Li W X, Ren Y J, Zhang M L, Zhang H, Wang P, Wu Y L, Wang K H, Wang X Y, Chen X F, Tang J F. Bioorganic Chemistry, 2024, 147: 107362.

[40]
Gao M, Yu F B, Lv C J, Choo J, Chen L X. Chem. Soc. Rev., 2017, 46: 2237-2271.

[41]
Panieri E, Santoro M M. Cell Death Dis, 2016, 7: e2253-e2253.

[42]
Trachootham D, Alexandre J, Huang P. Nat Rev Drug Discov, 2009, 8: 579-591.

[43]
Li Z, Lu J, Pang Q, You J M. Analyst, 2021, 146: 5204-5211.

[44]
Wu Y, Zhang X, Lu X Y, Chen Y, Ju J D, Wu H W, Zhu B C, Huang S Y. Sensors and Actuators B: Chemical, 2021, 348: 130677.

[45]
Wang W W, Xiong J H, Song X J, Wang Z, Zhang F, Mao Z Q. Anal. Chem., 2020, 92: 13305-13312.

[46]
Zhang J J, Zhen X, Zeng J F, Pu K Y. Anal. Chem., 2018, 90: 9301-9307.

[47]
Zhang J R, Liu L L, Wang Y N, Wang C, Guo Y R, Yuan Z H, Jia Y, Li P, Sun S Q, Zhao G J. Analytica Chimica Acta, 2023, 1241: 340778.

[48]
Wang B Q, Kong Y T, Tian X X, Xu M. Journal of Hazardous Materials, 2024, 469: 134094.

[49]
Hoofnagle J H, Björnsson E S. N Engl J Med, 2019, 381: 264-273.

[50]
Louvet A, Mathurin P. Nat Rev Gastroenterol Hepatol, 2015, 12: 231-242.

[51]
Adams L A, Angulo P, Lindor K D. Canadian Medical Association Journal, 2005, 172: 899-905.

[52]
Stephens C, Andrade R J, Lucena M I. Current Opinion in Allergy & Clinical Immunology, 2014, 14: 286-292.

[53]
Mao G J, Gao G Q, Dong W P, Wang Q Q, Wang Y Y, Li Y, Su L, Zhang G S. Talanta, 2021, 221: 121607.

[54]
Zhou Y Q, Li P, Fan N N, Wang X, Liu X N, Wu L J, Zhang W, Zhang W, Ma C L, Tang B. Chem. Commun., 2016, 52: 64-67.

[55]
Jiang W L, Li Y F, Wang W X, Zhao Y T, Fei J J, Li C Y. Chem. Commun., 2019, 55: 14307-14310.

[56]
Deng Y Z, Feng G Q. Anal. Chem., 2020, 92: 14667-14675.

[57]
Zhao B, Zheng S, Liu Q Q, Dong C, Dong B L, Fan C H, Lu Z L, Yoon J. Sensors and Actuators B: Chemical, 2024, 410: 135659.

[58]
Cheng D, Gong X Y, Wu Q, Yuan J, Lv Y, Yuan L, Zhang X B. Anal. Chem., 2020, 92: 11396-11404.

[59]
Wang Y Z, Liu Y, Song X R, Feng Y, Jing C L, Zhang G L, Huang Y W, Liu W S. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 286: 121892.

[60]
Liu X, He L H, Gong X Y, Yang Y, Cheng D, Peng J J, Wang L, Zhang X B, Yuan L. CCS Chem, 2022, 4: 356-368.

[61]
Liu R X, Jiang H J, Yang W J, Zheng Z J, Wang X M, Tian Z H, Wang D Y, Kan D F, Zhang D, Tang Z X. Analytica Chimica Acta, 2024, 1309: 342673.

[62]
Lee Y M, He W F, Liou Y C. Cell Death Dis, 2021, 12: 58.

[63]
Emerit J, Edeas M, Bricaire F. Biomedicine & Pharmacotherapy, 2004, 58: 39-46.

[64]
Sedgwick A C, Dou W T, Jiao J B, Wu L L, Williams G T, Jenkins A T A, Bull S D, Sessler J L, He X P, James T D. J. Am. Chem. Soc., 2018, 140: 14267-14271.

[65]
Chen Y L, Xu X L, Wang Q, Ding X L, Bao J W, Zhao Y Q, Sun Q, Ha M N, Ali A S, Chen Q, Gao Q H, Zhang K, Han X Y. Sensors and Actuators B: Chemical, 2024, 411: 135739.

[66]
Sun Q, Xu J J, Ji C L, Shaibani M S S, Li Z, Lim K, Zhang C W, Li L, Liu Z P. Anal. Chem., 2020, 92: 4038-4045.

[67]
Yan M, Fang H X, Wang X Q, Xu J J, Zhang C W, Xu L, Li L. Sensors and Actuators B: Chemical, 2021, 328: 129003.

[68]
Shao T, Xu X N, Wang L, Shen Y, Zhao J, Li H Z, Zhang D T, Du W, Bai H, Peng B, Li L. J. Innov. Opt. Health Sci., 2023, 16: 2250039.

[69]
Luo X Z, Cheng Z Y, Wang R, Yu F B. Anal. Chem., 2021, 93: 2490-2499.

[70]
Zhang Q, Zeng S M Z, Yuan L C, Wu C J, Wu S Y, Ren S Z, Zhao M D, Wang X M, Zhu H L, Wang Z C. Sensors and Actuators B: Chemical, 2023, 395: 134502.

[71]
Chen S Y, Vurusaner B, Pena S, Thu C T, Mahal L K, Fisher Edward A, Canary James W. Anal. Chem., 2021, 93: 10090-10098.

[72]
Sang M M, Huang Y B, Liu Z W, Li G, Wang Y, Yuan Z W, Dai C L, Zheng J R. ACS Sens., 2023, 8: 893-903.

Options
Outlines

/