中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (10): 1438-1449 DOI: 10.7536/PC230302 Previous Articles   Next Articles

• Review •

Mechanism of hgcA/B Mediated Mercury Methylation and Application as Biomarkers

Bowei Chu1,2,3, Yingying Guo1,2,*(), Ligang Hu1,3, Yanwei Liu1,2, Yongguang Yin1,2,3, Yong Cai4   

  1. 1 Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    2 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,Beijing 100085, China
    3 University of Chinese Academy of Sciences,Beijing 100049, China
    4 Department of Chemistry and Biochemistry, Florida International University, Miami 33199, United States
  • Received: Revised: Online: Published:
  • Contact: *e-mail: yyguo@rcees.ac.cn
  • Supported by:
    National Natural Science Foundation of China(21906168); Key Projects for Frontier Sciences of the Chinese Academy of Sciences(QYZDB-SSW-DQC018)
Richhtml ( 40 ) PDF ( 328 ) Cited
Export

EndNote

Ris

BibTeX

As a potent neurotoxin, methylmercury (MeHg) in the environment is primarily synthesized by anaerobic microorganisms such as methanogens, sulfate-reducing bacteria, and iron-reducing bacteria, which can bioaccumulate through aquatic trophic levels and affect human health. The identification of mercury methylation gene pair, i.e., hgcA and hgcB, not only broadens our understanding of potential mercury methylators but also opens up new avenues for investigating the molecular mechanism of biological mercury methylation. In this review, we outline the predicted structures of hgcA and hgcB genes and their expressed proteins HgcA and HgcB as well as their molecular role in mediating mercury methylation, discuss recent advances in environmental mercury methylation studies using hgcA and hgcB as biomarkers, summarize current limitations and challenges in hgcA and hgcB research, and prospect the research direction of mercury methylation gene field.

Contents

1 Introduction

2 Discovery of mercury methylation gene hgcA/hgcB and its functional validation

3 Predicted structures of HgcA and HgcB

4 Biological mercury methylation processes involving HgcAB

5 Progress of hgcA/B-based environmental mercury methylation study

5.1 hgcA and hgcB can be used to identify new mercury methylation organisms and processes

5.2 Methylation of mercury in other media

5.3 The molecular biology techniques commonly used in the study of mercury methylation mediated by hgcA/B

5.4 The application of hgcA/B in ecological risk assessment

6 Limitations of current mercury methylation gene research

6.1 Lack of detailed molecular structures of HgcA and HgcB

6.2 Identification of HgcA and HgcB-interacting proteins

6.3 The relationship between the mercury methylation process mediated by hgcA/B and other metabolic pathways is not clear

7 Conclusion and perspectives

Fig. 1 Predicted structures of HgcA, HgcB, and HgcAB complex. (a) predicted structure of HgcAB complex [31]; (b) predicted structure of HgcA and HgcB protein encoded by Marinimicrobia [37]; (c) predicted structure of HgcA and HgcB protein by AlphaFold [29,30]. Adapted with permission from Ref. [31,37] under License CC BY 4.0
Fig. 2 The function of HgcA and HgcB in the transfer of methyl group and electron in mercury methylation process[23,43]
Table 1 Common primers and scope of application of hgcA
Fig. 3 Methyl transfer and Hg (Ⅱ) binding process in biogenic mercury methylation mediated by hgcA/B
[1]
Pacyna J M. Sci. Total Environ., 2020, 738: 139955.

doi: 10.1016/j.scitotenv.2020.139955
[2]
Clarkson T W, Magos L. Crit. Rev. Toxicol., 2006, 36(8): 609.

doi: 10.1080/10408440600845619 pmid: 16973445
[3]
Boening D W. Chemosphere, 2000, 40(12): 1335.

pmid: 10789973
[4]
Wood J M. Science, 1974, 183: 1049.

pmid: 4812035
[5]
Reinfelder J R, Fisher N S, Luoma S N, Nichols J W, Wang W X. Sci. Total Environ., 1998, 219(2/3): 117.

doi: 10.1016/S0048-9697(98)00225-3
[6]
Harada M. Crit. Rev. Toxicol., 1995, 25: 1.

doi: 10.3109/10408449509089885 pmid: 7734058
[7]
Cheng J P, Fujimura M, Bo D D. J. Environ. Sci., 2015, 38: 36.

doi: 10.1016/j.jes.2015.05.027
[8]
Driscoll C T, Mason R P, Chan H M, Jacob D J, Pirrone N. Environ. Sci. Technol., 2013, 47(10): 4967.

doi: 10.1021/es305071v
[9]
Zahir F, Rizwi S J, Haq S K, Khan R H. Environ. Toxicol. Pharmacol., 2005, 20(2): 351.

doi: 10.1016/j.etap.2005.03.007
[10]
Ceccatelli S, DarÉ E, Moors M. Chem. Biol. Interact., 2010, 188(2): 301.

doi: 10.1016/j.cbi.2010.04.007
[11]
Wood J M, Kennedy F S, Rosen C G. Nature, 1968, 220(5163): 173.

doi: 10.1038/220173a0
[12]
Jensen S, Jernelöv A. Nature, 1969, 223(5207): 753.

doi: 10.1038/223753a0
[13]
Compeau G C, Bartha R. Appl. Environ. Microbiol., 1985, 50(2): 498.

doi: 10.1128/aem.50.2.498-502.1985
[14]
Fleming E J, Mack E E, Green P G, Nelson D C. Appl. Environ. Microbiol., 2006, 72(1): 457.

doi: 10.1128/AEM.72.1.457-464.2006
[15]
Shao D D, Kang Y, Wu S C, Wong M H. Sci. Total Environ., 2012, 424: 331.

doi: 10.1016/j.scitotenv.2011.09.042
[16]
Devereux R, Winfrey M R, Winfrey J, Stahl D A. FEMS Microbiol. Ecol., 1996, 20(1): 23.
[17]
Macalady J L, Mack E E, Nelson D C, Scow K M. Appl. Environ. Microbiol., 2000, 66(4): 1479.

doi: 10.1128/AEM.66.4.1479-1488.2000
[18]
Gilmour C C, Elias D A, Kucken A M, Brown S D, Palumbo A V, Schadt C W, Wall J D. Appl. Environ. Microbiol., 2011, 77(12): 3938.

doi: 10.1128/AEM.02993-10
[19]
Ma M, Du H X, Wang D Y. Crit. Rev. Environ. Sci. Technol., 2019, 49: 1893.

doi: 10.1080/10643389.2019.1594517
[20]
Ma M, Du H X, Wang D Y, Sun T. J. Soils Sediments, 2018, 18(3): 1100.

doi: 10.1007/s11368-017-1827-9
[21]
Gilmour C C, Podar M, Bullock A L, Graham A M, Brown S D, Somenahally A C, Johs A, Hurt R A, Bailey K L, Elias D A. Environ. Sci. Technol., 2013, 47(20): 11810.

doi: 10.1021/es403075t
[22]
Kerin E J, Gilmour C C, Roden E, Suzuki M T, Coates J D, Mason R P. Appl. Environ. Microbiol., 2006, 72(12): 7919.

doi: 10.1128/AEM.01602-06
[23]
Parks J M, Johs A, Podar M, Bridou R, Hurt R A, Smith S D, Tomanicek S J, Qian Y, Brown S D, Brandt C C, Palumbo A V, Smith J C, Wall J D, Elias D A, Liang L Y. Science, 2013, 339(6125): 1332.

doi: 10.1126/science.1230667
[24]
Choi S C, Chase T, Bartha R. Appl. Environ. Microbiol., 1994, 60(4): 1342.

doi: 10.1128/aem.60.4.1342-1346.1994
[25]
Choi S C, Chase T, Bartha R. Appl. Environ. Microbiol., 1994, 60(11): 4072.

doi: 10.1128/aem.60.11.4072-4077.1994
[26]
Doukov T I, Iverson T M, Seravalli J, Ragsdale S W, Drennan C L. Science, 2002, 298: 567.

doi: 10.1126/science.1075843
[27]
Lin H, Hurt R A, Johs A, Parks J M, Morrell-Falvey J L, Liang L Y, Elias D A, Gu B H. Environ. Sci. Technol. Lett., 2014, 1(5): 271.

doi: 10.1021/ez500107r
[28]
Date S S, Parks J M, Rush K W, Wall J D, Ragsdale S W, Johs A. Appl. Environ. Microbiol., 2019, 85(13): e00438-19.
[29]
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A, Bridgland A, Meyer C, Kohl S A A, Ballard A J, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior A W, Kavukcuoglu K, Kohli P, Hassabis D. Nature, 2021, 596: 583.

doi: 10.1038/s41586-021-03819-2
[30]
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, Zidek A, Green T, Tunyasuvunakool K, Petersen S, Jumper J, Clancy E, Green R, Vora A, Lutfi M, Figurnov M, Cowie A, Hobbs N, Kohli P, Kleywegt G, Birney E, Hassabis D, Velankar S. Nucleic Acids Res., 2022, 50: D439.

doi: 10.1093/nar/gkab1061
[31]
Cooper C J, Zheng K Y, Rush K W, Johs A, Sanders B C, Pavlopoulos G A, Kyrpides N C, Podar M, Ovchinnikov S, Ragsdale S W, Parks J M. Commun. Biol., 2020, 3: 320.

doi: 10.1038/s42003-020-1047-5
[32]
Smith S D, Bridou R, Johs A, Parks J M, Elias D A, Hurt R A, Brown S D, Podar M, Wall J D. Appl. Environ. Microbiol., 2015, 81: 3205.

doi: 10.1128/AEM.00217-15
[33]
Carugo O, Cemazar M, Zahariev S, Hudaky I, Gaspari Z, Perczel A, Pongor S. Protein Eng., 2003, 16: 637.

doi: 10.1093/protein/gzg088
[34]
Beinert H, Holm R H, Munck E. Science, 1997, 277: 653.

doi: 10.1126/science.277.5326.653 pmid: 9235882
[35]
Gionfriddo C M, Tate M T, Wick R R, Schultz M B, Zemla A, Thelen M P, Schofield R, Krabbenhoft D P, Holt K E, Moreau J W. Nat. Microbiol., 2016, 1: 12.
[36]
Svetlitchnaia T, Svetlitchnyi V, Meyer O, Dobbek H. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 14331.

doi: 10.1073/pnas.0601420103
[37]
Lin H Y, Ascher D B, Myung Y, Lamborg C H, Hallam S J, Gionfriddo C M, Holt K E, Moreau J W. ISME J., 2021, 15: 1810.

doi: 10.1038/s41396-020-00889-4
[38]
Ludwig M L, Matthews R G. Annu. Rev. Biochem., 1997, 66: 269.

pmid: 9242908
[39]
Desimone R E, Penley M W, Charbonneau L, Smith S G, Wood J M, Hill H A O, Pratt J M, Ridsdale S, Williams R J P. Biochim. Biophys. Acta, 1973, 304: 851.
[40]
Zhou J, Riccardi D, Beste A, Smith J C, Parks J M. Inorg. Chem., 2014, 53(2): 772.

doi: 10.1021/ic401992y
[41]
Demissie T B, Garabato B D, Ruud K, Kozlowski P M. Angew. Chem. Int. Edit., 2016, 55: 11503.

doi: 10.1002/anie.v55.38
[42]
Nzuza N, Padayachee T, Chen W P, Gront D, Nelson D R, Syed K. Curr. Issues Mol. Biol., 2021, 43: 1374.

doi: 10.3390/cimb43030098
[43]
Qian C, Johs A, Chen H M, Mann B F, Lu X, Abraham P E, Hettich R L, Gu B H. J. Proteome Res., 2016, 15(10): 3540.

pmid: 27463218
[44]
Pak K R, Bartha R. Appl. Environ. Microbiol., 1998, 64(3): 1013.

doi: 10.1128/AEM.64.3.1013-1017.1998
[45]
Hamelin S, Amyot M, Barkay T, Wang Y P, Planas D. Environ. Sci. Technol., 2011, 45(18): 7693.

doi: 10.1021/es2010072
[46]
Yu R Q, Reinfelder J R, Hines M E, Barkay T. Appl. Environ. Microbiol., 2013, 79(20): 6325.

doi: 10.1128/AEM.01556-13
[47]
Fu Q, Fan X C, Sun J H, Tan H W, Wang Y, Ouyang J, Na N. Small, 2020, 16(33): 2000072.

doi: 10.1002/smll.v16.33
[48]
Tan S, Xu X W, Cheng H, Wang J J, Wang X. Environ. Res., 2022, 204: 10.
[49]
Yang T T, Liu Y, Tan S, Wang W X, Wang X. Environ. Pollut., 2021, 277: 10.
[50]
Schartup A T, Balcom P H, Soerensen A L, Gosnell K J, Calder R S D, Mason R P, Sunderland E M. Proc. Natl. Acad. Sci. U. S. A., 2015, 112(38): 11789.

doi: 10.1073/pnas.1505541112
[51]
Lehnherr I, St Louis V L, Hintelmann H, Kirk J L. Nat. Geosci., 2011, 4(5): 298.

doi: 10.1038/ngeo1134
[52]
Capo E, Peterson B D, Kim M, Jones D S, Acinas S G, Amyot M, Bertilsson S, Björn E, Buck M, Cosio C, Elias D A, Gilmour C, Goñi-Urriza M, Gu B H, Lin H Y, Liu Y R, McMahon K, Moreau J W, Pinhassi J, Podar M, Puente-Sánchez F, Sánchez P, Storck V, Tada Y Y, Vigneron A, Walsh D A, Vandewalle-Capo M, Bravo A G, Gionfriddo C M. Mol. Ecol. Resour., 2023, 23(1): 190.

doi: 10.1111/men.v23.1
[53]
McDaniel E A, Peterson B D, Stevens S L R, Tran P Q, Anantharaman K, McMahon K D. mSystems, 2020, 5(4): 00299-20.
[54]
Zhang C J, Liu Y R, Cha G H, Liu Y, Zhou X Q, Lu Z Y, Pan J, Cai M W, Li M. ISME J., 2023, 17(3): 478.

doi: 10.1038/s41396-023-01360-w
[55]
Gilmour C C, Bullock A L, McBurney A, Podar M, Elias D A. mBio, 2018, 9(2): 02403-17.
[56]
Goñi-Urriza M, Klopp C, Ranchou-Peyruse M, Ranchou-Peyruse A, Monperrus M, Khalfaoui-Hassani B, Guyoneaud R. Res. Microbiol., 2020, 171(1): 3.

doi: S0923-2508(19)30121-4 pmid: 31655199
[57]
Podar M, Gilmour C C, Brandt C C, Soren A, Brown S D, Crable B R, Palumbo A V, Somenahally A C, Elias D A. Sci. Adv., 2015, 1(9): e1500675.

doi: 10.1126/sciadv.1500675
[58]
Cai Y. Biogeochemistry of Environmentally Important Trace Elements, 2003, 835: 1.
[59]
Barkay T, Gillman M, Turner R R. Appl. Environ. Microbiol., 1997, 63(11): 4267.

doi: 10.1128/aem.63.11.4267-4271.1997
[60]
Golding G R, Kelly C A, Sparling R, Loewen P C, Rudd J W M, Barkay T. Limnol. Oceanogr., 2002, 47(4): 967.

doi: 10.4319/lo.2002.47.4.0967
[61]
Zhao L, Meng B, Feng X B. Ecotox. Environ. Safe, 2020, 195: 9.
[62]
Rothenberg S E, Feng X B, Li P. Environ. Pollut., 2011, 159(4): 1017.

doi: 10.1016/j.envpol.2010.12.024 pmid: 21276645
[63]
Meng B, Feng X B, Qiu G L, Cai Y, Wang D Y, Li P, Shang L H, Sommar J. J. Agric. Food Chem., 2010, 58(8): 4951.

doi: 10.1021/jf904557x
[64]
Tang W L, Liu Y R, Guan W Y, Zhong H, Qu X M, Zhang T. Sci. Total Environ., 2020, 714: 136827.

doi: 10.1016/j.scitotenv.2020.136827
[65]
Qiu G L, Feng X B, Li P, Wang S F, Li G H, Shang L H, Fu X W. J. Agric. Food Chem., 2008, 56(7): 2465.

doi: 10.1021/jf073391a
[66]
Meng M, Li B, Shao J J, Wang T, He B, Shi J B, Ye Z H, Jiang G B. Environ. Pollut., 2014, 184: 179.

doi: 10.1016/j.envpol.2013.08.030 pmid: 24056187
[67]
Liu Y R, Yu R Q, Zheng Y M, He J Z. Appl. Environ. Microbiol., 2014, 80(9): 2874.

doi: 10.1128/AEM.04225-13
[68]
Liu Y R, Johs A, Bi L, Lu X, Hu H W, Sun D, He J Z, Gu B H. Environ. Sci. Technol., 2018, 52(22): 13110.

doi: 10.1021/acs.est.8b03052
[69]
Lei P, Tang C, Wang Y J, Wu M J, Kwong R W M, Jiang T, Zhong H. Sci. Total Environ., 2021, 778: 146325.

doi: 10.1016/j.scitotenv.2021.146325
[70]
Rothenberg S E, Anders M, Ajami N J, Petrosino J F, Balogh E. Sci. Total Environ., 2016, 572: 608.

doi: 10.1016/j.scitotenv.2016.07.017
[71]
Zhou X Q, Qu X M, Yang Z M, Zhao J T, Hao Y Y, Feng J, Huang Q Y, Liu Y R. J. Hazard. Mater., 2022, 439: 129578.

doi: 10.1016/j.jhazmat.2022.129578
[72]
Li Y Y, Dai S S, Zhao J T, Hu Z C, Liu Q, Feng J, Huang Q Y, Gao Y X, Liu Y R. J. Hazard. Mater., 2023, 448: 130983.

doi: 10.1016/j.jhazmat.2023.130983
[73]
Wang J, Xiang Y P, Tian X S, Zhang C, Gong G Q, Xue J P, Jiang T, Wang D Y, Wang Y M. J. Environ. Sci., 2022, 119: 139.

doi: 10.1016/j.jes.2022.05.008
[74]
Zhao J Y, Ye Z H, Zhong H. Environ. Pollut., 2018, 242: 1921.

doi: 10.1016/j.envpol.2018.07.072
[75]
Li Z Y, Ma Z W, van der Kuijp T J, Yuan Z W, Huang L. Sci. Total Environ., 2014, 468/469: 843.

doi: 10.1016/j.scitotenv.2013.08.090
[76]
Jones D S, Johnson N W, Mitchell C P J, Walker G M, Bailey J V, Pastor J, Swain E B. Environ. Sci. Technol., 2020, 54(22): 14265.

doi: 10.1021/acs.est.0c02513
[77]
Yu R Q, Reinfelder J R, Hines M E, Barkay T. ISME J., 2018, 12(7): 1826.

doi: 10.1038/s41396-018-0106-0
[78]
Wang Y W, Roth S, Schaefer J K, Reinfelder J R, Yee N. FEMS Microbiol. Lett., 2020, 367(23): fnaa196.
[79]
Bravo A G, Peura S, Buck M, Ahmed O, Mateos-Rivera A, Herrero Ortega S, Schaefer J K, Bouchet S, Tolu J, Björn E, Bertilsson S. Appl. Environ. Microbiol., 2018, 84(23): e01774-18.
[80]
Branfireun B A, Cosio C, Poulain A J, Riise G, Bravo A G. Sci. Total Environ., 2020, 745: 140906.

doi: 10.1016/j.scitotenv.2020.140906
[81]
Liem-Nguyen V, Skyllberg U, Björn E. Environ. Sci. Technol., 2017, 51(7): 3678.

doi: 10.1021/acs.est.6b04622
[82]
Chiasson-Gould S A, Blais J M, Poulain A J. Environ. Sci. Technol., 2014, 48(6): 3153.

doi: 10.1021/es4038484
[83]
Lei P, Zhang J, Zhu J J, Tan Q G, Kwong R W M, Pan K, Jiang T, Naderi M, Zhong H. Environ. Sci. Technol., 2021, 55(15): 10811.

doi: 10.1021/acs.est.0c08395
[84]
Bravo A G, Zopfi J, Buck M, Xu J Y, Bertilsson S, Schaefer J K, PotÉ J, Cosio C. ISME J., 2018, 12(3): 802.

doi: 10.1038/s41396-017-0007-7
[85]
Ji X N, Liu C B, Pan G. Ecotox. Environ. Safe, 2020, 188: 9.
[86]
Sunderland E M, Krabbenhoft D P, Moreau J W, Strode S A, Landing W M. Glob. Biogeochem. Cycles, 2009, 23(2): GB2010.
[87]
Monperrus M, Tessier E, Amouroux D, Leynaert A, Huonnic P, Donard O F X. Mar. Chem., 2007, 107(1): 49.

doi: 10.1016/j.marchem.2007.01.018
[88]
Kirk J L, St Louis V L, Hintelmann H, Lehnherr I, Else B, Poissant L. Environ. Sci. Technol., 2008, 42(22): 8367.

doi: 10.1021/es801635m
[89]
Bowman K L, Collins R E, Agather A M, Lamborg C H, Hammerschmidt C R, Kaul D, Dupont C L, Christensen G A, Elias D A. Limnol. Oceanogr., 2020, 65: S310.
[90]
Wang K, Liu G L, Cai Y. Crit. Rev. Environ. Sci. Technol., 2022, 52(22): 3997.

doi: 10.1080/10643389.2021.2008753
[91]
Celo V, Lean D R S, Scott S L. Sci. Total Environ., 2006, 368(1): 126.

doi: 10.1016/j.scitotenv.2005.09.043
[92]
Hu H Y, Lin H, Zheng W, Tomanicek S J, Johs A, Feng X B, Elias D A, Liang L Y, Gu B H. Nat. Geosci., 2013, 6(9): 751.

doi: 10.1038/ngeo1894
[93]
Capo E, Cosio C, GascÓn Díez E, Loizeau J L, Mendes E, Adatte T, Franzenburg S, Bravo A G. Water Res., 2023, 229: 119368.

doi: 10.1016/j.watres.2022.119368
[94]
Tada Y Y, Marumoto K, Takeuchi A. Front. Microbiol., 2020, 11: 1369.

doi: 10.3389/fmicb.2020.01369
[95]
Lamborg C H, Hammerschmidt C R, Bowman K L, Swarr G J, Munson K M, Ohnemus D C, Lam P J, Heimbürger L E, Rijkenberg M J A, Saito M A. Nature, 2014, 512(7512): 65.

doi: 10.1038/nature13563
[96]
Cossa D, Knoery J, Bǎnaru D, Harmelin-Vivien M, Sonke J E, Hedgecock I M, Bravo A G, Rosati G, Canu D, Horvat M, Sprovieri F, Pirrone N, Heimbürger-Boavida L E. Environ. Sci. Technol., 2022, 56(7): 3840.

doi: 10.1021/acs.est.1c03044
[97]
Gorokhova E, Soerensen A L, Motwani N H. PLoS One, 2020, 15(3): e0230310.

doi: 10.1371/journal.pone.0230310
[98]
Zhang B L, Chen T, Guo J M, Wu M H, Yang R Q, Chen X M, Wu X K, Zhang W, Kang S C, Liu G X, Dyson P. Sci. Total Environ., 2020, 708: 135226.

doi: 10.1016/j.scitotenv.2019.135226
[99]
Haynes K M, Kane E S, Potvin L, Lilleskov E A, Kolka R K, Mitchell C P J. Glob. Biogeochem. Cycles, 2017, 31(2): 233.

doi: 10.1002/gbc.v31.2
[100]
Liu C T, Liu J L, Zhou C Y, Huang X Y, Wang H M. Geoderma, 2021, 403: 115375.

doi: 10.1016/j.geoderma.2021.115375
[101]
An Y W, Zhang R, Yang S, Wang Y Q, Lei Y, Peng S H, Song L Y. Waste Manag., 2022, 145: 102.

doi: 10.1016/j.wasman.2022.04.038
[102]
Yang J, Takaoka M, Sano A, Matsuyama A, Yanase R. Int. J. Environ. Res. Public Health, 2018, 15(6): 1252.

doi: 10.3390/ijerph15061252
[103]
Liu J B, Bao Z, Wang C L, Wei J Y, Wei Y S, Chen M X. Water Res., 2022, 226: 119204.

doi: 10.1016/j.watres.2022.119204
[104]
Schaefer J K, Kronberg R M, Morel F M M, Skyllberg U. Environ. Microbiol. Rep., 2014, 6(5): 441.

doi: 10.1111/emi4.2014.6.issue-5
[105]
Christensen G A, Wymore A M, King A J, Podar M, Hurt R A, Santillan E U, Soren A, Brandt C C, Brown S D, Palumbo A V, Wall J D, Gilmour C C, Elias D A. Appl. Environ. Microbiol., 2016, 82(19): 6068.

doi: 10.1128/AEM.01271-16
[106]
Gionfriddo C M, Wymore A M, Jones D S, Wilpiszeski R L, Lynes M M, Christensen G A, Soren A, Gilmour C C, Podar M, Elias D A. Front. Microbiol., 2020, 11: 541554.

doi: 10.3389/fmicb.2020.541554
[107]
Christensen G A, Gionfriddo C M, King A J, Moberly J G, Miller C L, Somenahally A C, Callister S J, Brewer H, Podar M, Brown S D, Palumbo A V, Brandt C C, Wymore A M, Brooks S C, Hwang C, Fields M W, Wall J D, Gilmour C C, Elias D A. Environ. Sci. Technol., 2019, 53(15): 8649.

doi: 10.1021/acs.est.8b06389
[108]
Vigneron A, Cruaud P, AubÉ J, Guyoneaud R, Goñi-Urriza M. Npj Biofilms Microbiomes, 2021, 7: 83.

doi: 10.1038/s41522-021-00255-y
[109]
Capo E, Feng C Y, Bravo A G, Bertilsson S, Soerensen A L, Pinhassi J, Buck M, Karlsson C, Hawkes J, Bjorn E. Environ. Sci. Technol., 2022, 56: 13119.

doi: 10.1021/acs.est.2c03784
[110]
Liu J B, He X L, Zhong H, Lei P, Zhang J Y, Xu Y F, Wei Y S. Bioresour. Technol., 2022, 347: 126394.

doi: 10.1016/j.biortech.2021.126394
[111]
Liu J B, He X L, Xu Y F, Zuo Z, Lei P, Zhang J Y, Yin Y G, Wei Y S. J. Hazard. Mater., 2021, 406: 124310.

doi: 10.1016/j.jhazmat.2020.124310
[112]
Goñi-Urriza M, Corsellis Y, Lanceleur L, Tessier E, Gury J, Monperrus M, Guyoneaud R. Environ. Sci. Pollut. Res., 2015, 22(18): 13764.

doi: 10.1007/s11356-015-4273-5
[113]
Nou X, Kadner R J. Proc. Natl. Acad. Sci. U. S. A., 2000, 97(13): 7190.

doi: 10.1073/pnas.130013897
[114]
Schaefer J K, Morel F M M. Nat. Geosci., 2009, 2(2): 123.

doi: 10.1038/ngeo412
[115]
Schaefer J K, Rocks S S, Zheng W, Liang L Y, Gu B H, Morel F M M. Proc. Natl. Acad. Sci. U. S. A., 2011, 108(21): 8714.

doi: 10.1073/pnas.1105781108
[116]
Kung Y, Ando N, Doukov T I, Blasiak L C, Bender G, Seravalli J, Ragsdale S W, Drennan C L. Nature, 2012, 484(7393): 265.

doi: 10.1038/nature10916
[117]
Qian C, Chen H M, Johs A, Lu X, An J, Pierce E M, Parks J M, Elias D A, Hettich R L, Gu B H. Proteomics, 2018, 18(17): 1700479.

doi: 10.1002/pmic.v18.17
[118]
Ekstrom E B, Morel F M M. Environ. Sci. Technol., 2008, 42(1): 93.

doi: 10.1021/es0705644
[119]
Ekstrom E B, Morel F M M, Benoit J M. Appl. Environ. Microbiol., 2003, 69(9): 5414.

doi: 10.1128/AEM.69.9.5414-5422.2003
[120]
Gionfriddo C M, Soren A B, Wymore A M, Hartnett D S, Podar M, Parks J M, Elias D A, Gilmour C C. Appl. Environ. Microbiol., 2023, 89(4): e01768-22.DOI:10.1128/aem.01768-22.
[1] Yin Yongguang, Li Yanbin, Ma Xu, Liu Jingfu, Jiang Guibin. Role of Natural Organic Matter in the Biogeochemical Cycle of Mercury:Binding and Molecular Transformation [J]. Progress in Chemistry, 2013, 25(12): 2169-2177.
[2] . Mercury pollution in the Environment [J]. Progress in Chemistry, 2009, 21(0203): 436-457.