中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (07): 1079-1089 DOI: 10.7536/PC130116 Previous Articles   Next Articles

• Review •

9,10-Distyrylanthracene Derivatives: Aggregation Induced Emission, Mechanism and Their Applications

Xu Bin, Zhang Jibo, Ma Suqian, Chen Jinlong, Dong Yujie, Tian Wenjing*   

  1. State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
  • Received: Revised: Online: Published:
PDF ( 1522 ) Cited
Export

EndNote

Ris

BibTeX

Comparing the conventional luminescent molecules, whose fluorescence is quenched once they aggregate, molecules with aggregation-induced emission properties exhibit significantly enhanced emission in solid state or aggregates due to their unique molecular structures and stacking modes, showing potential applications in optoelectronic devices, biochemical sensors and bioimaging. This paper mainly focus on the AIE properties of 9,10-distyrylanthracene (DSA) derivatives, and the AIE mechanism such as the restriction of intramolecular rotation, the twisted conformation of molecules and the packing structures. Also, the applications of DSA derivatives in solid state emitters, stimuli-responsive materials, biochemical sensors and bioimaging are introduced. Contents
1 Introduction
2 AIE molecules based on 9,10-distyrylanthracene
2.1 Small molecules
2.2 Macromolecules
3 The AIE mechanism of 9,10-distyrylanthracene based molecules
4 Applications of AIE luminogens based on 9,10-distyrylanthracene derivatives
4.1 High efficiency solid emitter
4.2 Piezallochromy
4.3 Fluorescent sensor
4.4 Bioimaging
5 Conclusion and outlook

CLC Number: 

[1] Birks J B. Photophysics of Aromatic Molecules, Wiley, 1970
[2] Jenekhe S A, Osaheni J A. Science, 1994, 265: 765-768
[3] Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C, Bradley D D C, Dos Santos D A, Bredas J L, Logdlund M, Salaneck W R. Nature, 1999, 397: 121-128
[4] 钱立军(Qian L J), 支俊格(Zhi J G), 佟斌(Tong B), 杨帆(Yang F), 赵玮(Zhao W), 董宇平(Dong Y P). 化学进展(Progress in Chemistry), 2008, 20(5): 673-678
[5] 张双(Zhang S), 秦安军(Qin A J), 孙景志(Sun J Z), 唐本忠(Tang B Z). 化学进展(Progress in Chemistry), 2011, 23(4): 623-636
[6] Borisov S M, Wolfbeis O S. Chem. Rev., 2008, 108: 423-461
[7] Chen L, Xu S, McBranch D, Whitten D. J. Am. Chem. Soc., 2000, 122: 9302-9303
[8] Taylor P N, O’Connell M J, McNeill L A, Hall M J, Aplin R T, Anderson H L. Angew. Chem. Int. Ed., 2000, 39: 3456-3460
[9] Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B Z. Chem. Commun., 2001, 1740-1741
[10] Tang B Z, Zhan X, Yu G, Lee P P S, Liu Y, Zhu D. J. Mater. Chem., 2001, 11: 2974-2978
[11] Itami K, Ohashi Y, Yoshida J I. J. Org. Chem., 2005, 70: 2778-2792
[12] Nakatsuji S, Matsuda K, Uesugi Y, Nakashima K, Akiyama S, Katzer G, Fabian W. J. Chem. Soc., 1991, 6: 861-867
[13] Kim S, Zheng Q D, He G S, Bharali D J, Pudavar H E, Baev A, Prasad P N. Adv. Funct. Mater., 2006, 16: 2317-2323
[14] He J T, Xu B, Chen F P, Xia H J, Li K, Ye L, Tian W J. J. Phys. Chem. C, 2009, 113: 9892-9899
[15] Xu B, Fang H H, Dong Y J, Chen F P, Chen Q D, Sun H B, Tian W J. New J. Chem., 2010, 34: 1838-1842
[16] Dong Y J, Xu B, Zhang J B, Lu H G, Wen S P, Chen F P, He J T, Li B, Ye L, Tian W J. CrystEngComm, 2012, 14: 6593-6598
[17] Lu H G, Xu B, Dong Y J, Chen F P, Li Y W, Li Z F, He J T, Li H, Tian W J. Langmuir, 2010, 26: 6838-6844
[18] Dong Y J, Xu B, Zhang J B, Tan X, Wang L J, Chen J L, Lu H G, Wen S P, Li B, Ye L, Zou B, Tian W J. Angew. Chem. Int. Ed., 2012, 51: 10782-1078
[19] Xu B, He J T, Dong Y J, Chen F P, Yu W L, Tian W J. Chem. Commun., 2011, 47: 6602-6604
[20] Li H Y, Zhang X Q, Chi Z G, Xu B J, Zhou W, Liu S W, Zhang Y, Xu J R. Org. Lett., 2011, 13: 556-559
[21] Zhang X Q, Chi Z G, Zhang J Y, Li H Y, Xu B J, Li X F, Liu S W, Zhang Y, Xu J R. J. Phys. Chem. B, 2011, 115: 7606-7611
[22] Xu B, Zhang J B, Fang H H, Lu H G, Chen J L, Chen F P, Dong Y J, He J T, Xia H J, Chen Q D, Sun H B, Im C, Tian W J. unpublished result
[23] Lu H G, Su F Y, Mei Q, Zhou X F, Tian Y Q, Tian W J, Johnson R H. Polym. Chem., 2012, 50: 890-899
[24] Lu H G, Su F Y, Mei Q, Tian Y Q, Tian W J, Johnsona R H, Meldruma D R. J. Mater. Chem., 2012, 22: 9890-9900
[25] Hong Y N, Lam J W Y, Tang B Z. Chem. Soc. Rev., 2011, 40: 5361-5388
[26] Hong Y N, Lam J W Y, Tang B Z. Chem. Commun., 2009, 4332-4353
[27] Thomas S. Angew. Chem. Int. Ed., 2002, 41: 48-76
[28] Katharina R, Heike I S, Jürg H. Chem. Soc. Rev., 2005, 34: 22-30
[29] Robin T, Olga K. J. Am. Chem. Soc., 1982, 104: 5063-5070
[30] Hu R R, Lager E, Aguilar-Aguilar A, Liu J Z, Lam J W Y, Sung H H Y, Williams I D, Zhong Y C, Wong K S, Peña-Cabrera E, Tang B Z. J. Phys. Chem. C, 2009, 113: 15845-15853
[31] Cornil J, Beljonne D, Calbert J, Brédas J. Adv. Mater., 2001, 13: 1053-1067
[32] Kasha M, Rawls H R, Ashraf El-Bayoumi M. Pure Appl. Chem., 1965, 11: 371-392
[33] Michael D M, Alan J. H. Adv. Mater., 2000, 12: 1655-1668
[34] Kim S, Pudavar H E, Bonoiu A, Prasad P N. Adv. Mater., 2007, 19: 3791-3795
[35] Kim S, Ohulchanskyy T Y, Pudavar H E, Pandey R K, Prasad P N. J. Am. Chem. Soc., 2007, 129: 2669-2675
[37] Davis D A, Hamilton A, Yang J, Cremar L D, Gough D V, Potisek S L, Ong M T, Braun P V, Martínez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459: 68-72
[38] Wang Z L, Xu B, Zhang Lei, Zhang J B, Ma T H, Zhang J B, Fu X Q, Tian W J. Nanoscale, 2013, 5: 2065-2072
[39] Li X, Xu B, Lu H G, Wang Z L, Zhang J B, Zhang Y, Dong Y J, Ma K, Wen S P, Tian W J. Anal. Methods, 2013, 5: 438-441
[40] Wang L J, Xu B, Zhang J B, Dong Y J, Wen S P, Zhang H Y, Tian W J. Phys. Chem. Chem. Phys., 2013, 15: 2449-2458
[41] Yuan W Z, Gong Y, Chen S, Shen X Y, Lam J W Y, Lu P, Lu Y, Wang Z, Hu R, Xie N, Kwok H S, Zhang Y, Sun J Z, Tang B Z. Chem. Mater., 2012, 24: 1518-1528

[1] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[2] Pengbo Han, He Xu, Zhongfu An, Zheyi Cai, Zhengxu Cai, Hui Chao, Biao Chen, Ming Chen, Yu Chen, Zhenguo Chi, Shuting Dai, Dan Ding, Yuping Dong, Zhiyuan Gao, Weijiang Guan, Zikai He, Jingjing Hu, Rong Hu, Yixiong Hu, Qiuyi Huang, Miaomiao Kang, Danxia Li, Jisen Li, Shuzhen Li, Wenlang Li, Zhen Li, Xinlin Lin, Huaying Liu, Peiying Liu, Xiaoding Lou, Chao Lu, Dongge Ma, Hanlin Ou, Juan Ouyang, Qian Peng, Jun Qian, Anjun Qin, Jiamin Qu, Jianbing Shi, Zhigang Shuai, Lihe Sun, Rui Tian, Wenjing Tian, Bin Tong, Huiliang Wang, Dong Wang, He Wang, Tao Wang, Xiao Wang, Yucheng Wang, Shuizhu Wu, Fan Xia, Yujun Xie, Kai Xiong, Bin Xu, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Zhiyong Yang, Lizhen Yuan, Wangzhang Yuan, Shuangquan Zang, Fang Zeng, Jiajie Zeng, Zhuo Zeng, Guoqing Zhang, Xiaoyan Zhang, Xuepeng Zhang, Yi Zhang, Yufan Zhang, Zhijun Zhang, Juan Zhao, Zheng Zhao, Zihao Zhao, Zujin Zhao, Ben Zhong Tang. Aggregation-Induced Emission [J]. Progress in Chemistry, 2022, 34(1): 1-130.
[3] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[4] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[5] Peng Bangyin, Xu Shidang, Chi Zhenguo, Zhang Xiqi, Zhang Yi, Xu Jiarui. Piezochromic Aggregation-Induced Emission Materials [J]. Progress in Chemistry, 2013, 25(11): 1805-1820.
[6] Zhao Yuezhi, Cai Minmin, Qian Yan*, Xie Linghai, Huang Wei*. The Systems with Aggregation Induced Emission: Compounds,Emission Mechanisms and Their Applications [J]. Progress in Chemistry, 2013, 25(0203): 296-321.
[7] Zhang Shuang, Qin Anjun, Sun Jingzhi, Tang Benzhong. Mechanism Study of Aggregation-Induced Emission [J]. Progress in Chemistry, 2011, 23(4): 623-636.
[8] Qian Lijun1 Zhi Junge2 Tong Bin1 Yang Fan1 Zhao Wei1 Dong Yuping1**. Organic Compounds with Aggregation-Induced Emission [J]. Progress in Chemistry, 2008, 20(05): 673-678.