中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (7): 1018-1029 DOI: 10.7536/PC221203 Previous Articles   Next Articles

• Review •

Interactions Between Humic Acid and Co-Existing Substances in Aquatic Environments

Chundi Zhou1, Minghao Sui1,2()   

  1. 1 State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University,Shanghai 200092, China
    2 Shanghai Institute of Pollution Control and Ecological Security,Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Contact: * e-mail: suiminghao.sui@gmail.com
  • Supported by:
    National Key R&D Program of China(2019YFC0408801)
Richhtml ( 36 ) PDF ( 251 ) Cited
Export

EndNote

Ris

BibTeX

Humic acid (HA) has attracted significant attention in the field of environmental remediation due to its occurrence characteristics and unique chemical reactivity. It is worth noting that in co-existing reaction systems, HA inevitably interacts with co-existing substances, making the reaction system complex and leading to unexpected results. Therefore, studying the interaction between HA and co-existing substances is of great significance for a correct understanding of the complexity of environmental water pollution and the development of new environmental functional materials with cooperative treatment of co-existing substances. This article reviews the synergistic/antagonistic removal effects of target pollutants in co-existing pollution systems involving HA, including inorganic co-existing pollutant systems, organic co-existing pollutant systems, and microbial co-existing systems. Based on the structural characteristics and physicochemical properties of HA itself, the interaction mechanisms between HA and co-existing pollutants are systematically analyzed. These mechanisms mainly involve coordination, electrostatic interactions, adsorption, hydrophobic interactions, π-π interactions, and oxidation-reduction reaction (REDOX). Finally, the challenges and future research directions for the removal of target pollutants by HA in co-existing pollution systems are discussed.

Contents

1 Introduction

2 Removal of target contaminant in different co-existing systems

2.1 HA with co-inorganic contaminant system

2.2 HA with co-organic contaminant system

2.3 HA with co-microbial system

2.4 Quantitative comparison of the removal effectiveness in HA co-existing contaminant systems

3 Interaction mechanisms between HA and co-existing contaminant

3.1 HA with co-inorganic contaminant system

3.2 HA with co-organic contaminant system

3.3 HA with co-microbial system

3.4 Characteristics of interaction mechanism in HA co-existing contaminant systems

4 Conclusion and Outlook

Fig.1 Structural units and functional groups of HA[8] Copyright 2011, Springer Nature
Fig.2 The removal synergistic or antagonistic effect of contaminants with HA in co-existing system
Table 1 Standard redox potential of heavy metal ions
Fig.3 The possible mechanism of high-dispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal[70]. Copyright 2019, Elsevier
Fig.4 The possible mechanism of transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions[92]. Copyright 2019, Elsevier
Fig.5 Schematic diagram of the possible mechanism of HA affecting the adsorption of THIA on MPFs[101]. Copyright 2022, Elsevier
Fig.6 Potential mechanism of Gt-HA promoted Fenton-like degradation of SA[61]. Copyright 2020, Elsevier
[1]
Xie L, Lu Q Y, Mao X H, Wang J Y, Han L B, Hu J Q, Lu Q Y, Wang Y X, Zeng H B. Water Res., 2020, 176: 115766.

doi: 10.1016/j.watres.2020.115766
[2]
Ebrahimi A, Hajian M, Pourzamani H, Esmaeili H. Int. J. Environ. Health Eng., 2012, 1(1): 33.

doi: 10.4103/2277-9183.100133
[3]
Wang X M, Deng F, Cheng H J, Ning S Z, Li B Q, Pan S D, Yin X B. Energies, 2022, 15(19): 7362.

doi: 10.3390/en15197362
[4]
Li S X, Tong Y B, Dong H Y, Lu J J, Niu J F. J. Hazard. Mater., 2022, 427: 128166.

doi: 10.1016/j.jhazmat.2021.128166
[5]
Cornelis G, DooletteMadeleine Thomas C, McLaughlin M J, Kirby J K, Beak D G, Chittleborough D. Soil Sci. Soc. Am. J., 2012, 76(3): 891.

doi: 10.2136/sssaj2011.0360
[6]
Zhang T Y, Lu D W, Zeng L X, Yin Y G, He Y J, Liu Q, Jiang G B. Environ. Sci. Technol., 2017, 51(24): 14164.

doi: 10.1021/acs.est.7b04115
[7]
Sinsabaugh R L. Soil Biol. Biochem., 2010, 42(3): 391.

doi: 10.1016/j.soilbio.2009.10.014
[8]
Sachs S, Bernhard G. J. Radioanal. Nucl. Chem., 2011, 290(1): 17.

doi: 10.1007/s10967-011-1084-0
[9]
Gao Z C, Lin Y L, Xu B, Xia Y, Hu C Y, Zhang T Y, Cao T C, Chu W H, Gao N Y. Water Res., 2019, 154: 199.

doi: 10.1016/j.watres.2019.02.004
[10]
Gao Z C, Lin Y L, Xu B, Xia Y, Hu C Y, Zhang T Y, Qian H, Cao T C, Gao N Y. Water Res., 2020, 182: 116035.

doi: 10.1016/j.watres.2020.116035
[11]
Huang T T, Deng L, Wang T, Liao X Y, Hu J, Tan C Q, Singh R P. Water Res., 2022, 225: 119175.

doi: 10.1016/j.watres.2022.119175
[12]
Yu Z F, He P J, Shao L M, Zhang H, Lü F. Water Res., 2016, 106: 583.

doi: 10.1016/j.watres.2016.10.042
[13]
Tang Y F, Li X W, Dong B, Huang J J, Wei Y H, Dai X H, Dai L L. Water Res., 2018, 143: 436.

doi: 10.1016/j.watres.2018.07.003
[14]
Guo X T, Tu B, Ge J H, Yang C, Song X M, Dang Z. J. Environ. Sci., 2016, 43: 208.

doi: 10.1016/j.jes.2015.10.020
[15]
Jia Y M, Zhao T K, Zhao N, Wei H, Zhang W H, Qiu R L. Chemosphere, 2019, 225: 174.

doi: 10.1016/j.chemosphere.2019.03.029
[16]
Kraiem K, Wahab A M, Kallali H, Fra-vazquez A, Pedrouso A, Mosquera-Corral A, Jedidi N. Environ. Sci. Pollut. Res., 2019, 26: 19012.

doi: 10.1007/s11356-018-2786-4
[17]
Xie L, Shang C. Environ. Sci. Technol., 2005, 39(4): 1092.

pmid: 15773482
[18]
Zhang W W, He Y C, Li C, Hu X X, Yang S, You X Y, Liang W Y. Appl. Catal. B Environ., 2021, 285: 119848.

doi: 10.1016/j.apcatb.2020.119848
[19]
Qin H J, Yin D Q, Bandstra J Z, Sun Y K, Cao G M, Guan X H. J. Hazard. Mater., 2020, 383: 121218.

doi: 10.1016/j.jhazmat.2019.121218
[20]
Cao T T, Xu T F, Zhao M N, Xu J, Cui C W. J. Hazard. Mater., 2020, 384: 121464.

doi: 10.1016/j.jhazmat.2019.121464
[21]
Tsang D C W, Graham N J D, Irene M C L O. Chemosphere, 2009, 75(10): 1338.

doi: 10.1016/j.chemosphere.2009.02.058
[22]
Liu T Z, Tsang D C W, Lo I M C. Environ. Sci. Technol., 2008, 42(6): 2092.

doi: 10.1021/es072059c
[23]
Xu J L, Fan X S, Huang F D, Li X M. J. Hazard. Mater., 2017, 322: 516.

doi: 10.1016/j.jhazmat.2016.10.018
[24]
Feng H J, Hu L F, Mahmood Q, Long Y, Shen D S. Biochem. Eng. J., 2008, 39(3): 478.

doi: 10.1016/j.bej.2007.11.004
[25]
Wang J C, Li H X, Yue D B. J. Hazard. Mater., 2022, 424: 127643.

doi: 10.1016/j.jhazmat.2021.127643
[26]
Wu Y, Liu Z, Yang G X, Yang P, Peng Y P, Chen C, Xue F L, Liu T, Liu H L, Liu S Q. Ecotoxicol. Environ. Saf., 2022, 244: 114026.

doi: 10.1016/j.ecoenv.2022.114026
[27]
Yang R, Li Z W, Huang B, Luo N L, Huang M, Wen J J, Zhang Q, Zhai X Q, Zeng G M. Chemosphere, 2018, 197: 291.

doi: S0045-6535(18)30050-X pmid: 29353679
[28]
Liu H T, Gu X Y, Wei C H, Fu H Y, Alvarez P J J, Li Q L, Zheng S R, Qu X L, Zhu D Q. Environ. Sci. Technol., 2018, 52(7): 4040.

doi: 10.1021/acs.est.7b05645
[29]
Du H H, Peacock C L, Chen W L, Huang Q Y. Chemosphere, 2018, 207: 404.

doi: 10.1016/j.chemosphere.2018.05.092
[30]
Qu C C, Chen J Z, Mortimer M, Wu Y C, Cai P, Huang Q Y. J. Hazard. Mater., 2022, 430: 128365.

doi: 10.1016/j.jhazmat.2022.128365
[31]
Saito T, Koopal L K, van Riemsdijk W H, Nagasaki S, Tanaka S. Langmuir, 2004, 20(3): 689.

doi: 10.1021/la034806z
[32]
Wang H, Zhang J, Zhu J Q, Chang J J, Wang N, Chen H H. J. Hazard. Mater., 2021, 409: 124529.

doi: 10.1016/j.jhazmat.2020.124529
[33]
Hajdú A, IllÉs E, Tombácza E, Borbáthb I. Colloids Surf. A Physicochem. Eng. Asp., 2009, 347: 104.

doi: 10.1016/j.colsurfa.2008.12.039
[34]
Weng L P, Van Riemsdijk W H, Hiemstra T. Environ. Sci. Technol., 2009, 43(19): 7198.

doi: 10.1021/es9000196
[35]
Mak M S H, Rao P H, Lo I M C. Water Res., 2009, 43(17): 4296.

doi: 10.1016/j.watres.2009.06.022
[36]
Li X D, Wu B, Zhang Q, Liu Y Q, Wang J Q, Li F S, Ma F J, Gu Q B. J. Hazard. Mater., 2020, 399: 123071.

doi: 10.1016/j.jhazmat.2020.123071
[37]
Tratnyek P G, Scherer M M, Deng B L, Hu S D. Water Res., 2001, 35(18): 4435.

pmid: 11763046
[38]
Fang G D, Gao J, Dionysiou D D, Liu C, Zhou D M. Environ. Sci. Technol., 2013, 47(9): 4605.

doi: 10.1021/es400262n
[39]
Li R B, Kong J, Liu H J, Chen P, Liu G G, Li F H, Lv W Y. RSC Adv., 2017, 7(37): 22802.

doi: 10.1039/C7RA03364H
[40]
Moncayo-Lasso A, Sanabria J, Pulgarin C, Benítez N. Chemosphere, 2009, 77(2): 296.

doi: 10.1016/j.chemosphere.2009.07.007 pmid: 19716153
[41]
Spuhler D, AndrÉs Rengifo-Herrera J, Pulgarin C. Appl. Catal. B Environ., 2010, 96(1/2): 126.

doi: 10.1016/j.apcatb.2010.02.010
[42]
Drosos M, Ren M J, Frimmel F H. Appl. Catal. B Environ., 2015, 165: 328.

doi: 10.1016/j.apcatb.2014.10.017
[43]
Uyguner-Demirel C S, Birben N C, Bekbolet M. Catal. Today, 2017, 284: 202.

doi: 10.1016/j.cattod.2016.12.030
[44]
Ortega-GÓmez E, García B E, Martín M B, Ibáñez P F, PÉrez J S. Water Res., 2014, 63: 316.

doi: 10.1016/j.watres.2014.05.034 pmid: 25078303
[45]
Moncayo-Lasso A, Mora-Arismendi L E, Rengifo-Herrera J A, Sanabria J, Benítez N, Pulgarin C. Photochem. Photobiol. Sci., 2012, 11(5): 821.

doi: 10.1039/c2pp05290c
[46]
Zhang J, Wang C, Huang N N, Xiang M H, Jin L D, Yang Z Y, Li S Y, Lu Z, Shi C L, Cheng B, Xie H J, Li H. J. Hazard. Mater., 2022, 434: 128913.

doi: 10.1016/j.jhazmat.2022.128913
[47]
Carlos L, Mártire D O, Gonzalez M C, Gomis J, Bernabeu A, Amat A M, Arques A. Water Res., 2012, 46(15): 4732.

doi: 10.1016/j.watres.2012.06.022
[48]
Porras J, Bedoya C, Silva-Agredo J, Santamaría A, Fernández J J, Torres-Palma R A. Water Res., 2016, 94: 1.

doi: 10.1016/j.watres.2016.02.024
[49]
Hu L H, Flanders P M, Miller P L, Strathmann T J. Water Res., 2007, 41(12): 2612.

doi: 10.1016/j.watres.2007.02.026
[50]
Niu H Y, Zhang D, Zhang S X, Zhang X L, Meng Z F, Cai Y Q. J. Hazard. Mater., 2011, 190(1/3): 559.

doi: 10.1016/j.jhazmat.2011.03.086
[51]
Li X D, Wu B, Zhang Q, Xu D P, Liu Y Q, Ma F J, Gu Q B, Li F S. Chem. Eng. J., 2019, 378: 122142.

doi: 10.1016/j.cej.2019.122142
[52]
Lin Z R, Zhao L, Dong Y H. Chem. Eng. J., 2017, 326: 201.

doi: 10.1016/j.cej.2017.05.112
[53]
Kim I, Kim H D, Jeong T Y, Don Kim S. Water Sci. Technol., 2016, 74(4): 904.

doi: 10.2166/wst.2016.270
[54]
Ding T D, Lin K D, Bao L J, Yang M T, Li J Y, Yang B, Gan J. Environ. Pollut., 2018, 234: 231.

doi: 10.1016/j.envpol.2017.11.051
[55]
Guo J H, Yan C Z, Luo Z X, Fang H D, Hu S G, Cao Y L. J. Environ. Sci., 2019, 85: 168.

doi: 10.1016/j.jes.2019.06.004
[56]
Piepenbrock A, Schröder C, Kappler A. Environ. Sci. Technol., 2014, 48(3): 1656.

doi: 10.1021/es404497h pmid: 24400782
[57]
Kraiem K, Ali Wahab M, Kallali H, Fra-vazquez A, Pedrouso A, Mosquera-Corral A, Jedidi N. Environ. Sci. Pollut. Res., 2019, 26(19): 19012.

doi: 10.1007/s11356-018-2786-4
[58]
Du Y X, Zhang Q Y, Liu Z W, He H, Lürling M, Chen M S, Zhang Y L. Environ. Pollut., 2019, 248: 36.

doi: 10.1016/j.envpol.2019.02.002
[59]
Erhayem M, Sohn M. Sci. Total Environ., 2014, 470/471: 92.

doi: 10.1016/j.scitotenv.2013.09.063
[60]
Du Q, Zhang S S, Song J P, Zhao Y, Yang F. J. Hazard. Mater., 2020, 389: 122115.

doi: 10.1016/j.jhazmat.2020.122115
[61]
Yu H L, Liu G F, Jin R F, Zhou J T. J. Hazard. Mater., 2021, 403: 124026.

doi: 10.1016/j.jhazmat.2020.124026
[62]
Guo P, Zhang C F, Wang Y, Yu X W, Zhang Z C, Zhang D D. Environ. Pollut., 2018, 234: 107.

doi: 10.1016/j.envpol.2017.10.106
[63]
Porras J, Fernández J J, Torres-Palma R A, Richard C. Environ. Sci. Technol., 2014, 48(4): 2218.

doi: 10.1021/es404240x
[64]
Wu S S, Yang T, Mai J M, Tang L Y, Liang P, Zhu M Y, Huang C, Li Q H, Cheng X X, Liu M C, Ma J. J. Hazard. Mater., 2022, 422: 126820.

doi: 10.1016/j.jhazmat.2021.126820
[65]
Lin J W, Zhan Y H. Chem. Eng. J., 2012, 200/202: 202.

doi: 10.1016/j.cej.2012.06.039
[66]
Zhao Q, Saito T, Miyakawa K, Sasamoto H, Kobayashi T, Sasaki T. J. Hazard. Mater., 2022, 428: 128211.

doi: 10.1016/j.jhazmat.2021.128211
[67]
Li J H, Ding Y, Shi Z Q. ACS Earth Space Chem., 2021, 5(6): 1535.

doi: 10.1021/acsearthspacechem.1c00069
[68]
Wen S L, Lu Y H, Luo C Y, An S L, Dai J R, Liu Z W, Zhong J C, Du Y X. J. Hazard. Mater., 2022, 433: 128791.

doi: 10.1016/j.jhazmat.2022.128791
[69]
Piri M, Sepehr E, Rengel Z. Geoderma, 2019, 341: 39.

doi: 10.1016/j.geoderma.2018.12.027
[70]
Du Q, Li G X, Zhang S S, Song J P zhao Y, Yang F. J. Hazard. Mater., 2020, 383: 121170.

doi: 10.1016/j.jhazmat.2019.121170
[71]
Dong B, Liu X G, Dai L L, Dai X H. Bioresour. Technol., 2013, 131: 152.

doi: 10.1016/j.biortech.2012.12.112
[72]
Qu C C, Chen W L, Fein J B, Cai P, Huang Q Y. J. Hazard. Mater., 2021, 405: 124081.

doi: 10.1016/j.jhazmat.2020.124081
[73]
Qu C C, Fein J B, Chen W L, Ma M K, Cai P, Huang Q Y. J. Hazard. Mater., 2021, 420: 126603.

doi: 10.1016/j.jhazmat.2021.126603
[74]
Wang S, Zheng K, Li H P, Feng X N, Wang L Y, Liu Q Y. Water Res., 2021, 194: 116917.

doi: 10.1016/j.watres.2021.116917
[75]
Fakour H, Lin T F. J. Hazard. Mater., 2014, 279: 569.

doi: 10.1016/j.jhazmat.2014.07.039 pmid: 25108831
[76]
Rao P H, Mak M S H, Liu T Z, Lai K C K, Lo I M C. Chemosphere, 2009, 75(2): 156.

doi: 10.1016/j.chemosphere.2008.12.019
[77]
Liu G L, Fernandez A, Cai Y. Environ. Sci. Technol., 2011, 45(8): 3210.

doi: 10.1021/es102931p
[78]
Wang S L, Mulligan C N. Environ. Geochem. Health, 2006, 28(3): 197.

doi: 10.1007/s10653-005-9032-y
[79]
Velo-Gala I, LÓpez-Peñalver J J, Sánchez-Polo M, Rivera-Utrilla J. Chem. Eng. J., 2012, 195/196: 369.

doi: 10.1016/j.cej.2012.04.046
[80]
Zhao Q, Kobayashi T, Saito T, Sasaki T. J. Hazard. Mater., 2021, 411: 125071.

doi: 10.1016/j.jhazmat.2021.125071
[81]
Marsac R, Catrouillet C, Davranche M, Bouhnik-Le Coz M, Briant N, Janot N, Otero-Fariña A, Groenenberg J E, PÉdrot M, Dia A. Chem. Geol., 2021, 567: 120099.

doi: 10.1016/j.chemgeo.2021.120099
[82]
Pourret O, Houben D. Heliyon, 2018, 4(2): e00543.

doi: 10.1016/j.heliyon.2018.e00543
[83]
Chen Y, Fabbricino M, Benedetti M F, Korshin G V. Water Res., 2015, 68: 273.

pmid: 25462735
[84]
Marsac R, Davranche M, Morin G, Takahashi Y, Gruau G, Briant N, Dia A. Chem. Geol., 2015, 396: 218.

doi: 10.1016/j.chemgeo.2014.12.024
[85]
Marsac R, Banik N L, Lützenkirchen J, Catrouillet C, Marquardt C M, Johannesson K H. Appl. Geochem., 2017, 79: 52.

doi: 10.1016/j.apgeochem.2017.02.004
[86]
Jin J, Sun K, Yang Y, Wang Z Y, Han L F, Wang X K, Wu F C, Xing B S. Environ. Sci. Technol., 2018, 52(4): 1880.

doi: 10.1021/acs.est.7b04999
[87]
Song J N, Jin P K, Jin X, Wang X C. Water Res., 2019, 148: 106.

doi: 10.1016/j.watres.2018.10.039
[88]
Chen W, Qian C, Liu X Y, Yu H Q. Environ. Sci. Technol., 2014, 48(19): 11119.

doi: 10.1021/es502502n pmid: 25222835
[89]
Sharma V K, Sayes C M, Guo B L, Pillai S, Parsons J G, Wang C Y, Yan B, Ma X M. Sci. Total Environ., 2019, 653: 1042.

doi: 10.1016/j.scitotenv.2018.10.411
[90]
Dong B, Liu G F, Zhou J T, Wang J, Jin R F, Zhang Y. J. Hazard. Mater., 2020, 385: 121597.

doi: 10.1016/j.jhazmat.2019.121597
[91]
Lu L, Wang J, Chen B L. Environ. Pollut., 2018, 232: 505.

doi: 10.1016/j.envpol.2017.09.078
[92]
Dong B, Liu G F, Zhou J T, Wang J, Jin R F. J. Hazard. Mater., 2020, 383: 121190.

doi: 10.1016/j.jhazmat.2019.121190
[93]
Plaschke M, Rothe J, Armbruster M K, Denecke M A, Naber A, Geckeis H. J. Synchrotron Radiat., 2010, 17(2): 158.

doi: 10.1107/S0909049509048742 pmid: 20157266
[94]
Orsi M. Chem. Biol. Technol. Agric., 2014, 1(1): 1.

doi: 10.1186/2196-5641-1-1
[95]
Xie X Y, Guo H G, Yan M Q, Korshin G. Chemosphere, 2019, 236: 124272.

doi: 10.1016/j.chemosphere.2019.07.003
[96]
Yang B, Wang C J, Cheng X, Zhang Y L, Li W, Wang J Q, Tian Z X, Chu W H, Korshin G V, Guo H G. Water Res., 2021, 202: 117379.

doi: 10.1016/j.watres.2021.117379
[97]
Abdurahman A, Cui K Y, Wu J, Li S C, Gao R, Dai J, Liang W Q, Zeng F. Ecotoxicol. Environ. Saf., 2020, 198: 110658.

doi: 10.1016/j.ecoenv.2020.110658
[98]
Xiang Y J, Jiang L, Zhou Y Y, Luo Z R, Zhi D, Yang J, Lam S S. J. Hazard. Mater., 2022, 422: 126843.

doi: 10.1016/j.jhazmat.2021.126843
[99]
Chen W, Ouyang Z Y, Qian C, Yu H Q. Environ. Pollut., 2018, 233: 1.

doi: S0269-7491(17)32767-7 pmid: 29049941
[100]
Zhu Y F, Li X X, Wang L P, Hui N, Ma J, Chen F. Water Air Soil Pollut., 2021, 232(12): 494.

doi: 10.1007/s11270-021-05455-y
[101]
Pan T, Liu H, Jiang M Y, Li J, Liu W Y, Jiao Q X, Zhang T T. Chemosphere, 2023, 311: 136938.

doi: 10.1016/j.chemosphere.2022.136938
[102]
Antilen M, Bustos O, Ramirez G, Canales C, Faundez M, Escudey M, Pizarro C. New J. Chem., 2016, 40(8): 7132.

doi: 10.1039/C6NJ00207B
[103]
Urdiales C, Gacitua M, Villacura L, Pizarro C, Escudey M, Canales C, AntilÉn M. J. Hazard. Mater., 2020, 385: 121520.

doi: 10.1016/j.jhazmat.2019.121520
[104]
Zhang H B, Wang J Q, Zhou B Y, Zhou Y, Dai Z F, Zhou Q, Chriestie P, Luo Y M. Environ. Pollut., 2018, 243: 1550.

doi: 10.1016/j.envpol.2018.09.122
[105]
Niu X Z, Busetti F, Langsa M, CrouÉ J P. Water Res., 2016, 106: 214.

doi: 10.1016/j.watres.2016.10.002
[106]
Zheng C L, He F, Cao Z W, Cheng X X, Wang Z X. Adsorpt. Sci. Technol., 2022, 2022: 5362178.
[107]
Tan W F, Koopal L K, Weng L P, van Riemsdijk W H, Norde W. Geochimica Cosmochimica Acta, 2008, 72(8): 2090.

doi: 10.1016/j.gca.2008.02.009
[108]
Tan W F, Koopal L K, Norde W. Environ. Sci. Technol., 2009, 43(3): 591.

doi: 10.1021/es802387u
[109]
Sander M, Tomaszewski J E, Madliger M, Schwarzenbach R P. Environ. Sci. Technol., 2012, 46(18): 9923.

doi: 10.1021/es3022478
[110]
Tomaszewski J E, Madliger M, Pedersen J A, Schwarzenbach R P, Sander M. Environ. Sci. Technol., 2012, 46(18): 9932.

doi: 10.1021/es302248u pmid: 22862550
[111]
Guan Y F, Qian C, Chen W, Huang B C, Wang Y J, Yu H Q. Water Res., 2018, 145: 146.

doi: 10.1016/j.watres.2018.08.019
[112]
Taherkhani N, Hekmat A, Piri H, Haghbeen K. J. Food Biochem., 2022, 46(10): e14279.
[113]
Tan W B, Liu N K, Dang Q L, Cui D Y, Xi B D, Yu H. Environ. Pollut., 2020, 264: 114678.

doi: 10.1016/j.envpol.2020.114678
[114]
Zhang M, Shen X F, Zhang H Y, Werner D, Wang B, Yang Y, Tao S, Wang X L. Environ. Sci. Technol., 2019, 53(22): 13201.

doi: 10.1021/acs.est.9b05147 pmid: 31657903
[115]
Jin J, Sun K, Wang Z Y, Yang Y, Han L F, Xing B S. Environ. Sci. Technol., 2017, 51(5): 2635.

doi: 10.1021/acs.est.6b04573
[116]
Porras J, Giannakis S, Torres-Palma R A, Fernandez J J, Bensimon M, Pulgarin C. Appl. Catal. B Environ., 2018, 235: 75.

doi: 10.1016/j.apcatb.2018.04.062
[117]
Ryu J, Jung J, Park K, Song W, Choi B, Kweon J. J. Hazard. Mater., 2021, 417: 126088.

doi: 10.1016/j.jhazmat.2021.126088
[1] Chao Chen, Guyue Wang, Ying Tian, Zhengyang Kong, Fenglong Li, Jin Zhu, Wu Bin Ying. Research Progress on Self-Healing Polyurethane and Its Applications in the Field of Flexible Sensors [J]. Progress in Chemistry, 2023, 35(9): 1275-1293.
[2] Xuetao Qin, Ziqiao Zhou, Ding Ma. Strong Metal-Support Interactions of Metal/Meatal Oxide Catalysts [J]. Progress in Chemistry, 2023, 35(6): 928-939.
[3] Yizhou Yang, Bingquan Peng, Xiaoling Lei, Haiping Fang. Aromatic Rings in Ion Soultions: Two-Dimensional Crystals of Unconventional Stoichiometries and Ferromagnetism [J]. Progress in Chemistry, 2022, 34(7): 1524-1536.
[4] Li Geng, Li Jie, Jiang Hongyu, Liang Xiaozhong, Guo Kunpeng. Mechano-Responsive Luminescent Polymers [J]. Progress in Chemistry, 2022, 34(10): 2222-2238.
[5] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[6] Zhao Jing, Wang Ziya, Mo Lixin, Meng Xiangyou, Li Luhai, Peng Zhengchun. Performance Enhancing Mechanism,Implementation and Practical Advantages of Microstructured Flexible Pressure Sensors [J]. Progress in Chemistry, 2022, 34(10): 2202-2221.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Zhijun Pan, Wei Zhuang, Hongfei Wang. Dynamic Vibrational Spectroscopy in Condensed Matter Chemistry: Theory and Techniques [J]. Progress in Chemistry, 2020, 32(8): 1203-1218.
[9] Yue Ding, Bo Lu, Junhui Ji. Compatibilization Strategies of PLA-Based Biodegradable Materials [J]. Progress in Chemistry, 2020, 32(6): 738-751.
[10] Dan-Wei Zhang, Hui Wang, Zhan-Ting Li. Macromolecular and Supramolecular Helical Tubes: Synthesis and Functions [J]. Progress in Chemistry, 2020, 32(11): 1665-1679.
[11] Hui-Juan Wang, Yu Liu. Molecular Binding and Assembly of Sulfonated Crown Ethers [J]. Progress in Chemistry, 2020, 32(11): 1651-1664.
[12] Yue Liu, Yihan Wu, Hongwei Pang, Xiangxue Wang, Shujun Yu, Xiangke Wang. Study on the Removal of Water Pollutants by Graphite Phase Carbon Nitride Materials [J]. Progress in Chemistry, 2019, 31(6): 831-846.
[13] Xiaojuan Wang, Zhenzhen Liu, Qi Chen, Xiaoqiang Wang, Fang Huang. Interactions between Graphene Materials and Proteins [J]. Progress in Chemistry, 2019, 31(2/3): 236-244.
[14] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[15] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.