中文
Announcement
More
Progress in Chemistry 2023, Vol. 35 Issue (4): 593-605 DOI: 10.7536/PC220928 Previous Articles   Next Articles

• Review •

Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone

Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu()   

  1. School of Material Science and Engineering, University of Jinan,Jinan 250022, China
  • Received: Revised: Online: Published:
  • Contact: *e-mail: xun.hu@outlook.com
  • Supported by:
    National Natural Science Foundation of China(51906084); Program for Taishan Scholars of Shandong Province Government; R&D program of Shandong Basan Graphite New Material Plant and Innovation; Entrepreneurship Training Program for College Students of Shandong Province(S202110427093)
Richhtml ( 22 ) PDF ( 431 ) Cited
Export

EndNote

Ris

BibTeX

Levulinic acid is important biomass-derived compounds, and catalytic conversion of them to γ-valerolactone (GVL) over heterogeneous bifunctional catalysts has become a hot focus in the field of biorefining. In this paper, the direct hydrogenation of levulinic acid and its esters to GVL catalyzed by noble and non-noble metal bifunctional catalysts, and the transfer hydrogenation of levulinic acid and its esters to GVL catalyzed by the bifunctional catalysts, such as metal-supported catalysts, modified zeolite, and mixed metal oxides, are reviewed. Conversion of levulinic acid and its esters to GVL over bifunctional catalysts involves two steps, including hydrogenation of carbonyl group and subsequent lactonization reaction. In addition, the importance of active sites of various bifunctional catalysts in conversion of levulinic acid and its esters is studied in this paper, and the advantages and problems of different catalysts during the conversion of levulinic acid/esters are discussed. Finally, the development of bifunctional catalysts and the synthesis of GVL in the future are prospected.

Fig.1 Reaction routes for catalytic conversion of lignocellulosic biomass to γ-valerolactone
Fig.2 Conversion of levulinic acid and its esters to γ-valerolactone catalyzed by metal bifunctional catalysts
Table 1 Conversion of levulinic acid and its esters to γ-valerolactone catalyzed by different noble metal bifunctional catalysts
Table 2 Conversion of levulinic acid and its esters to γ-valerolactone catalyzed by different non-noble metal bifunctional catalysts
Fig.3 Transfer hydrogenation of levulinic acid and its ester to γ-valerolactone catalyzed by bifunctional catalysts
Table 3 Transfer hydrogenation of levulinic acid and its ester to γ-valerolactone catalyzed by different bifunctional catalysts
Fig.4 Importance of active sites in bifunctional catalysts in catalyzing (a) direct hydrogenation and (b) transfer hydrogenation of levulinic acid and its esters to γ-valerolactone
[1]
Yang H P, Yan R, Chen H P, Lee D H, Zheng C G. Fuel, 2007, 86(12/13): 1781.

doi: 10.1016/j.fuel.2006.12.013
[2]
Huang X, Ren J, Ran J Y, Qin C L, Yang Z Q, Cao J P. Fuel Process. Technol., 2022, 229: 107175.

doi: 10.1016/j.fuproc.2022.107175
[3]
Jing Y X, Guo Y, Xia Q N, Liu X H, Wang Y Q. Chem, 2019, 5(10): 2520.

doi: 10.1016/j.chempr.2019.05.022
[4]
Yan K, Jarvis C, Gu J, Yan Y. Renew. Sustain. Energy Rev., 2015, 51: 986.

doi: 10.1016/j.rser.2015.07.021
[5]
Hu X, Jiang S J, Wu L P, Wang S, Li C Z. Chem. Commun., 2017, 53(20): 2938.

doi: 10.1039/C7CC01078H
[6]
Gao W R, Wu G, Zhu X, Asif Akhtar M, Lin G Y, Hu X, Huang Y, Zhang S, Zhang H. Bioresour. Technol., 2022, 347: 126436.

doi: 10.1016/j.biortech.2021.126436
[7]
Hu X, Li C Z. Green Chem., 2011, 13(7): 1676.

doi: 10.1039/c1gc15272f
[8]
Wang J H, Cui H Y, Wang J G, Li Z H, Wang M, Yi W M. Chem. Eng. J., 2021, 415: 128922.

doi: 10.1016/j.cej.2021.128922
[9]
Hu X, Song Y, Wu L P, Gholizadeh M, Li C Z. ACS Sustainable Chem. Eng., 2013, 1(12): 1593.

doi: 10.1021/sc400229w
[10]
Wang J H, Xiang Z Y, Huang Z X, Xu Q, Yin D L. Front. Chem., 2022, 10: 959572.

doi: 10.3389/fchem.2022.959572
[11]
Liguori F, Moreno-Marrodan C, Barbaro P. ACS Catal., 2015, 5(3): 1882.

doi: 10.1021/cs501922e
[12]
Liu Y X, Liu X X, Li M R, Meng Y, Li J, Zhang Z H, Zhang H. Front. Chem., 2021, 9: 812331.

doi: 10.3389/fchem.2021.812331
[13]
Yu Z H, Lu X B, Xiong J, Ji N. ChemSusChem, 2019, 12(17): 3915.

doi: 10.1002/cssc.v12.17
[14]
Alonso D M, Wettstein S G, Dumesic J A. Green Chem., 2013, 15(3): 584.

doi: 10.1039/c3gc37065h
[15]
Dutta S, Yu I K M, Tsang D C W, Ng Y H, Ok Y S, Sherwood J, Clark J H. Chem. Eng. J., 2019, 372: 992.

doi: 10.1016/j.cej.2019.04.199
[16]
He J, Li H, Xu Y F, Yang S. Renew. Energy, 2020, 146: 359.

doi: 10.1016/j.renene.2019.06.105
[17]
Winoto H P, Ahn B S, Jae J. J. Ind. Eng. Chem., 2016, 40: 62.

doi: 10.1016/j.jiec.2016.06.007
[18]
Li W K, Cai Z, Li H, Shen Y, Zhu Y Q, Li H C, Zhang X B, Wang F M. Mol. Catal., 2019, 472: 17.
[19]
Winoto H P, Ali Fikri Z, Ha J M, Park Y K, Lee H, Suh D J, Jae J. Appl. Catal. B Environ., 2019, 241: 588.

doi: 10.1016/j.apcatb.2018.09.031
[20]
Chen B F, Li F B, Huang Z J, Yuan G Q. J. Energy Chem., 2016, 25(5): 888.

doi: 10.1016/j.jechem.2016.06.007
[21]
Zhu S H, Cen Y L, Guo J, Chai J C, Wang J G, Fan W B. Green Chem., 2016, 18(20): 5667.

doi: 10.1039/C6GC01736C
[22]
Wang Y, Rong Z M, Wang Y, Wang T, Du Q Q, Wang Y, Qu J P. ACS Sustainable Chem. Eng., 2017, 5(2): 1538.

doi: 10.1021/acssuschemeng.6b02244
[23]
Galletti A M R, Antonetti C, De Luise V, Martinelli M. Green Chem., 2012, 14(3): 688.

doi: 10.1039/c2gc15872h
[24]
Villa A, Schiavoni M, Chan-Thaw C E, Fulvio P F, Mayes R T, Dai S, More K L, Veith G M, Prati L. ChemSusChem, 2015, 8(15): 2520.

doi: 10.1002/cssc.201500331
[25]
Pan J P, Xu Q H, Fang L, Tu G M, Fu Y H, Chen G H, Zhang F M, Zhu W D. Catal. Commun., 2019, 128: 105710.

doi: 10.1016/j.catcom.2019.105710
[26]
Meng Z, Liu Y, Yang G X, Cao Y H, Wang H J, Peng F, Liu P F, Yu H. ACS Sustainable Chem. Eng., 2019, 7(19): 16501.

doi: 10.1021/acssuschemeng.9b03742
[27]
Moreno-Marrodan C, Barbaro P. Green Chem., 2014, 16(7): 3434.

doi: 10.1039/c4gc00298a
[28]
Li W L, Li F, Chen J W, Betancourt L E, Tu C Y, Liao M J, Ning X, Zheng J J, Li R F. Ind. Eng. Chem. Res., 2020, 59(39): 17338.

doi: 10.1021/acs.iecr.0c01318
[29]
Li W L, Li F, Ning X, Deng K X, Chen J W, Zheng J J, Li R F. Carbon Resour. Convers., 2022, 5(3): 185.

doi: 10.1016/j.crcon.2022.05.003
[30]
Kuwahara Y, Magatani Y, Yamashita H. Catal. Today, 2015, 258: 262.

doi: 10.1016/j.cattod.2015.01.015
[31]
Lu Y W, Wang Y X, Wang Y H, Cao Q E, Xie X G, Fang W H. Mol. Catal., 2020, 493: 111097.
[32]
Mani M, Mariyaselvakumar M, Samikannu A, Panda A B, Konwar L J, Mikkola J P. Appl. Catal. A Gen., 2022, 643: 118744.

doi: 10.1016/j.apcata.2022.118744
[33]
Ruppert A M, Grams J, Jędrzejczyk M, Matras-Michalska J, Keller N, Ostojska K, Sautet P. ChemSusChem, 2015, 8(9): 1497.

doi: 10.1002/cssc.201500305
[34]
Guo Y Y, Li Y L, Chen J Z, Chen L M. Catal. Lett., 2016, 146(10): 2041.

doi: 10.1007/s10562-016-1819-1
[35]
Yao Y R, Wang Z Q, Zhao S, Wang D H, Wu Z J, Zhang M H. Catal. Today, 2014, 234: 245.

doi: 10.1016/j.cattod.2014.01.020
[36]
Sudhakar M, Lakshmi Kantam M, Swarna Jaya V, Kishore R, Ramanujachary K V, Venugopal A. Catal. Commun., 2014, 50: 101.

doi: 10.1016/j.catcom.2014.03.005
[37]
Zhang Y, Chen C, Gong W B, Song J Y, Zhang H M, Zhang Y X, Wang G Z, Zhao H J. Catal. Commun., 2017, 93: 10.

doi: 10.1016/j.catcom.2017.01.008
[38]
Gupta N, Dimitratos N, Su D S, Villa A. Energy Technol., 2019, 7(2): 269.

doi: 10.1002/ente.v7.2
[39]
Liu Y, Xin Q H, Yin D F, Liu S W, Li L, Xie C X, Yu S T. Catal. Lett., 2020, 150(12): 3437.

doi: 10.1007/s10562-020-03245-5
[40]
Yan K, Lafleur T, Jarvis C, Wu G S. J. Clean. Prod., 2014, 72: 230.

doi: 10.1016/j.jclepro.2014.02.056
[41]
Vu H T, Harth F M, Goepel M, Linares N, García-Martínez J, Gläser R. Chem. Eng. J., 2022, 430: 132763.

doi: 10.1016/j.cej.2021.132763
[42]
Jiang L, Xu G Y, Fu Y. Green Chem., 2021, 23(18): 7065.

doi: 10.1039/D1GC01732B
[43]
Balla P, Seelam P K, Balaga R, Rajesh R, Perupogu V, Liang T X. J. Environ. Chem. Eng., 2021, 9(6): 106530.

doi: 10.1016/j.jece.2021.106530
[44]
Xu H, Hu D, Yi Z X, Wu Z T, Zhang M, Yan K. ACS Appl. Energy Mater., 2019, 2(10): 6979.

doi: 10.1021/acsaem.9b01439
[45]
Pinto B P, Fortuna A L L, Cardoso C P, Mota C J A. Catal. Lett., 2017, 147(3): 751.

doi: 10.1007/s10562-017-1977-9
[46]
Popova M, Djinović P, Ristić A, Lazarova H, Dražić G, Pintar A, Balu A M, Novak Tušar N. Front. Chem., 2018, 6: 285.

doi: 10.3389/fchem.2018.00285
[47]
Hengst K, Schubert M, Carvalho H W P, Lu C B, Kleist W, Grunwaldt J D. Appl. Catal. A Gen., 2015, 502: 18.

doi: 10.1016/j.apcata.2015.05.007
[48]
Jiang K, Sheng D, Zhang Z H, Fu J, Hou Z Y, Lu X Y. Catal. Today, 2016, 274: 55.

doi: 10.1016/j.cattod.2016.01.056
[49]
Gundekari S, Srinivasan K. Catal. Lett., 2019, 149(1): 215.

doi: 10.1007/s10562-018-2618-7
[50]
Shao Y W, Sun K, Fan M J, Wang J Z, Gao G M, Zhang L J, Zhang S, Hu X. Chem. Eng. Sci., 2022, 248: 117258.

doi: 10.1016/j.ces.2021.117258
[51]
Liang B F, Liu C, Jing F L, Luo S Z. J. Environ. Chem. Eng., 2022, 10(3): 107760.

doi: 10.1016/j.jece.2022.107760
[52]
Gan L J, Deng C Q, Deng J. Green Chem., 2022, 24(8): 3143.

doi: 10.1039/D2GC00518B
[53]
Wang D W, Luo M Y, Yue L H, Wei J, Zhang X Y, Cai J J. Fuel, 2022, 329: 125364.

doi: 10.1016/j.fuel.2022.125364
[54]
Barla M K, Velagala R R, Minpoor S, Madduluri V R, Srinivasu P. J. Hazard. Mater., 2021, 405: 123335.

doi: 10.1016/j.jhazmat.2020.123335
[55]
Murugesan K, Alshammari A S, Sohail M, Jagadeesh R V. ACS Sustainable Chem. Eng., 2019, 7(17): 14756.

doi: 10.1021/acssuschemeng.9b02692
[56]
Novodárszki G, Solt H E, Valyon J, LÓnyi F, HancsÓk J, Deka D, Tuba R, Mihályi M R. Catal. Sci. Technol., 2019, 9(9): 2291.

doi: 10.1039/C9CY00168A
[57]
Shao Y W, Ba S J, Sun K, Gao G M, Fan M J, Wang J Z, Fan H L, Zhang L J, Hu X. Chem. Eng. J., 2022, 429: 132433.

doi: 10.1016/j.cej.2021.132433
[58]
Li J F, Li M J, Zhang C X, Liu C L, Yang R Z, Dong W S. J. Catal., 2020, 381: 163.

doi: 10.1016/j.jcat.2019.10.031
[59]
Shao Y W, Sun K, Li Q Y, Liu Q H, Zhang S, Liu Q, Hu G Z, Hu X. Green Chem., 2019, 21(16): 4499.

doi: 10.1039/C9GC01706B
[60]
Mitta H, Perupogu V, Boddula R, Ginjupalli S R, Inamuddin , Asiri A M. Int. J. Hydrog. Energy, 2020, 45(50): 26445.

doi: 10.1016/j.ijhydene.2019.11.149
[61]
Zhang R H, Ma Y B, You F, Peng T, He Z C, Li K N. Int. J. Hydrog. Energy, 2017, 42(40): 25185.

doi: 10.1016/j.ijhydene.2017.08.121
[62]
Zhang J, Chen J Z, Guo Y Y, Chen L M. ACS Sustainable Chem. Eng., 2015, 3(8): 1708.

doi: 10.1021/acssuschemeng.5b00535
[63]
Raguindin R Q, Desalegn B Z, Gebresillase M N, Seo J G. Renew. Energy, 2022, 191: 763.

doi: 10.1016/j.renene.2022.04.078
[64]
Xie Z B, Chen B F, Wu H R, Liu M Y, Liu H Z, Zhang J L, Yang G Y, Han B X. Green Chem., 2019, 21(3): 606.

doi: 10.1039/C8GC02914H
[65]
Li Y F, Lan X C, Liu B Y, Wang T F. J. Ind. Eng. Chem., 2022, 107: 215.

doi: 10.1016/j.jiec.2021.11.048
[66]
Cai B, Zhang Y J, Feng J F, Huang C, Ma T Y, Pan H. Renew. Energy, 2021, 177: 652.

doi: 10.1016/j.renene.2021.05.159
[67]
Kuwahara Y, Kaburagi W, Fujitani T. RSC Adv., 2014, 4(86): 45848.

doi: 10.1039/C4RA08074B
[68]
Chen H, Xu Q, Li H, Liu J, Liu X X, Huang G, Yin D L. Catal. Lett., 2021, 151(2): 538.

doi: 10.1007/s10562-020-03326-5
[69]
Yu N X, Lu H F, Yang W, Zheng Y X, Hu Q, Liu Y Y, Wu K J, Liang B. Biomass Convers. Biorefinery, 2022,DOI:10.1007/s13399-022-02887-2.
[70]
Yu Z Q, Meng F X, Wang Y, Sun Z C, Liu Y Y, Shi C, Wang W, Wang A J. Ind. Eng. Chem. Res., 2020, 59(16): 7416.

doi: 10.1021/acs.iecr.0c00257
[71]
Sakakibara K, Endo K, Osawa T. Catal. Commun., 2019, 125: 52.

doi: 10.1016/j.catcom.2019.03.021
[72]
Gong W B, Chen C, Fan R Y, Zhang H M, Wang G Z, Zhao H J. Fuel, 2018, 231: 165.

doi: 10.1016/j.fuel.2018.05.075
[73]
Jori P K, Jadhav V H. Catal. Lett., 2020, 150(7): 2038.

doi: 10.1007/s10562-020-03119-w
[74]
Wang J, Jaenicke S, Chuah G K. RSC Adv., 2014, 4(26): 13481.

doi: 10.1039/C4RA01120A
[75]
LÓpez-Aguado C, del Monte D M, Paniagua M, Morales G, Melero J A. Ind. Eng. Chem. Res., 2022, 61(16): 5547.

doi: 10.1021/acs.iecr.1c04644
[76]
Xu S D, Yu D Q, Ye T, Tian P P. RSC Adv., 2017, 7(2): 1026.

doi: 10.1039/C6RA25594A
[77]
Wan F F, Yang B, Zhu J K, Jiang D B, Zhang H H, Zhang Q, Chen S N, Zhang C, Liu Y C, Fu Z H. Green Chem., 2021, 23(9): 3428.

doi: 10.1039/D1GC00209K
[78]
Kuwahara Y, Kaburagi W, Osada Y, Fujitani T, Yamashita H. Catal. Today, 2017, 281: 418.

doi: 10.1016/j.cattod.2016.05.016
[79]
Li H, Fang Z, Yang S. ACS Sustainable Chem. Eng., 2016, 4(1): 236.

doi: 10.1021/acssuschemeng.5b01480
[80]
Mei C A, Dumesic J A. Chem. Commun., 2011, 47(44): 12233.

doi: 10.1039/c1cc14748j
[81]
Gu J, Zhang J, Wang Y Z, Li D N, Huang H Y, Yuan H R, Chen Y. Ind. Crops Prod., 2020, 145: 112133.

doi: 10.1016/j.indcrop.2020.112133
[82]
Wang J Y, Zhang G Y, Liu M Y, Xia Q, Yu X, Zhang W X, Shen J, Yang C H, Jin X. Chem. Eng. Sci., 2020, 222: 115721.

doi: 10.1016/j.ces.2020.115721
[83]
Yun W C, Yang M T, Lin K Y A. J. Colloid Interface Sci., 2019, 543: 52.

doi: 10.1016/j.jcis.2019.02.036
[84]
Xiao Z H, Zhou H C, Hao J M, Hong H L, Song Y M, He R X, Zhi K D, Liu Q S. Fuel, 2017, 193: 322.

doi: 10.1016/j.fuel.2016.12.072
[85]
Kuwahara Y, Kango H, Yamashita H. ACS Sustainable Chem. Eng., 2017, 5(1): 1141.

doi: 10.1021/acssuschemeng.6b02464
[86]
Li J, Zhao S H, Li Z, Liu D, Chi Y N, Hu C W. Inorg. Chem., 2021, 60(11): 7785.

doi: 10.1021/acs.inorgchem.1c00185
[87]
Shao Y W, Sun K, Zhang L J, Xu Q, Zhang Z M, Li Q Y, Zhang S, Wang Y, Liu Q, Hu X. Green Chem., 2019, 21(24): 6634.

doi: 10.1039/C9GC03056E
[88]
Cao J P, Xie T, Zhao X Y, Zhu C, Jiang W, Zhao M, Zhao Y P, Wei X Y. Fuel, 2021, 284: 119027.

doi: 10.1016/j.fuel.2020.119027
[89]
Osatiashtiani A, Lee A F, Wilson K. J. Chem. Technol. Biotechnol, 2017, 92(6): 1125.
[1] Xin Lin, Fanfu Guan, Jialin Wen, Pan-Lin Shao, Xumu Zhang. Synthesis of Chiral Tridentate Ligands with a Ferrocene Framework and Their Applications in Ir-Catalyzed Asymmetric Hydrogenation [J]. Progress in Chemistry, 2020, 32(11): 1680-1696.
[2] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[3] Zhang Lei, Tu Qian, Chen Xuenian, Liu Pu. Nano Metal Catalysts in Dehydrogenation of Ammonia Borane [J]. Progress in Chemistry, 2014, 26(05): 749-755.
[4] Tang Xing, Hu Lei, Sun Yong, Zeng Xianhai, Lin Lu. Conversion of Biomass to Novel Platform Chemical γ-Valerolactone by Selective Reduction of Levulinic Acid [J]. Progress in Chemistry, 2013, 25(11): 1906-1914.
[5] Zhang Shufang, Bai Ying, Peng Jiajian, Hu Yingqian*, Lai Guoqiao*. Application of Polystyrene Immobilized Transition Metals as Catalysts for Hydrosilylation and Hydrogenation [J]. Progress in Chemistry, 2013, 25(05): 707-716.
[6] Xu Yingying, Li Zhao, Maxim Borzov, Nie Wanli. Application of Frustrated Lewis Pairs in the Activation of Small Molecules [J]. Progress in Chemistry, 2012, 24(08): 1526-1532.
[7] Chen Ping, Xie Guanqun, Luo Mengfei. Catalysts for Vapor-Phase Selective Hydrogenation of Crotonaldehyde to Crotyl Alcohol [J]. Progress in Chemistry, 2012, 24(01): 17-30.
[8] Tang Yuanfu Deng Jingen. Asymmetric Transfer Hydrogenation in Water [J]. Progress in Chemistry, 2010, 22(07): 1242-1253.
[9] Li Yongtao Zhou Guangyou Fang Fang Chen Guorong Sang Ge Sun Dalin. Hydrogen Storage Properties of Complex Hydrides Loaded in Porous Materials [J]. Progress in Chemistry, 2010, 22(01): 241-247.
[10] Zhu Gangli Yang Bolun. Hydrogen Storage Using Liquid Organic Hydrides [J]. Progress in Chemistry, 2009, 21(12): 2760-2770.
[11] Chen Chuanjie Wei Zuojun Li Yan Ren Qilong. Asymmetric Hydrogenation of Unfunctionalized Alkenes Catalyzed by Ir-N,P-Ligands Catalysts [J]. Progress in Chemistry, 2009, 21(05): 990-996.
[12]

Yang Bo|Yu Gang**

. Reductive Destruction of Environmental Pollutants by Hydrogenation Process [J]. Progress in Chemistry, 2009, 21(01): 217-226.
[13] Xu Yuebing| Lu Jiangyin**| Zhong Mei| Wang Jide. Catalytic Application of ZSM-5 Molecular Sieve for Light Alkanes Dehydrogenatoin [J]. Progress in Chemistry, 2008, 20(05): 650-656.
[14] An Gaojun,Zhou Tongna,Chai Yongming, Zhang Jingcheng, Liu Yunqi, Liu Chenguang. Nonhydrodesulfurization Technologies of Light Oil [J]. Progress in Chemistry, 2007, 19(9): 1331-1344.
[15] Xu Yuebing,Lu Jiangyin**,Wang Jide. Catalysts for n-Butane Dehydrogenation to 1-Butene [J]. Progress in Chemistry, 2007, 19(10): 1481-1487.