中文
Announcement
More
Progress in Chemistry 2003, Vol. 15 Issue (01): 9- Previous Articles   Next Articles

• Review •

Marangoni Effect in the Mass and Heat Transport Processes*

Sha Yong;Cheng Hong**;Yu Guozong   

  1. (Chemical Engineering Research Center,Tianjin University, Tianjin 300072)
  • Received: Revised: Online: Published:
  • Contact: Cheng Hong
PDF ( 1937 ) Cited
Export

EndNote

Ris

BibTeX

Marangoni effect accompanied with heat and mass transport processes has important influence on chemical engineering ,material engineering ,thermal engineering and other fields .it is also an ideal problem in nonlinear science .The experimental and theoretical studies on Marangoni effect can not only promote the understanding of miocrocosmic mechanism of heat and mass transfer ,but also improve the efficiency of transport processes .However ,up to the present ,one's knowledge on Marangoni effect is still insufficient to meet the need of both theory and practice .Recently ,the research in this area is very active .This paper reviews the experimental and theoretical studies on Marangoni effect.

CLC Number: 

[ 1 ] Scriven L E, Sternling C V. Nature, 1960, 187: 186—188
[ 2 ] Sherwood T K, Pigford R L , Wilke C R. Mass Transfer.New York: McGraw Hill, 1975. 184—188
[ 3 ] Boyadjiev C. Int. J. Heat Mass Transfer, 2000, 43:2749—2757
[ 4 ] Hozawa M , Inoue M , Sato J. J. Chem. Eng. Japan,1991, 24: 209—214
[ 5 ] Whiffin P A C, Bruton T M , Brice J C. J. Crystal Growth, 1976, 32: 205—217
[ 6 ] 雷永平(Lei Y P ) , 史耀武(Shi Y W ) , 村川英一(Murakawa H). 西安交通大学学报(J. Xi‘an Jiaotong Univ. ) ,1999, 33: 70—74
[ 7 ] Sharma A , Ruckenstein E. J. Colloid Interface Sci. ,1986, 111: 8—36
[ 8 ] Lyford P A , Pratt H R C, Griesen F, et al. Canadian J. of Chem. Eng. , 1998, 76: 167—182
[ 9 ] Pantaloni J , Bailleux R, Salan J , Velarde M G. J. Non-Equilibrium Thermodynam ics, 1979, 4: 201—217
[ 10 ] Koschmieder E L , Prahl S A. J. Fluid Mech. , 1990, 240:571—583
[ 11 ] Schwabe D. Adv. Space Res. , 1999, 24: 1347—1356
[ 12 ] Szymczyk J A. The Canadian J. Chem. Eng. , 1991, 69:1271—1276
[ 13 ] Zhang N , Chao D F. Int. Comm. Heat Mass Transfer,1999, 26: 1069—1080
[ 14 ] Orell A , Westwater J W. AIChE J. , 1962, 8: 350—356
[ 15 ] Imaish i N , Fujinawa K. Intern. Chem. Eng. , 1980, 20:226—232
[ 16 ] Suciu D G, Smigelschi O, Buckenstein E. AIChE J. ,1967, 13: 1120—1124
[ 17 ] Zhang S H, Wang Z M , Su Y F. Trans. IChemE. , 1990,68: 84—92
[ 18 ] Okhotsimskii A , Hozawa M. Chem. Eng. Sci. , 1998, 53:2547—2573
[ 19 ] Agble D, Mendes-Tatsis M A. Int. J. Heat Mass Transfer, 2001, 44: 1439—1449
[ 20 ] Brian P L T, Vivian J E, Mayr S T. Ind. Eng. Chem.Fundam. , 1971, 10: 75—83
[ 21 ] Imaishi N , Suzuki Y, Hozawa M , Fujinawa K. Intern.Chem. Eng. , 1982, 22: 659—665
[ 22 ] Lu H H, Yang Y M , Ma J R. Ind. Eng. Chem. Res. ,1996, 35: 1921—1928
[ 23 ] Tan K K, Thorpe R B. Chem. Eng. Sci. , 1992, 47:3565—3572
[ 24 ] Straub J. Exp. Thermal Fluid Sci. , 1994, 9: 253—273
[ 25 ] Kapur D N , Macleod N. Int. J. Heat Mass Transfer,1974, 17: 1151—1162
[ 26 ] Guzun-Stoica A , Kurzeluk A M , Floarea O. Chem. Eng.Sci. , 2000, 55: 3813—3816
[ 27 ] Agble D, Mendes-Tatsis M A. Int. J. Heat Mass Transfer, 2000, 43: 1025—1034
[ 28 ] Nield D A. J. Fluid Mech. , 1964, 19: 341—352
[ 29 ] Dupont O , Hennenberg M , Legros J C. Int. J. Heat Mass Transfer, 1992, 35: 3237—3244
[ 30 ] 葛培文(Ge P W ) , 西永颂(Xi Y S) , 李超荣(Li C R) 等.中国科学(A 辑) (Science in China, series A ) , 2001, 31:56—58
[ 31 ] Gelles S H, Markworth J. 15th AJAA Conf. , Los Angeles, 1977
[ 32 ] 张修睦( Zhang X M ) , 唐泽眉( Tang Z M ). 物理(Physics) , 1998, 27: 478—482
[ 33 ] Hibiya T, Nakamura S. Adv. Space Res. , 1999, 24:1225—1230
[ 34 ] Block M J. Nature, 1956, 178: 650—658
[ 35 ] Pearson J R A. J. Fluid Mech. , 1958, 4: 489—500
[ 36 ] Hovestreijdt J. Chem. Eng. Sci. , 1963, 18: 631—639
[ 37 ] Abe Y, Oka T, Mori Y. Int. J. Heat Mass Transfer,1994, 37: 2405—2413
[ 38 ] Chai L H, Peng X F, Wang B X, Ochterbeck J M. Int. J.Heat Mass Transfer, 1998, 41: 3529—3535
[ 39 ] 文东升(Wen D S) , 王补宣(Wang B X) , 彭晓峰(Peng X F ). 清华大学学报(自然科学版) ( J. Tsinghua Univ. )(Sci. Tech. ) , 2001, 41: 128—130
[ 40 ] Christopher D M , Wang B X. Int. J. Heat Mass Transfer, 2001, 44: 799—810
[ 41 ] Lewis J B, Pratt H R C. Nature, 1953, 171: 1155—1156
[ 42 ] Bakker C A P. van Buytenen P M , Beek W J. Chem.Eng. Sci. , 1966, 21: 1039—1046
[ 43 ] Davies G A , Thornton J D. Letters in Heat and Mass Transfer, 1977, 4: 287—290
[ 44 ] Perezde Ortiz E S, Sawistowski H. Chem. Eng. Sci. ,1973, 28: 2063—2069
[ 45 ] Sherwood T K, Wei J C. Indus. Eng. Chemistry, 1957,49: 1030—1034
[ 46 ] Maroudas N G, Sawistowski H. Chem. Eng. Sci. , 1964,19: 919—931
[ 47 ] Mudge L K, Heideger W J. AIChE J. , 1970, 16: 602—608
[ 48 ] Liang T B, Slater M J. Chem. Eng. Sci. , 1990, 45: 97—105
[ 49 ] Bennett D E, Gallardo B S, Abbott N L. J. American Chem. Society, 1996, 118: 6499—6505
[ 50 ] Zuiderweg F J. Chem. Eng. Res. Des. , 1983, 61: 388—390
[ 51 ] Dijkstra H A , Drinkenburg A A H. Chem. Eng. Sci. ,1990, 45: 1079—1088
[ 52 ] Pertler M , Haberl M , Rommel W , Blass E. Chem. Eng.& Proc. , 1995, 34: 269—278
[ 53 ] Proctor S J , Biddulph M W , Krishnamurthy K R. A IChE J. , 1998, 44: 831—835
[ 54 ] Vander Klooster H W , Drinkenburg A A H. I. Ch. E.Symp. Ser. , 1979, 56: 25—28
[ 55 ] Semkov K R, Kolev N. Chem. Eng. & Proc. , 1991, 29:77—83
[ 56 ] Matin A M , Perez A C. Intern. Chem. Eng. , 1994, 34:76—81
[ 57 ] Golovin A A. Chem. Eng. Sci. , 1992, 47: 2069—2080
[ 58 ] Warmuzinski K, Buzek J. Chem. Eng. Sci. , 1990, 45:243—254
[ 59 ] Misko I G, Garber Yu N. J. Appl. Chem. , 1989, 62:84—88
[ 60 ] Golovin A A , Rabinovich L M. ISEC288 (2) , 1988, 97—100
[ 61 ] Golovin A A , Rabinovich L M. Theor. Osnovi Khim.Technol. , 1990, 24: 592—610
[ 62 ] Fujinawa K, Hozawa M , Imaishi N. J. Chem. Eng.Japan, 1978, 11: 107—111
[ 63 ] Olander D R, Reddy L B. Chem. Eng. Sci. , 1964, 19:67—73
[ 64 ] Sawistowski H, Goltz G E. Trans. Instn. Chem. Engrs. ,1963, 41: 174—181
[ 65 ] Kaminsky V A K, Vyaz’min A V , Kulov N N , et al.Chem. Eng. Sci. , 1998, 53: 3347—3353
[ 66 ] Sternling C V , Scriven L E. AIChE J. , 1959, 5: 514—523
[ 67 ] Brian P L T. AIChE J. , 1971, 17: 765—772
[ 68 ] Kang K H, Choi C K, Hwang I G. AIChE J. , 2000, 46:15—23
[ 69 ] Mendes-Tatsis M A , Perez De Ortiz E S. Chem. Eng.Sci. , 1996, 51: 3755—3761
[ 70 ] Warmuzinsk i K, Tanczyk M. Chem. Eng. Sci. , 1995,50: 3521—3524
[ 71 ] Daiguji H, Hihara E, Saito T. Int. J. Heat Mass Transfer, 1997, 40: 1743—1752
[ 72 ] Scanlon J M , Segel L A. J. Fluid Mech. , 1967, 30:149—162
[ 73 ] Cloot A , Lebon G. J. Fluid Mech. , 1984, 145: 447—469
[ 74 ] Bestehorn M. Phys. Rev. E, 1993, 48: 3622—3634
[ 75 ] Hadji L , Safar J , Schell M. J. Non-Equilib. Thermodyn. , 1991, 16: 343—356
[ 76 ] Golovin A A , Nepomnyashchy A A , Pismen L M. Physica D, 1995, 81: 117—147
[ 77 ] Bragard J , Slavtchev S G, Lebon G. J. Colloid Interface Sci. , 1994, 168: 402—413
[ 78 ] Ho K L , Chang H C. AIChE J. , 1988, 34: 705—722
[ 79 ] Sun Z F, Wang S Y, Yu K T. ISTCE I , 1988, 599—608
[ 80 ] Boyadjiev C, Halatchev I. Int. J. Heat Mass Transfer,1998, 41: 197—202
[ 81 ] 唐泽眉(Tang Z M ) , 李家春(Li J C). 力学学报(Acta Mechanica Sinica) , 1991, 23: 149—156
[ 82 ] Galazka Z, Wilke H. J. Crystal Growth, 2000, 216:389—398
[ 83 ] Bestehorn M , Colinet P. Phys. D, 2000, 145: 84—109

[1] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[2] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[3] Qing Mao*, Weiyun Jing, Yue Shi. Basic Principles and Applications of Nonlinear Spectroscopy Analysis in Electrochemistry [J]. Progress in Chemistry, 2017, 29(2/3): 210-215.
[4] He Tao, Ma Xiaobo, Xu Zhihong, Wang Zhouyu. The Continuous Flow Micro-Reaction [J]. Progress in Chemistry, 2016, 28(6): 829-838.
[5] Yuan Ling, Liu Yang, Yang Tao, Liu Haimiao, Gao Qingyu. Oscillations and Pattern Formation in Sulfur-Contained Reaction Systems [J]. Progress in Chemistry, 2014, 26(04): 529-544.
[6] Sun Liang, Yang Chunhui, Ma Tianhui, Zhu Chongqiang. Nonlinear Optical Crystals LiBX2(B=Ga, In; X=S, Se, Te) [J]. Progress in Chemistry, 2014, 26(0203): 293-302.
[7] Song Jian, Zhuang Wei. Coherent Two Dimensional Infrared Spectroscopy of Proteins: Concepts and Simulations [J]. Progress in Chemistry, 2012, 24(06): 1065-1081.
[8] Lin Chensheng, Cheng Wendan, Zhang Weilong, Zhang Hao, He Zhangzhen. Structural Predications and Photophysical Simulations for Materials [J]. Progress in Chemistry, 2012, 24(06): 1185-1198.
[9] Lu Xingjie, Zhao Yuemin, Ren Lin, Yang Yingying, Gao Qingyu. Spatiotemporal Dynamics of Photosensitive BZ Reaction [J]. Progress in Chemistry, 2012, 24(05): 709-721.
[10] Luo Shaohua Wu Cong Tian Yong. Non-Ferroelectric Giant Dielectric and Varistor CCTO [J]. Progress in Chemistry, 2009, 21(0708): 1603-1610.
[11]

Shen Hong, Fang Qun

. Application of Two Kinds of Liquid-Phase Mass Transfer in Microfluidic Analytical Chip [J]. Progress in Chemistry, 2008, 20(12): 2053-2060.
[12] Chen Weifeng,Shi Zhuangzhi|Yuan Yu,Yan Chaoguo*. Asymmetric Autocatalysis [J]. Progress in Chemistry, 2007, 19(04): 456-463.
[13] Zhonghuai Hou,Houwen Xin**. Dynamical Size Effect in Mesoscopic Chemical Reaction Systems* [J]. Progress in Chemistry, 2006, 18(0203): 142-158.
[14] . Progress in Deactivation of Titanium Oxide Photocatalyst [J]. Progress in Chemistry, 2005, 17(02): 225-232.
[15] . Recent Progress of Multiscale Science [J]. Progress in Chemistry, 2005, 17(02): 186-191.