中文
Announcement
More
Progress in Chemistry 2008, Vol. 20 Issue (05): 778-788 Previous Articles   

• Review •

Hydrogen Production through Solid Oxide Electrolysis at Elevated temperatures

Zhang Wenqiang; Yu Bo**; Chen Jing; Xu Jingming   

  1. (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 102201, China)
  • Received: Revised: Online: Published:
  • Contact: Yu Bo
PDF ( 5765 ) Cited
Export

EndNote

Ris

BibTeX

High temperature steam electrolysis (HTSE) has received increasingly interest in recent years, which provides a potential way for the large-scale production of hydrogen. A solid oxide electrolysis cell (SOEC) can split H2O into H2 and O2 at high efficiency. The high-temperature heat and the electrical power can be supplied simutaneously by renewable energy sources or advanced nuclear energy. The conversion efficiency of thermal energy to hydrogen in HTSE is as high as 50%. The mechanism, classification, composition and structure of SOEC are summarized. Current situation, key materials and core technologies of SOEC in HTSE are reviewed and the foreground of its future application in advanced energy fields is proposed.

CLC Number: 

[ 1 ] Barreto L , Makihira A , Riahi K. Int . J . Hydrogen Energ. ,2003 , 28 : 267 —284
[ 2 ] Virkar A V , Tao G. Third International Workshop on Fuel Cells ———WICaC , 2006
[ 3 ] Joel M F , Pham A Q , Aceves S M, Int . J . Hydrogen Energ. ,2003 , 28 : 483 —490
[ 4 ] Idaho National Laboratory. http://www.inl.gov/featurestories/2007-03-22
[ 5 ] 衣宝廉(Yi B L) . 燃料电池———原理·技术·应用(Fuel Cell :Principle , Technology and Application) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2004
[ 6 ] Badwal S P S , Foger K. Ceram. Int . , 1996 , 22 : 257 —265
[ 7 ] Ni M, Leung M K H , Leung D Y C. J . Power Sources , 2006 ,163 : 460 —466
[ 8 ] Carter J D , Myers D , Kumar R. The 30th International Conference & Exposition on Advanced Ceramics and Composites ,Cocoa Beach Florida. 2006
[ 9 ] Yildiz B , Kazimi M S. Int . J . Hydrogen Energ. , 2006 , 31 :77 —92
[10] Shin Y, Park W, Chang J , et al . Int . J . Hydrogen Energ. ,2007 , 32 : 1486 —1491
[11] Dêenitz W, Schmidberger R. Int . J . Hydrogen Energ. , 1982 , 7 :321 —330
[12] Dêenitz W, Dietrich G, Erdle E , et al , Int . J . Hydrogen Energ. , 1988 , 13 : 283 —287
[13] 韩敏芳(Han M F) , 彭苏萍( Peng S P) . 固体氧化物燃料电池材料及制备( Solid Oxide Fuel Cell : Materials and Preparation) . 北京: 科学出版社(Beijing : Science Press) ,2004
[14] Nguyen Q M, Takahashi T. Science and Technology of Ceramic Fuel Cells. New York : Elsevier , 1995
[15] Hsiao Y C. Characterization of Porous SOFC Electrodes. Doctorial Dissertation , Illinois Institute of Technology , 1996
[16] Setoguchi T , Okamoto K, Eguchi K, et al . J . Electrochem.Soc. , 1992 , 10 : 2875 —2880
[17] Accorsi R , Bergann E. J . Electrochem. Soc. , 1980 , 12 : 804 —811
[18] Hauch A , Jensen S H , Mogensen M. Proceedings of the 26th Ris? International Symposium on Materials Science : Solid State Electrochemistry , Denmark , 2005. 203 —208
[19] Jensen S H , Hauch A , Mogensen M. Ris? International Symposium on Materials Science : Solid State Electrochemistry ,Denmark , 2005. 247 —252
[20] H? gh J . Influence of Impurities on the H2/H2O/Ni/YSZ Electrode.Doctorial Dissertation , Technical University of Denmark ,Denmark , 2005
[21] Osada N , Uchida H , Watanabe M. J . Electrochem. Soc. , 2006 ,153 : A816 —A820
[22] Uchida H , Osada N , Watanabe M. Electrochem. Solid-State Lett . , 2004 , 7(12) : A500 —A502
[23] Skinner S J . Int . J . Inorg. Mater. , 2001 , 3 (2) : 113 —121
[24] Shao Z P , Haile S M. Nature , 2004 , 431 : 170 —173
[25] Wang W S , Huang Y Y, Jung S , et al . J . Electrochem. Soc. ,2006 , 153 : A2066 —A2070
[26] Yamamoto O , Arati Y, Takeda Y, et al . Solid State Ionics ,1995 , 79 : 137 —142
[27] Mizutani Y, Tamura M, Kawai M, et al . Solid State Ionics ,1994 , 72 : 271 —275
[28] Haile S M. Acta Mater. , 2003 , 51 : 5981 —6000
[29] Will J , Mitterdorfer A , Kleinlogel C , et al . Solid State Ionics ,2000 , 131 : 79 —96
[30] Zhu B , Ingvar A , Camilla A , et al . Electrochem. Commun. ,2006 , 8 : 495 —498
[31] Demin A , Gorbova E , Tsiakaras P. J . Power Sources , 2007 , 171(1) : 205 —211
[32] Zhu W Z , Deevi S C. Mater. Sci . Eng. A , 2003 , 348 : 227 —243
[33] 朱庆山(Zhu Q S) , 彭练(Peng L) , 黄文来(Huang WL) 等.无机材料学报(Journal of Inorganic Materials) , 2006 , 21 (2) :284 —290
[34] Lessing P A. J . Mater. Sci . , 2007 , 42 : 3465 —3476
[35] O’Brien J E , Stoots C M, Herring J S , et al , J . Fuel Cell Sci .Technol . , 2005 , 2 : 156 —163
[36] Herring J S , O’Briena J E , Stoots C M, et al . Int . J . Hydrogen Energ. , 2007 , 32 : 440 —450
[37] O’Briena J E , Stoots C M, Herring J S , et al . J . Fuel Cell Sci .Technol . , 2006 , 3 : 213 —219
[38] Dutta S , Morehouse J H , Khan J A. Int . J . Hydrogen Energy ,1997 , 22 : 883 —895
[39] Nernst W. Z. Elecktrochem. , 1899 , 6 : 41
[40] Spacil H S , Tedmon C S Jr. J . Electrochem. Soc. , 1969 , 116 :1618 —1626
[41] Spacil H S , Tedmon C S Jr. J . Electrochem. Soc. , 1969 , 116 :1627 —1633
[42] Doenitz W, Eedle E. Int . J . Hydrogen Energ. , 1985 , 10 :291 —295
[43] Maskalick N J . Int . J . Hydrogen Energ. , 1986 , 11 : 563 —570
[44] Hino R , Haga K, Aita H , et al . Nucl . Eng. Des. , 2004 , 233 :363 —375
[45] Herring J S , Lessing P , O’Brien J E , et al . Second Information Exchange Meeting on Nuclear Production of Hydrogen , 2003
[46] Hi2H2 project . http://www.hi2h2.com 2007-06-58
[47] Jensen S H , Mogensen M. 19th World Energy Congress , 2004
[48] Hauch A , Jensen S H , Ramousse S , et al . J . Electrochem.Soc. , 2006 , 153 (9) : A1741 —A1747
[49] Mansilla C , Sigurvinsson J , Bontemps A , et al . Energy , 2007 ,32 : 423 —430
[50] A Technology Roadmap for Generation ⅣNuclear Energy System.U S DOE Nuclear Energy Research Advisory Committee and the Generation Ⅳ International Forum, 2002
[51] Forsberg C. Int . J . Hydrogen Energ. , 2003 , 28 : 1073 —1081
[52] Utgikar V , Thiesen T. Int . J . Hydrogen Energ. , 2006 , 31 :939 —944
[53] Sigurvinsson J , Mansilla C , Lovera P , et al . Int . Hydrogen Energ. , 2007 , 32 : 1174 —1182
[54] Jensen S H , Larsen P H , Mogensen M. Int . J . Hydrogen Energ. ,2007 , 32 : 3253 —3257
[55] Sigurvinsson J , Mansilla C , Lovera P , et al . Int . J . Hydrogen Energ. , 2007 , 32 : 1174 —1182
[56] Sridhar K R , Vaniman B T. Solid State Ionics , 1997 , 93 : 321 —328

[1] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[2] Yanmei Ren, Jiajun Wang, Ping Wang. Molybdenum Disulfide as an Electrocatalyst for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2021, 33(8): 1270-1279.
[3] Junwen Cao, Wenqiang Zhang, Yifeng Li, Chenhuan Zhao, Yun Zheng, Bo Yu. Current Status of Hydrogen Production in China [J]. Progress in Chemistry, 2021, 33(12): 2215-2244.
[4] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[5] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[6] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.
[7] Shiliang Zhang, Qilu Yao, Zhanghui Lu*. Synthesis and Dehydrogenation of Hydrazine Borane [J]. Progress in Chemistry, 2017, 29(4): 426-434.
[8] Zhang Yuanzheng, Xie Lili, Zhou Yijing, Yin Lifeng*. 2D Z-Scheme Photocatalyst and Its Application in Environmental Purification and Solar Energy Conversion [J]. Progress in Chemistry, 2016, 28(10): 1528-1540.
[9] Wang Dongdong, Dong Hua, Lei Xiaoli, Yu Yue, Jiao Bo, Wu Zhaoxin. Iridium Complexes for Triplet Photosensitizer [J]. Progress in Chemistry, 2015, 27(5): 492-502.
[10] Zhai Kang, Li Kongzhai, Zhu Xing, Wei Yonggang. Oxygen Exchange Materials Used in Two-Steps Thermochemical Water Splitting for Hydrogen Production [J]. Progress in Chemistry, 2015, 27(10): 1481-1499.
[11] Yin Qiaoqiao, Qiao Ru, Tong Guoxiu. Preparation and Photocatalytic Application of Ion-Doped ZnO Functional Nanomaterials [J]. Progress in Chemistry, 2014, 26(10): 1619-1632.
[12] Zhang Chao, Yin Xiuli, Wu Chuangzhi. Reactors for Hydrogen Production by Bio-Ethanol Reforming [J]. Progress in Chemistry, 2011, 23(4): 810-818.
[13] Xu Chenhong, Han You, Chi Mingyang. Cu2O-Based Photocatalysis [J]. Progress in Chemistry, 2010, 22(12): 2290-2297.
[14] . Steam Reforming of Bio-Oil or Its Model Compounds for Hydrogen Production [J]. Progress in Chemistry, 2010, 22(09): 1687-1700.
[15] . Hydrogen Production by Microbial Electrolysis Cells [J]. Progress in Chemistry, 2010, 22(04): 748-753.