中文
Announcement
More
Progress in Chemistry 2013, Vol. 25 Issue (11): 1805-1820 DOI: 10.7536/PC130329 Previous Articles   Next Articles

• Review •

Piezochromic Aggregation-Induced Emission Materials

Peng Bangyin, Xu Shidang, Chi Zhenguo*, Zhang Xiqi, Zhang Yi, Xu Jiarui*   

  1. Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Received: Revised: Online: Published:
PDF ( 1722 ) Cited
Export

EndNote

Ris

BibTeX

Piezochromic (machanochromic) luminescent materials are a class of "smart" materials with luminescent properties that change in response to external force stimuli. These materials are widely used in many fields such as mechanosensors, memory chips, security inks and optoelectronic devices, and have attracted considerable interest in recent years. However, the piezochromic luminescent materials that are dependent on changes in physical molecular packing modes are extremely rare. This rarity may be attributed to two major issues. First, a common method for piezochromic luminescent compound synthesis is not to be realized. Each identified compound is an isolated event, rendering difficulty in the identification of a general characteristic. Second, the fluorescence efficiency of organic luminescent materials often becomes very weak while in solid state because of the aggregation-caused quenching effect. Consequently, the piezochromic luminescent phenomenon becomes difficult to observe. Until the last two years, we recognized the existence of a structural relationship between the aggregation-induced emission compound and the piezochromic luminescent nature, and put forward the concept of "piezochromic aggregation-induced emission materials", many piezochromic aggregation-induced emission materials have been reported one after another. Aggregation-induced emission compounds can be expected to become an important source of piezochromic luminescent materials, and in other words piezochromic luminescent materials would no longer be rare in the future. In this review, recent progress in the area of piezochromic aggregation-induced emission materials is summarized, and majority of the reported piezochromic aggregation-induced emission systems are discussed, including concept, mechanism, structure-property relationship, application, and so on.

Contents
1 Introduction
2 Piezochromic aggregation-induced emission (PAIE) concept and mechanism
3 Relationship between crystallinity and piezo-chromism
4 Relationship between alkyl (alkoxy) length and piezochromism
5 PAIE metal complexes
6 PAIE ionic compound
7 Applications of PAIE materials
7.1 Stress sensors
7.2 Anti-counterfeiting
7.3 Optical data recording and storage
7.4 Ink-free environment-friendly paper
7.5 Luminescent device
7.6 Other sensors
8 Conclusion and outlook

CLC Number: 

[1] Sagara Y, Kato T. Nat. Chem., 2009, 1: 605—610
[2] Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J. Chem. Soc. Rev., 2012, 41: 3878—3896
[3] Schönberg A, Elkaschef M, Nosseir M, Sidky M M. J. Am. Chem. Soc., 1958, 80: 6312—6315
[4] Pucci A, Cuia F D, Signori F, Ruggeri G. J. Mater. Chem., 2007, 17: 783—790
[5] Dong Y, Lam J W Y, Qin A, Liu J, Li Z, Tang B, Sun J, Kwok H S. Appl. Phys. Lett., 2007, 91: art. no. 011111
[6] Ning Z, Chen Z, Zhang Q, Yan Y, Qian S, Cao Y, Tian H. Adv. Funct. Mater., 2007, 17: 3799—3807
[7] Crenshaw B R, Burnworth M, Khariwala D, Hiltner A, Mather P T, Simha R, Weder C. Macromolecules, 2007, 40: 2400—2408
[8] Kinami M, Crenshaw B R, Weder C. Chem. Mater., 2006, 18: 946—955
[9] Toal S J, Jones K A, Magde D, Trogler W C. J. Am. Chem. Soc., 2005, 127: 11661—11665
[10] Hirata S, Watanabe T. Adv. Mater., 2006, 18: 2725—2729
[11] Lim S J, An B K, Jung S D, Chung M A, Park S Y. Angew. Chem. Int. Ed., 2004, 43: 6346—6350
[12] Olson C E, Previte M J R, Fourkas J T. Nat. Mater., 2002, 1: 225—228
[13] Irie M, Fukaminato T, Sasaki T, Tamai N, Kawai T. Nature, 2002, 420: 759—760
[14] Kishimura A, Yamashita T, Yamaguchi K, Aida T. Nat. Mater., 2005, 4: 546—549
[15] Davis D A, Hamilton A, Yang J, Cremar L D, van Gough D, Potisek S L, Ong M T, Braun P V, Martínez T J, White S R, Moore J S, Sottos N R. Nature, 2009, 459: 68—72
[16] Lwe C, Weder C. Adv. Mater., 2002, 14: 1625—1629
[17] Ito H, Saito T, Oshima N, Kitamura N, Ishizaka S, Hinatsu Y, Wakeshima M, Kato M, Tsuge K, Sawamura M. J. Am. Chem. Soc., 2008, 130: 10044—10045
[18] Sagara Y, Mutai T, Yoshikawa I, Araki K. J. Am. Chem. Soc., 2007, 129: 1520—1521
[19] Birks J B. Photophysics of Aromatic Molecules. New York: Wiley, 1970
[20] Turro N J, Ramamurthy V, Scaiano J C. Modern Molecular Photochemistry of Organic Molecules. Sausalito, CA: University Science Books, 2010
[21] Luo J, Xie Z, Lam J W Y, Cheng L, Chen H, Qiu C, Kwok H S, Zhan X, Liu Y, Zhu D, Tang B. Chem. Commun., 2001, 1740—1741
[22] Hong Y, Lam J W Y, Tang B. Chem. Commun., 2009, 4332—4353
[23] Hong Y, Lam J W Y, Tang B. Chem. Soc. Rev., 2011, 40: 5361—5388
[24] Li X, Chi Z, Xu B, Li H, Zhang X, Zhou W, Zhang Y, Liu S, Xu J. J. Fluoresc., 2011, 21: 1969—1977
[25] Zhang X, Yang Z, Chi Z, Chen M, Xu B, Wang C, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2010, 20: 292—298
[26] An B K, Lee D S, Lee J S, Park Y S, Song H S, Park S Y. J. Am. Chem. Soc., 2004, 126: 10232—10233
[27] Li H, Chi Z, Xu B, Zhang X, Yang Z, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2010, 20: 6103—6010
[28] Zhang X, Chi Z, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2011, 21: 1788—1796
[29] Yang Z, Chi Z, Xu B, Li H, Zhang X, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2010, 20: 7352—7359
[30] Xu B, Chi Z, Yang Z, Chen J, Deng S, Li H, Li X, Zhang Y, Xu N, Xu J. J. Mater. Chem., 2010, 20: 4135—4141
[31] Li H, Chi Z, Zhang X, Xu B, Liu S, Zhang Y, Xu J. Chem. Commun., 2011, 47: 11273—11275
[32] Li X, Zhang X, Chi Z, Chao X, Zhou X, Zhang Y, Liu S, Xu J. Anal. Methods, 2012, 4: 3338—3343
[33] Zhang X, Chi Z, Xu B, Li H, Yang Z, Li X, Liu S, Zhang Y, Xu J. Dyes Pigments, 2011, 89: 56—62
[34] Xu B, Chi Z, Li X, Li H, Zhou W, Zhang X, Wang C, Zhang Y, Liu S, Xu J. J. Fluoresc., 2011, 21: 433—441
[35] Yang Z, Chi Z, Yu T, Zhang X, Chen M, Xu B, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2009, 19: 5541—5546
[36] 钱立军(Qian L J), 佟斌(Tong B), 支俊格(Zhi J G), 杨帆(Yang F), 申进波(Shen J B), 石建兵(Shi J B), 董宇平(Dong Y P). 化学学报(Acta Chimica Sinica), 2008, 66: 1134—1138
[37] 薛云娜(Xue Y N), 柴生勇(Chai S Y), 别国军(Bie G J), 刘波(Liu B), 甘宁(Gan N). 化学学报(Acta Chimica Sinica ), 2008, 66: 1577—1582
[38] Dong Y, Lam J W Y, Li Z, Qin A, Tong H, Dong Y, Feng X, Tang B. J. Inorg. Organomet. Polym. Mater., 2005, 15: 287—291
[39] Dong Y, Lam J W Y, Qin A, Li Z, Sun J, Sung H H Y, Williams I D, Tang B. Chem. Commun., 2007, 40—42
[40] Fan X, Sun J, Wang F, Chu Z, Wang P, Dong Y, Hu R, Tang B, Zou D. Chem. Commun., 2008, 2989—2991
[41] Yoon S J, Chung J W, Gierschner J, Kim K S, Choi M G, Kim D, Park S Y. J. Am. Chem. Soc., 2010, 132: 13675—13683
[42] Xu B, Chi Z, Zhang J, Zhang X, Li H, Li X, Liu S, Zhang Y, Xu J. Chem. Asian J., 2011, 6: 1470—1478
[43] Zhang X, Chi Z, Zhang J, Li H, Xu B, Li X, Liu S, Zhang Y, Xu J. J. Phys. Chem. B, 2011, 115: 7606—7611
[44] Zhou X, Li H, Chi Z, Zhang X, Zhang J, Xu B, Zhang Y, Liu S, Xu J. New. J. Chem., 2012, 36: 685—693
[45] Mei J, Wang J, Qin A, Zhao H, Yuan W, Zhao Z, Sung H H Y, Deng C, Zhang S, Williams I D, Sun J, Tang B. J. Mater. Chem., 2012, 22: 4290—4298
[46] Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B, Tian W. Angew. Chem. In. Ed., 2012, 51: 10782—10785
[47] Zhang Y, Sun J, Bian G, Chen Y, Ouyang M, Hu B, Zhang C. Photochem. Photobiol. Sci., 2012, 11: 1414—1421
[48] Li H, Zhang X, Chi Z, Xu B, Zhou W, Liu S, Zhang Y, Xu J. Org. Lett., 2011, 13: 556—559
[49] Li H, Chi Z, Xu B, Zhang X, Li X, Liu S, Zhang Y, Xu J. J. Mater. Chem., 2011, 21: 3760—3767
[50] Wang J, Mei J, Hu R, Sun J, Qin A, Tang B. J. Am. Chem. Soc., 2012, 134: 9956—9966
[51] Luo X, Li J, Li C, Heng L, Dong Y, Liu Z, Bo Z, Tang B. Adv. Mater., 2011, 23: 3261—3265
[52] Luo X, Zhao W, Shi J, Li C, Liu Z, Bo Z, Dong Y, Tang B. J. Phys. Chem. C, 2012, 116: 21967—21972
[53] Shi J, Chang N, Li C, Mei J, Deng C, Luo X, Liu Z, Bo Z, Dong Y, Tang B. Chem. Commun., 2012, 48: 10675—10677
[54] Zhang X, Chi Z, Zhou X, Liu S, Zhang Y, Xu J. J. Phys. Chem. C, 2012, 116: 23629—23638
[55] Zhang X, Chi Z, Xu B, Chen C, Zhou X, Zhang Y, Liu S, Xu J. J. Mater. Chem., 2012, 22: 18505—18513
[56] Zhang X, Chi Z, Xu B, Jiang L, Zhou X, Zhang Y, Liu S, Xu J. Chem. Commun., 2012, 48: 10895—10897
[57] Wang Y, Liu W, Bu L, Li J, Zheng M, Zhang D, Sun M, Tao Y, Xue S, Yang W. J. Mater. Chem. C, 2013, 1: 856—862
[58] Bu L, Sun M, Zhang D, Liu W, Wang Y, Zheng M, Xue S, Yang W. J. Mater. Chem. C, 2013, 1: 2028—2035
[59] Xu B, Chi Z, Zhang X, Li H, Chen C, Liu S, Zhang Y, Xu J. Chem. Commun., 2011, 47: 11080—11082
[60] Shan G, Li H, Qin J, Zhu D, Liao Y, Su Z. Dalton Trans., 2012, 41: 9590—9593
[61] Shan G, Li H, Sun H, Zhu D, Cao H, Su Z. J. Mater. Chem. C, 2013, 1: 1440—1449
[62] Zhao N, Yang Z, Lam J W Y, Sung H H Y, Xie N, Chen S, Su H, Gao M, Williams I D, Wong K, Tang B. Chem. Commun., 2012, 48: 8637—8639
[63] Ren Y, Kan W H, Henderson M A, Bomben P G, Berlinguette C P, Thangadurai V, Baumgartner T. J. Am. Chem. Soc., 2011, 133: 17014—17026
[64] Ren Y, Baumgartner T. Inorg. Chem., 2012, 51: 2669—2678
[65] Qi Q, Liu Y, Fang X, Zhang Y, Chen P, Wang Y, Yang B, Xu B, Tian W, Zhang S. RSC Adv., 2013, 3: 7996—8002
[66] 滕明俊(Teng M J), 贾欣茹(Jiu X R). CN 103030681A, 2011
[67] 池振国(Chi Z G), 何克强(He K Q), 李海银(Li H Y), 张锡奇(Zhang X Q), 许炳佳(Xu B J), 刘四委(Liu S W), 张艺(Zhang Y), 许家瑞(Xu J R). 高等学校化学学报(Chem. J. Chin. Univ. ), 2012, 33: 725—731
[68] Dou C, Han L, Zhao S, Zhang H, Wang Y. J. Phys. Chem. Lett., 2011, 2: 666—670

[1] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[2] Pengbo Han, He Xu, Zhongfu An, Zheyi Cai, Zhengxu Cai, Hui Chao, Biao Chen, Ming Chen, Yu Chen, Zhenguo Chi, Shuting Dai, Dan Ding, Yuping Dong, Zhiyuan Gao, Weijiang Guan, Zikai He, Jingjing Hu, Rong Hu, Yixiong Hu, Qiuyi Huang, Miaomiao Kang, Danxia Li, Jisen Li, Shuzhen Li, Wenlang Li, Zhen Li, Xinlin Lin, Huaying Liu, Peiying Liu, Xiaoding Lou, Chao Lu, Dongge Ma, Hanlin Ou, Juan Ouyang, Qian Peng, Jun Qian, Anjun Qin, Jiamin Qu, Jianbing Shi, Zhigang Shuai, Lihe Sun, Rui Tian, Wenjing Tian, Bin Tong, Huiliang Wang, Dong Wang, He Wang, Tao Wang, Xiao Wang, Yucheng Wang, Shuizhu Wu, Fan Xia, Yujun Xie, Kai Xiong, Bin Xu, Dongpeng Yan, Haibo Yang, Qingzheng Yang, Zhiyong Yang, Lizhen Yuan, Wangzhang Yuan, Shuangquan Zang, Fang Zeng, Jiajie Zeng, Zhuo Zeng, Guoqing Zhang, Xiaoyan Zhang, Xuepeng Zhang, Yi Zhang, Yufan Zhang, Zhijun Zhang, Juan Zhao, Zheng Zhao, Zihao Zhao, Zujin Zhao, Ben Zhong Tang. Aggregation-Induced Emission [J]. Progress in Chemistry, 2022, 34(1): 1-130.
[3] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[4] Yawen Li, Wantong Ao, Huilin Jin, Liping Cao. Aggregation-Induced Emission of Tetraphenylethene Derivatives with Macrocycles via Host-Guest Interactions [J]. Progress in Chemistry, 2019, 31(1): 121-134.
[5] Xu Bin, Zhang Jibo, Ma Suqian, Chen Jinlong, Dong Yujie, Tian Wenjing*. 9,10-Distyrylanthracene Derivatives: Aggregation Induced Emission, Mechanism and Their Applications [J]. Progress in Chemistry, 2013, 25(07): 1079-1089.
[6] Zhao Yuezhi, Cai Minmin, Qian Yan*, Xie Linghai, Huang Wei*. The Systems with Aggregation Induced Emission: Compounds,Emission Mechanisms and Their Applications [J]. Progress in Chemistry, 2013, 25(0203): 296-321.
[7] Zhang Shuang, Qin Anjun, Sun Jingzhi, Tang Benzhong. Mechanism Study of Aggregation-Induced Emission [J]. Progress in Chemistry, 2011, 23(4): 623-636.
[8] Qian Lijun1 Zhi Junge2 Tong Bin1 Yang Fan1 Zhao Wei1 Dong Yuping1**. Organic Compounds with Aggregation-Induced Emission [J]. Progress in Chemistry, 2008, 20(05): 673-678.