中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (05): 767-770 Previous Articles   Next Articles

• Review •

Pore-filling type Proton Exchange Membrane for Fuel Cells

Li Xiaobing** Liao Shijun

  

  1. (College of Chemistry, South China University of Technology, Guangzhou 510640, China)
  • Received: Revised: Online: Published:
  • Contact: XiaoBing LI
PDF ( 1275 ) Cited
Export

EndNote

Ris

BibTeX

Proton exchange membrane is a key material for proton exchange membrane fuel cells (PEMFC). Currently wide-used perfluorosulfonic acid membranes have some disadvantages, such as low thermal stability, easy swelling, excessive crossover of methanol and high price etc., other membranes, including sulfonated polymer, radiation grafted membranes, organic-inorganic hybrids and acid-base blends, do not satisfy the criteria for PEMFC, which set a barrier to the development and commercialization of PEMFC. Pore-filling type proton exchange membrane is a new proton exchange membrane, which is formed by filling porous substrate membrane with electrolytes. Compared with traditional perfluorosulfonic acid membranes, pore-filling type proton exchange membranes have many advantages, such as non-swelling, low methanol permeation, high proton conductivity, low cost and a wide range of materials to choose. In this paper, the progress on polymer-based, organic/inorganic compounds-based and inorganic compounds-based pore-filling type proton exchange membranes has been introduced, and the developing trend of proton exchange membrane has been suggested.

CLC Number: 

[ 1 ] 衣宝廉(Yi B L) . 燃料电池2原理·技术·应用( Fuel Cells :Principle , Technology and Application) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2003. 161
[ 2 ] Motupally S , Becker A J , Weidner J W. J . Electrochem. Soc. ,2000 , 147 : 3171 —3177
[ 3 ] Wang H , de Sousa R , Gasa J , et al . J . Membr. Sci . , 2007 ,289 : 277 —283
[ 4 ] Mura F , Silva R F , Pozio A. Electrochim. Acta , 2007 , 52 :5824 —5828
[ 5 ] Gubler L , Slaski M, Wokaun A , et al . Electrochem. Commun. ,2006 , 8 : 1215 —1219
[ 6 ] Fu Y Z , Manthiram A. J . Power Sources , 2006 , 157 : 222 —225
[ 7 ] Woo Y, Oh S Y, Kang YS , et al . J . Membr. Sci . , 2003 , 220 :31 —45
[ 8 ] Shahi V K. Solid State Ionics , 2007 , 177 : 3395 —3404
[ 9 ] Helen M, Viswanathan B , Murthy S S. J . Power Sources , 2006 ,163 : 433 —439
[10] Yamaguchi T , Miyata F , Nakao S. J . Membr. Sci . , 2003 , 214 :283 —292
[11] Lin H L , Yu T L , Huang L N , et al . J . Power Sources , 2005 ,150 : 11 —19
[12] Shim J , Ha H Y, Hong S A , et al . J . Power Sources , 2002 ,109 : 412 —417
[13] Yamaguchi T , Miyata F , Nakao S. J . Membr. Sci . , 2003 , 214 :283 —292
[14] Huang L N , Chen L C , Yu TL , et al . J . Power Sources , 2006 ,161 : 1096 —1105
[15] Xing D M, Yi B L , Liu F Q , et al . Fuel Cells , 2005 , 5 : 406 —411
[16] Lin H L , Yu L , Chang W K, et al . J . Power Sources , 2007 ,164 : 481 —487
[17] Wang L , Yi B L , Zhang H M, et al . J . Power Sources , 2007 ,167 : 47 —52
[18] Shin J P , Chang B J , Kim J H , et al . J . Membr. Sci . , 2005 ,251 : 247 —254
[19] Nasef M M, Zubir N A , Ismail A F , et al . J . Power Sources ,2006 , 156 : 200 —210
[20] Nasef M M, Zubir N A , Ismail A F , et al . J . Membr. Sci . ,2006 , 268 : 96 —108
[21] Nasef M M, Zubir N A , Ismail A F , et al . Desalination , 2006 ,200 : 642 —644
[22] Yamaguchi T , Zhou H , Nakazawa S , et al . Adv. Mater. , 2007 ,19 : 592 —596
[23] Cho M S , Son H D , Nam J D , et al . J . Membr. Sci . , 2006 ,284 : 155 —160
[24] Bae B , Chun B H , Ha H Y, et al . J . Membr. Sci . , 2002 , 202 :245 —252
[25] Blum A , Duvdevani T , Philosoph M, et al . J . Power Sources ,2003 , 117 : 22 —25
[26] Duvdevani T , Philosoph M, Rakhman M, et al . J . Power Sources , 2006 , 161 : 1069 —1075
[27] Livshits V , Peled E. J . Power Sources , 2006 , 161 : 1187 —1191
[28] Peled E , Livshits V , Duvdevani T. J . Power Sources , 2002 ,106 : 245 —248
[29] Reichman S , Duvdevani T , Aharon A , et al . J . Power Sources ,2006 , 153 : 228 —233
[30] Sauk J , Byun J , Kim H. J . Power Sources , 2005 , 143 : 136 —141
[31] Lavrova G V , Russkih M V , Ponomareva V G, et al . Solid State Ionics , 2006 , 177 : 2129 —2132
[32] Boysen D A , Uda T , Chisholm C R I , et al . Science , 2004 ,303 : 68 —70
[33] Bocchetta P , Chiavarotti G, Masi R , et al . Electrochem.Commun. , 2004 , 6 : 923 —928
[34] Park Y I , Nagai M, Kim J D , et al . J . Power Sources , 2004 ,137 : 175 —182
[35] Pichonat T , Manuel B G, Hauden D. J . Chem. Eng. , 2004 ,101 : 107 —111
[36] Pichonat T , Manuel B G. J . Micromech. Microeng. , 2005 , 15 :S179 —S184
[37] Gold S , Chu K L , Lu C , et al . J . Power Sources , 2004 , 135 :198 —203
[38] Wang S , Otomo J , Ogura M, et al . Solid State Ionics , 2005 ,176 : 755 —760

[1] Jiasheng Lu, Jiamiao Chen, Tianxian He, Jingwei Zhao, Jun Liu, Yanping Huo. Inorganic Solid Electrolytes for the Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1344-1361.
[2] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[3] Dong Li, Yuying Zheng, Haoxiong Nan, Yanxiong Fang, Quanbing Liu, Qiang Zhang. Electrolyte for Solid Lithium-Sulfur Batteries with High Safety and High Specific Energy [J]. Progress in Chemistry, 2020, 32(7): 1003-1014.
[4] Jiamiao Chen, Jingwen Xiong, Shaomin Ji, Yanping Huo, Jingwei Zhao, Liang Liang. All Solid Polymer Electrolytes for Lithium Batteries [J]. Progress in Chemistry, 2020, 32(4): 481-496.
[5] Jinglun Wang, Qin Ran, Chongyu Han, Zilong Tang, Qiduo Chen, Xueying Qin. Organosilicon Functionalized Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2020, 32(4): 467-480.
[6] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[7] Zhang He, Zhang Chi, Song Ye. Fabrication of Anodic Titania Nanotube Arrays with Tunable Morphologies [J]. Progress in Chemistry, 2016, 28(6): 773-783.
[8] Shi Jingjing, Guo Xing, Chen Renjie, Wu Feng. Recent Progress in Flexible Battery [J]. Progress in Chemistry, 2016, 28(4): 577-588.
[9] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[10] Liu Feng, Wang Cheng, Zhang Jianbo, Lan Aidong, Li Jianqiu, Ouyang Minggao. Ordered Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2014, 26(11): 1763-1771.
[11] Wan Wenbo, Pu Weihua, Ai Desheng. Research Progress in Lithium Sulfur Battery [J]. Progress in Chemistry, 2013, 25(11): 1830-1841.
[12] Zhang Dong, Zhang Cunzhong*, Mu Daobin, Wu Borong, Wu Feng . Review on Lithium-Air Batteries [J]. Progress in Chemistry, 2012, 24(12): 2472-2482.
[13] Qin Xueying, Wang Jinglun, Zhang Lingzhi. Organosilicon Based Electrolytes for Lithium-Ion Batteries [J]. Progress in Chemistry, 2012, 24(05): 810-822.
[14] Zhao Qingsong, Nuli Yanna, Guo Yongsheng, Yang Jun, Wang Jiulin. Electrolytes for Rechargeable Magnesium Batteries [J]. Progress in Chemistry, 2011, 23(8): 1598-1610.
[15] Liu Ze, Lei Ze, Song Shidong, Yu Lian, Han Minfang. Doped Zirconia/Ceria Electrolyte Fabricated at Low Temperature [J]. Progress in Chemistry, 2011, 23(0203): 470-476.