中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (9): 1399-1414 DOI: 10.7536/PC221230 Previous Articles   

• Review •

NIR-Ⅱ Aggregation-Induced Emission for PDT-PTT Dual-Mode Synergistic Therapy

Hui Tang, Hairong Li, Xiaochun Liu, Yahui Zhang(), Zhouyu Wang(), Xiaoqi Yu()   

  1. Department of Chemistry, School of Science, Xihua University,Chengdu 610039, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yahuizhang@mai.xhu.edu.cn(Yahui Zhang); wzyanne@163.com(Zhouyu Wang); xqyu@scu.edu.cn (Xiaoqi Yu)
  • Supported by:
    The National Natural Science Foundation of China(21905021); The Sichuan Province Science and Technology Support Program(2022NSFSC1269); The Sichuan Province Science and Technology Support Program(2023NSFSC1977)
Richhtml ( 51 ) PDF ( 662 ) Cited
Export

EndNote

Ris

BibTeX

Due to the excellent optical properties, good biocompatibility, high reactive oxygen species yield and excellent photothermal conversion ability, aggregation-induced emission (AIE) materials show great potential applications in the fields of photodynamic and photothermal therapy. However, traditional fluorescent materials need light with short wavelength for emission, which has the problem of poor tissue penetration, and further restricts the clinical application. To overcome the problem, AIE materials with emission in the range of second near-infrared (NIR-Ⅱ) emission are employed, which promotes the feasibility of the clinical application. This review summarizes the application of NIR-Ⅱ AIEgens with donor-π-acceptor (D-π-A) and donor-acceptor-donor (D-A-D) structure in photodynamic-photothermal dual-mode synergistic therapy.

Contents

1 Introduction

2 NIR-Ⅱ AIE molecules with D-π-A and D-A-D structure for dual-mode synergistic therapy

2.1 D-π-A sructure

2.2 D-A-D sructure

3 Conclusion and outlook

Fig.1 The depth of penetration of tissue by different wavelengths of light
Table 1 D-π-A structure of NIR-Ⅱ AIE molecules in PDT-PTT dual-mode synergistic therapy
Fig.2 (a) Chemical structures of ITT、BITT、ITB、BITB; (b) Plots of relative PL intensity (I/I0) of ITT、BITT、ITB、BITB versus hexane fraction; (c) The absorption and emission spectra of BITT NPs in aqueous solution; (d) CLSM imaging of intracellular ROS in 4T1 cells using DCFH-DA with BITT upon diverse treatment; (e) IR thermal images of 4T1 bearing-tumor mice injected with BITT NPs followed by laser irradiation. (f) Bodyweight changes of mice in different treatment groups; (g) Tumor bearing mice after 15-day different treatments[42]. Copyright 2021, Wiley-VCH GmbH
Fig.3 (a) Plots of the relative emission intensity (αAIE) versus hexane fraction; (b) Normalized absorption and (c) normalized emission spectra of these NPs in aqueous solution; (d) intracellular ROS level. (e) Thermal images, heating temperatures (at tumor sites) of tumor-bearing mice during continuous NIR irradiation at 12 h postinjection of TSSI NPs; (f) Time-dependent tumor growth curves of tumor-bearing mice with various treatments; (g) Photos of the tumors harvested at day 15 after different treatments[44].Copyright 2020, WIEY-VCH Verlag GmbH &Co. KgaA, Weinheim
Fig.4 (a) Plots of relative PL intensity (I/I0) of TAM、TSAM、TSSAM versus toluene fraction, Inset shows a summary table of the variation in PL intensity of TAM, TSAM, and TSSAM in aggregates (Iaggr.) and nanopaticles (NPs), compared with those in solution (Isol.); (b) Absorption spectra of TAM, TSAM, and TSSAM in film; (c) Fluorescence spectra of TAM, TSAM, and TSSAM aggregates (d) Intracellular ROS generation of TSSAM dots in 4T1 cells in the presence of DCFH-DA with light; (e) IR thermal images of 4T1 tumor-bearing mice intratumorally injected with TSSAM NPs, followed by laser irradiation; (f) (Left) Growth curves of the xenografted 4T1 tumors on the mice after receiving treatment with PBS alone, PBS, and laser light irradiation, TSSAM NPs alone, and TSSAM NPs and laser irradiation; (Right) Photographs of the 4T1 tumors extracted from the mice after the treatment described in panel; (g) Body weight curves of the xenografted 4T1 tumors extracted from the mice after the treatment described in panel[46].Copyright 2020, American Chemical Society
Fig.5 (a) PL spectra of TTT-4 in DMSO/toluene mixture with different toluene fraction(fT); (b) Normalized absorption of these AIEgens in DMSO solution; (c) Normalized PL spectra of AIEgens in the DMSO/toluene mixture with 99% toluene fraction. (d) Intracellular ROS generation (upper row) and live/dead cell staining (low row) of 4T1 cells treated with PBS, PBS+laser, TTT-4 NPs,and TTT-4 NPs +laser for 13 h; (e) IR thermal images of 4T1 tumor-bearing mice intratumorally injected with TTT-4 NPs, followed by laser irradiation; (f) Time-dependent tumor growth curves of tumor-bearing mice with various treatments; (g) Body weight change curves of mice in different treatment recorded during the treatment process[43].Copyright 2021, Elsevier Ltd
Fig.6 (a) PL spectra of TPEDCAc in DMSO/toluene mixture with different toluene fraction (fT); (b) Normalized absorption and (c) PL spectra of TPEDCPy, TPEDCQu and TPEDCAc in the aggregate state; (d) (upper row) Live/dead assay of MCF-7 cells co-stained with FDA and PI treated with PBS, PBS+L, TPEDCAc NPs,and TPEDCAc NPs + L for 30 min. (low row) intracellular ROS generation of TPEDCAc NPs in MCF-7 cells in the presence of DCFH-DA with light; (e) IR thermal images of MCF-7 tumor-bearing mice intratumorally injected with TPEDCAc NPs, followed by laser irradiation; (f) Growth curves of tumor-bearing mice with various treatments; (g) Body weight change curves of mice in different treatment recorded during the treatment process[45]. Copyright 2022, Wiley-VCH GmbH
Table 2 D-A-D structure of NIR-Ⅱ AIE molecules in PDT-PTT dual-mode synergistic therapy
Fig.7 (a) PL spectra of ZSY-TPE in THF/H2O mixture with different water fraction(fw); (b) Absorption and fluorescent emission spectra of ZSY-TPE in DCM; (c) ROS generation test against 4T1 cells after incubation with ZSY-TPE NPs for 2 h and co-staining with Lysotracker Green; (d) IR thermal images of the whole bodies of mice 24 h after the injection of ZSY-TPE NPs or PBS and laser irrdiation; (e) Variation in tumor temperature as a function of laser irradiation time; (f) Tumor growth inhibition (g) relative body weight curves after different treatments[47].Copyright 2020, Elsevier Ltd
Fig.8 (a) PL spectra of DCTBT in THF/H2O mixture with different water fraction(fw); (b) Normalized absorption spectra and (c) Normalized emission spectra of two NPs in aqueous solution; (d) ROS detection in PANC-1cells using DCFH as fluorescence indicator; (e) Thermal images, heating temperatures (at tumor sites) of tumor-bearing mice during continuous laser irradiation at 8 h postinjection of lip-DCTBT NPs; (f) Relative tumor volume changes for various treatment groups; (g) Tumor images harvested at 17 day after different treatments[50]. Copyright 2022, Elsevier Ltd
Fig.9 (a) PL spectra of DDTB in THF/H2O mixture with different water fraction(fw); (b) Absorption and emission spectra of the NPs in aqueous solution; (c) Detection of intracellular ROS generation by DCFH-DA in HeLa cells after incubation with DDTB NPs and PBS, follwed by laser irradiation; (d) Temperature changes at the tumor sites as a function of the laser irradiating time; (e) Average tumor growth curves in different groups; (f) Body weight of HeLa-tumor-bearing mice in different groups[48]. Copyright 2021, Wiley-VCH GmbH
[1]
Wang D, Lee M M S, Xu W H, Kwok R T K, Lam J W Y, Tang B Z. Theranostics, 2018, 8(18): 4925.

doi: 10.7150/thno.27787
[2]
Yang M Q, Deng J R., Su H F, Gu S X, Zhang J, Zhong A G, Wu F S. Mat. Chem. Front., 2021, 5(1): 406.
[3]
Gao J, Li J, Geng W C, Chen F Y, Duan X C, Zheng Z, Ding D, Guo D S. J. Am. Chem. Soc., 2018, 140(14): 4945.

doi: 10.1021/jacs.8b02331
[4]
Li X S, Kwon N, Guo T, Liu Z, Yoon J. Angew. Chem.Int. Ed., 2018, 57(36): 11522.
[5]
Cheng Y H, Cheng H, Jiang C X, Qiu X F, Wang K K, Huan W, Yuan A, Wu J H, Hu Y Q. Nat. Commun., 2015, 6 : 8.
[6]
Qu R, Zhen X, Jiang X Q. CCS Chem., 2022, 4(2): 401.

doi: 10.31635/ccschem.021.202101302
[7]
Chen W J, Chen H J, Huang Y R, Tan Y, Tan C Y, Xie Y, Yin J. ACS Appl. Bio. Mater., 2022, 5(7): 3428.

doi: 10.1021/acsabm.2c00363
[8]
Li C N, Zhang W, Liu S, Hu X L, Xie Z G. ACS Appl. Mater. Inter., 2020, 12 (27): 30077.

doi: 10.1021/acsami.0c06144
[9]
Ethirajan M, Chen Y H, Joshi P, Pandey R K. Chem. Soc. Rev., 2011, 40(1): 340.

doi: 10.1039/B915149B
[10]
Luo J, Xie Z, Lam J W, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem. Commun., (Cambridge, England) 2001, 18 : 1740.
[11]
Mei J, Leung N L C, Kwok R T K, Lam J W Y, Tang B Z. Chem. Rev., 2015, 115(21): 11718.

doi: 10.1021/acs.chemrev.5b00263 pmid: 26492387
[12]
Saini V, Venkatesh V, Pt B, Bhosale R S, Singh V. Prog.Mol.Biol.Transl., 2021, 185 : 45.
[13]
Liu S S, Feng G X, Tang B Z, Liu B. Chem. Sci., 2021, 12(19): 6488.

doi: 10.1039/D1SC00045D
[14]
Zhang M, Wang W T, Mohammadniaei M, Zheng T, Zhang Q C, Ashley J, Liu S J, Sun Y, Tang B Z. Adv. Mater., 2021, 33(22):12.
[15]
Song S L, Zhao Y, Kang M M, Zhang Z J, Wu Q, Fu S, Li Y M, Wen H F, Wang D, Tang B Z. Adv. Funct. Mater., 2021, 31(51): 14.
[16]
Hu F, Huang Y Y, Zhang G X, Zhao R, Yang H, Zhang D Q. Anal. Chem., 2014, 86(15): 7987.

doi: 10.1021/ac502103t
[17]
Gu X G, Zhang X Y, Ma H L, Jia S R, Zhang P F, Zhao Y J, Liu Q, Wang J G, Zheng X Y, Lam J W Y, Ding D, Tang B Z. Adv. Mater., 2018, 30(26): 9.
[18]
Liu S J, Zhou X, Zhang H K, Ou H L, Lam J W Y, Liu Y, Shi L Q, Ding D, Tang B Z. J. Am. Chem. Soc., 2019, 141(13): 5359.

doi: 10.1021/jacs.8b13889
[19]
Liang P P, Huang X Y, Wang Y, Chen D P, Ou C J, Zhang Q, Shao J J, Huang W Dong, X C. ACS Nano., 2018, 12(11): 11446.

doi: 10.1021/acsnano.8b06478
[20]
Chen D P, Tang Y Y, Zhu J W, Zhang J J, Song X J, Wang W J, Shao J J, Huang W, Chen P, Dong X C. Biomaterials, 2019, 221 : 11.
[21]
Zhao X Z, Long S R, Li M L, Cao J F, Li Y C, Guo L Y, Sun W, Du J J, Fan J L, Peng X J. J. Am. Chem. Soc., 2020, 142(3): 1510.

doi: 10.1021/jacs.9b11800
[22]
Wang Y J, Gong N Q, Li Y J, Lu Q C, Wang X, Li J H. J. Am. Chem. Soc., 2020, 142(4): 1735.

doi: 10.1021/jacs.9b11553
[23]
Xu Z R, Jiang Y H, Fan M Z, Tang S, Liu M X, Law W C, Yang C B, Ying M, Ma M Z, Dong B Q, Yong K T, Xu G X. Adv. Opt. Mater., 2021, 9(20): 27.
[24]
Deng J R, Yang M Q, Li C, Liu G Y, Sun Q, Luo X G, Wu F S. Dyes Pigments., 2021, 187 : 7.
[25]
Hong G S, Diao S, Chang J L, Antaris A L, Chen C X, Zhang B, Zhao S, Atochin D N,. Huang P L, Andreasson K I, Kuo C J, Dai H J. Nat. Photonics, 2014, 8(9): 723.

doi: 10.1038/nphoton.2014.166
[26]
Hong G S, Antaris A L, Dai H J. Nat. Biomed. Eng., 2017, 1(1): 22.

doi: 10.1038/s41551-016-0022
[27]
Jiang S S, Huang K, Qu J L, Lin J, Huang P. View, 2021, 2(1): 15.
[28]
Liu S J, Chen C, Li Y Y, Zhang H K, Liu J K, Wang R, Wong S T H, Lam J W Y, Ding D, Tang B Z. Adv. Funct. Mater., 2020, 30(7): 10.
[29]
He B R, Situ B, Zhao Z J, Zheng L. Small Methods, 2020, 4(4): 32.
[30]
Fan X X, Xia Q M, Zhang Y Y, Li Y R, Feng Z, Zhou J, Qi J, Tang B Z, Qian J, Lin H. Adv. Healthc. Mater., 2021, 10(24): 12.
[31]
Zhao Z, Chen C, Wu W T, Wang F F, Du L L, Zhang X Y, Xiong Y, He X W, Cai Y J, Kwok R T K, Lam J W Y, Gao X K, Sun P C, Phillips D L, Ding D, Tang B Z. Nat. Commun., 2019, 10(1): 768.

doi: 10.1038/s41467-019-08722-z
[32]
Deng G J, Peng X H, Su Z H, Zheng W, Yu J, Du L L, Chen H J, Gong P, Zhang P F, Cai L T, Tang B Z. ACS Nano, 2020, 14(9): 11452.

doi: 10.1021/acsnano.0c03824
[33]
Shi P J, Zhang X X, Liu Y, Duan Y A, Li Y P, Li Z F, Han T Y. Mater. Lett., 2020, 263: 4.
[34]
Zhao Z, Su H F, Zhang P F, Cai Y J, Kwok R T K, Chen Y C, He Z K, Gu X G, He X W, Sung H H Y, Willimas I D, Lam J W Y, Zhang Z F, Tang B Z. J. Mater. Chem., 2017, 5 (8): 1650.
[35]
Kang M M, Zhou C C, Wu S M, Yu B R., Zhang Z J, Song N, Lee M M S, Xu W H, Xu F J, Wang D, Wang L, Tang B Z. J. Am. Chem. Soc., 2019, 141 (42):16781.

doi: 10.1021/jacs.9b07162
[36]
Li D, Li Y M, Wu Q, Xiao P H, Wang L, Wang D, Tang B Z. Small, 2021, 17(37): 9.
[37]
Feng G X, Zhang G Q, Ding D. Chem. Soc. Rev., 2020, 49(22): 8179.

doi: 10.1039/D0CS00671H
[38]
Ren F, Shi J B, Tong B, Cai Z X, Dong Y P. Progress in Chemistry, 2021, 33(3): 341.
(任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 化学进展, 2021, 33(3): 341.).

doi: 10.7536/PC200614
[39]
Zhang R Y, Duan Y K, Liu B. Nanoscale, 2019, 11(41): 19241.

doi: 10.1039/C9NR06012J
[40]
Alifu N, Zebibula A, Qi J, Zhang H Q, Sun C W, Yu X M, Xue D W, Lam J W Y, Li G H, Qian J, Tang B Z. ACS Nano, 2018, 12(11): 11282.

doi: 10.1021/acsnano.8b05937
[41]
Zhao Y Z, Cai M M, Qian Y, Xie L H, Huang W. Progress in Chemistry, 2013, 25(Z1): 296.
(赵跃智, 蔡敏敏, 钱妍, 解令海, 黄维. 化学进展, 2013, 25(Z1): 296.).
[42]
Zhu W, Kang M M, Wu Q, Zhang Z J, Wu Y, Li C B, Li K, Wang L, Wang D, Tang B Z. Adv. Funct. Mater., 2021, 31(3): 11.
[43]
Wen H F, Zhang Z J, Kang M M, Li H X, Xu W H, Guo H, Li Y M, Tan Y H, Wen Z Y, Wu Q, Huang J C, Xi L, Li K, Wang L, Wang D, Tang B Z. Biomaterials, 2021, 274 : 10.
[44]
Zhang Z J, Xu W H, Kang M M, Wen H F, Guo H, Zhang P F, Xi L, Li K, Wang L, Wang D, Tang B Z. Adv. Mater., 2020, 32(36): 11.
[45]
Zhang T F, Zhang J Y, Wang F B, Cao H, Zhu D M, Chen X Y, Xu C H, Yang X Q, Huang W B, Wang Z Y, Wang J F, He Z K, Zheng Z, Lam J W Y, Tang B Z. Adv. Funct. Mater., 2022, 32 (16): 10.
[46]
Xu W H, Zhang Z J, Kang M M, Guo H, Li Y M, Wen H F, Lee M M S, Wang Z Y, Kwok R T K, Lam J W Y, Li K, Xi L, Chen S J, Wang D, Tang B Z. ACS Mater. Lett., 2020, 2(8): 1033.
[47]
Xu Y L, Zhang Y, Li J, An J S, Li C L, Bai S Y, Sharma A, Deng G Z, Kim J S, Sun Y. Biomaterials, 2020, 259 : 8.
[48]
Jiang R M, Dai J, Dong X Q, Wang Q, Meng Z J, Guo J J, Yu Y J, Wang S X, Xia F, Zhao Z J, Lou X D, Tang B Z. Adv. Mater., 2021, 33(22): 13.
[49]
Liu L Q, Wang X, Wang L J, Guo L Q, Li Y B, Bai B, Fu F, Lu H G, Zhao X W. ACS Appl. Mater. Inter., 2021, 13(17): 19668.

doi: 10.1021/acsami.1c02260
[50]
Li D, Chen X H, Wang D L, Wu H Z, Wen H F, Wang L, Jin Q, Wang D, Ji J, Tang B Z. Biomaterials, 2022, 283 : 13.
[51]
Yang G, Ni J S, Li Y X, Zha M L, Tu Y, Li K. Angew. Chem.Int. Ed., 2021, 60(10): 5386.
[52]
Qu J M, Zhang Y H, Cai Z X, Tong B, Xie H Y, Dong Y P, Shi J B. Nanoscale, 2022, 14(38): 14064.

doi: 10.1039/D2NR02273G
[1] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[2] Pengbo Han, He Xu, Zhongfu An, Zheyi Cai, Zhengxu Cai, Hui Chao, Biao Chen, Ming Chen, Yu Chen, Zhenguo Chi, Shuting Dai, Dan Ding, Yuping Dong, Zhiyuan Gao, Weijiang Guan, Zikai He, Jingjing Hu, Rong Hu, Yixiong Hu, Qiuyi Huang, Miaomiao Kang, Danxia Li, Jisen Li, Shuzhen Li, Wenlang Li, Zhen Li, Xinlin Lin, Huaying Liu, Peiying Liu, Xiaoding Lou, Chao Lu, Dongge Ma, Hanlin Ou, Juan Ouyang, Qian Peng, Jun Qian, Anjun Qin, Jiamin Qu, Jianbing Shi, Zhigang Shuai, Lihe Sun, Rui Tian, Wenjing Tian, Bin Tong, Huiliang Wang, Dong Wang, He Wang, Tao Wang, Xiao Wang, Yucheng Wang, Shuizhu Wu, Fan Xia, Yujun Xie, Kai Xiong, Bin Xu, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Zhiyong Yang, Lizhen Yuan, Wangzhang Yuan, Shuangquan Zang, Fang Zeng, Jiajie Zeng, Zhuo Zeng, Guoqing Zhang, Xiaoyan Zhang, Xuepeng Zhang, Yi Zhang, Yufan Zhang, Zhijun Zhang, Juan Zhao, Zheng Zhao, Zihao Zhao, Zujin Zhao, Ben Zhong Tang. Aggregation-Induced Emission [J]. Progress in Chemistry, 2022, 34(1): 1-130.
[3] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[4] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[5] Peng Bangyin, Xu Shidang, Chi Zhenguo, Zhang Xiqi, Zhang Yi, Xu Jiarui. Piezochromic Aggregation-Induced Emission Materials [J]. Progress in Chemistry, 2013, 25(11): 1805-1820.
[6] Xu Bin, Zhang Jibo, Ma Suqian, Chen Jinlong, Dong Yujie, Tian Wenjing*. 9,10-Distyrylanthracene Derivatives: Aggregation Induced Emission, Mechanism and Their Applications [J]. Progress in Chemistry, 2013, 25(07): 1079-1089.
[7] Zhao Yuezhi, Cai Minmin, Qian Yan*, Xie Linghai, Huang Wei*. The Systems with Aggregation Induced Emission: Compounds,Emission Mechanisms and Their Applications [J]. Progress in Chemistry, 2013, 25(0203): 296-321.
[8] Zhang Shuang, Qin Anjun, Sun Jingzhi, Tang Benzhong. Mechanism Study of Aggregation-Induced Emission [J]. Progress in Chemistry, 2011, 23(4): 623-636.
[9] Qian Lijun1 Zhi Junge2 Tong Bin1 Yang Fan1 Zhao Wei1 Dong Yuping1**. Organic Compounds with Aggregation-Induced Emission [J]. Progress in Chemistry, 2008, 20(05): 673-678.