中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (12): 2588-2603 DOI: 10.7536/PC220528 Previous Articles   Next Articles

• CONTENTS •

Stimuli-Responsive Blue Phase Liquid Crystalline Photonic Crystal

Meng Wang(), He Song, Yifei Zhu   

  1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology-Beijing,Beijing 100083, China
  • Received: Revised: Online: Published:
  • Contact: Meng Wang
  • Supported by:
    National Natural Science Foundation of China(52003293); National Natural Science Foundation of China(51927806); Fundamental Research Funds for the Central Universities(2022YQJD07); Opening Subject Projects for University Students of China University of Mining and Technology-Beijing
Richhtml ( 32 ) PDF ( 346 ) Cited
Export

EndNote

Ris

BibTeX

Intelligent materials with stimulus responsiveness become the research hotspots in recent years. Liquid crystal (LC) materials with supramolecular self-assembly nanostructure and stimulus responsive properties exhibit inherent advantages in the development of the novel intelligent functional materials. Blue phases (BPs), as the LC phases with exotic fluid self-assembled 3D periodic supernanostructures and the characteristic of selective reflection of circularly polarized light in visible light range, have been regarded as one kind of the most promising candidates for smart photonic crystals. The crystallographic parameters or phase states of BPs are susceptible to various external stimulation such as temperature, light irradiation, electric field or humidity. This causes a change in the photonic band gap of BPs, which exhibits visually reflection color variance. Therefore, BPs have recently drawn vast and increasing attentions due to their external-field responsive properties and great potential applications in intelligent materials. Herein, we provide the frontier research advancements in the stimuli-responsive blue phase liquid crystalline photonic crystals. The important research results obtained on the optical, magnetic, electrical, mechanical and humidity responsiveness of BPLC photonic crystals were introduced in detail. At the end of this review, the challenges and possible development direction of this novel soft matter intelligent material are prospected briefly.

Contents

1 Introduction

2 Supramolecular self-assembled structures and three-dimensional photonic band gap of blue phases

3 External-field responsiveness of blue phase liquid crystalline photonic crystals

3.1 Light responsiveness

3.2 Magnetic responsiveness

3.3 Electric field responsiveness

3.4 Mechanical responsiveness

3.5 Humidity responsiveness

4 Conclusion and outlook

Fig. 1 (a) Changes of transmission spectra and corresponding POM images of samples containing 1% azobenzene dimer under ultraviolet and visible light irradiation at 38.5 ℃; (b) dopant diagram of azobenzene dimer in BPLC and partial amplification diagram of double torsion before (left) and after (right) ultraviolet irradiation[59]. Copyright 2013, Royal Society of Chemistry
Fig. 2 (a) Schematic diagram of cis-Azo-POSS; the color and phase change of samples under ultraviolet and visible light irradiation[60]. Copyright 2018, Wiley-VCH. (b) Schematic diagram of dendritic-like polyoxometalate complex and The reflectance spectra changes of samples under 45 ℃, 365 nm and 10 mW/cm2 ultraviolet light[61]. Copyright 2015, Royal Society of Chemistry. (c) (i) Chemical structures of V-shaped and W-shaped molecules, (ii) POM images and reflection spectra of the sample doped with 5% V-shaped molecules at 53.0 ℃ and 1.0 mW/cm2 UV intensity, (iii) POM images and reflection spectra of samples doped with 10% W-shaped molecules at 46.0 ℃ under 5.0 mW/cm2 visible light irradiation[62]. Copyright 2018, Royal Society of Chemistry
Fig. 3 POM images of aligned CA-BPLC sample irradiated continuously at (a) 51.0 ℃ and (b) 47.5 ℃ by 405 and 450 nm light sources; (c) POM images of aligned samples and the reflection wavelength of the samples changed with the laser irradiation time at 46.5 ℃ and 405 nm light source for different irradiation time; (d) POM images and corresponding reflectance spectra of misaligned samples irradiated at 45.8 ℃ and 405 nm light source for different times[63]. Copyright 2020, MDPI
Fig. 4 (a) Electric field dependence of the selective reflection spectrum. (b) Ultraviolet irradiation time dependence of selective reflection spectra. (c) Schematic diagram of the effect of electric field and light field[64]. Copyright 2020, Taylor & Francis
Fig. 5 (a) Schematic representation of new mesomorphic surfactant 5 grafted onto the GNR by covalent Au—S linkage to form hydrophobic anisotropic plasmonic M-GNRs[65]. Copyright 2018, Royal Society of Chemistry. (b) Schematic illustration on the photoisomerization of the chiral molecular photoswitch Azo 2 excited by 808 nm NIR light with different power densities; POM images of BPLC doped with 2.0 wt% Azo 2 and 0.1 wt% UCNPs under 808 nm near infrared irradiation at high power density (7 W/cm2) and low power density (0.5 W/cm2)[66]. Copyright 2022, Wiley-VCH
Fig. 6 (a) Magnetically addressing and erasing of BPLC sample doped with Fe3O4 nanoparticles. (b) Micrographs of nylon networks in samples[67]. Copyright 2016, Royal Society of Chemistry
Fig. 7 (a) Schematics of the underling mechanism for the electrical field-induced PBG shift in the PSBP sample. The original state with E = 0, the blue-shift state with E < 0, and the red-shift state with E > 0[78]. Copyright 2017 Wiley-VCH; (b) Pom diagram of bidirectional shift of photonic band gap[58]. Copyright 2018, Wiley-VCH. (c) Scanning electron micrograph of the profile[58]. Copyright 2018 Wiley-VCH
Fig. 8 (a) Schematic representation of the lattice reorientation and shrinkage occurring due to the electric field-induced effect in BPI[74]. Copyright 2017, American Chemical Society. (b) POM texture of BPI at 2.16 and 2.34 V/μm electric field[74]. Copyright 2017, American Chemical Society. (c) The POM textures of monodomain PS-BPLC for samples[80]. Copyright 2020 Springer Nature. (d) Reflectance spectra, POM photos and Kossel plots before and after RAF treatment[81]. Copyright 2019 Springer Nature
Fig. 9 (a) POM photo and lattice change diagram of self-supported blue phase liquid crystal film during stretching[82]. Copyright 2014 Springer Nature (b) In the 45° angle direction, the BPII LCE increases with strain from 0% to 40%, and the sample color changes from blue to green with significant red-shift phenomenon[84]. Copyright 2021 Springer Nature
Fig. 10 (a) Reflectance spectra of the red reflecting BP films after SM programming upon different pressures. By increasing the compressed force from 5 to 15 N, the red films show a change in color from red to blue. (b) Optical images of the red reflecting BP films after SM programming process at 5, 10, and 15 N,respectively. The compressed regions were noted by white dashed lines. (c) Optical images showing the apparent changes in reflective colors during thermo-induced SM programming and recovery processes of a BP film[40]. Copyright 2019, American Chemical Society
Fig. 11 (a) Schematic representation of mechanism analysis of the responsive behave of the BPLC film. The original BPLC film exhibited a green color corresponding to a medium lattice size (210.9 nm), then which was corroded by alkali and swelled by water. It turned to a red color corresponding to a lager lattice size (258.5 nm) after swelling adequately, then to a blue color corresponding to a smaller lattice size (186.5 nm) when the film shrunken with the evaporation of the water. (b) Photographs of the writing and erasing show of the film[85]. Copyright 2020, Wiley-VCH
Fig. 12 (a) BPLC polymer coatings are prepared by chemically cross-linking the liquid crystal network with functional silane on the surface of the glass substrate. (b) Photograph of colorimetric humidity sensor and photograph of the humidity sensor for monitoring ambient humidity of the fruits. (c) Images of a “two dolphins” pattern,which appeared in the wet state and hid in the dry state. (d) BPLC polymer coating covalently bonded on flexible PDMS substrate as a smart camouflage “skin” of an artificial beetle. Insets are optical images of the longhorn beetle in low RH and high RH[86]. Copyright 2021, American Chemical Society
Fig. 13 (a) Scheme for the color change of the film during the diffusion process of ink on the membrane, which is aroused from distinct swelling degree of the BPLC during the diffusion process. (b) Scheme for the fabrication of multi-color pattern, which is achieved by printing in multi-layer way. (c) Reversible write/erase process for multiple patterns[88]. Copyright 2022, Wiley-VCH
[1]
Oliveira J, Correia V, Castro H, Martins P, Lanceros-Mendez S. Addit. Manuf., 2018, 21: 269.
[2]
Shang L R, Zhang W X, Xu K, Zhao Y J. Mater. Horiz., 2019, 6: 945.
[3]
Iqbal S, Ahmed F, Xiong H. Chem. Eng. J., 2021, 420: 130384.
[4]
Choi Y K, Lee S Y, Ahn D J. J. Mater. Chem. C, 2019, 7: 13130.
[5]
Li X K, Liu J Z, Li D D, Huang S Q, Huang K, Zhang X X. Adv. Sci., 2021, 8: 2101295.
[6]
Yang M Y, Yang X, Feng W, Wang L. Chinese Journal of Liquid Crystals and Displays, 2020, 35(07): 631.
(杨梦园, 杨潇, 封伟, 王玲. 液晶与显示, 2020, 35(07): 631.).
[7]
Takashi K. Liquid Crystalline Functional Assemblies and Their Supramolecular Structures. Berlin: SpringerBerlin Heidelberg, 2008.
[8]
Hornreich R M, Shtrikman S, Sommers C. Phys. Rev. E, 1993, 47: 2067.

pmid: 9960227
[9]
Ford A D, Morris S M, Coles H J. Mater. Today, 2006, 9: 36.
[10]
Yang J, Liu J, Guan B, He W, Yang Z, Wang J, Ikeda T, Jiang L. J. Mater. Chem. C, 2019, 7: 9460.
[11]
Coles H, Morris S. Nat. Photonics, 2010, 4: 676.
[12]
Kikuchi H, Yokota M, Hisakado Y, Yang H, Kajiyama T. Nat. Mater., 2002, 1: 64.
[13]
Zheng Z G, Wang H F, Zhu G, Lin X W, Li J N, Hu W, Cui H Q, Shen D, Lu Y Q. J. Soc. Inf. Disp., 2012, 20: 326.
[14]
Li X, Yang W Q, Yuan C L, Liu Z, Zhou K, Wang X Q, Shen D, Zheng Z G. Sci. Rep., 2017, 7: 1.
[15]
He W, Pan G, Yang Z, Zhao D, Niu G, Huang W, Yuan X, Guo J, Cao H, Yang H. Adv. Mater., 2009, 21: 2050.
[16]
Yoshida H, Tanaka Y, Kawamoto K, Kubo H, Tsuda T, Fujii A, Kuwabata S, Kikuchi H, Ozaki M. Appl. Phys. Express, 2009, 2: 121501.
[17]
Wang L, He W, Xiao X, Wang M, Wang M, Yang P, Zhou Z, Yang H, Yu H, Lu Y. J. Mater. Chem., 2012, 22: 19629.
[18]
Karatairi E, Rozic B, Kutnjak Z, Tzitzios V, Nounesis G, Cordoyiannis G, Thoen J, Glorieux C, Kralj S. Phys. Rev. E, 2010, 81: 041703.
[19]
Wang L, He W L, Xiao X, Meng F U, Zhang Y, Yang P Y, Wang L P, Xiao J M, Yang H, Lu Y F. Small, 2012, 8: 2189.
[20]
Gharbi M A, Manet S, Lhermitte J, Brown S, Milette J, Toader V, Sutton M, Reven L. ACS Nano, 2016, 10: 3410.
[21]
Ravnik M, Alexander G P, Yeomans J M, Zumer S. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 5188.
[22]
Rokunohe J, Yoshizawa A. J. Mater. Chem., 2005, 15: 275.
[23]
Lee M, Hur S T, Higuchi H, Song K, Choi S W, Kikuchi H. J. Mater. Chem., 2010, 20: 5813.
[24]
Wang L, He W L, Xiao X, Yang Q, Li B R, Yang P Y, Yang H. J. Mater. Chem., 2012, 22: 2383.
[25]
Wang L, Yu L L, Xiao X, Wang Z, Yang P Y, He W L, Yang H. Liq. Cryst., 2012, 39: 629.
[26]
Wang L, He W L, Wang M, Wei M J, Sun J, Chen X W, Yang H. Liq. Cryst., 2013, 40: 354.
[27]
Yu Y B, He W L, Jiang Z M, Yu Z F, Ren L, Lu Y, Yang Z, Cao H, Wang D. Liq. Cryst., 2019, 46: 1024.
[28]
Hu W, Wang L, Wang M, Zhong T, Wang Q, Zhang L, Chen F, Li K, Miao Z, Yang D. Nat. Commun., 2021, 12: 1.
[29]
Liu B, Yuan C L, Hu H L, Wang H, Zhu Y W, Sun P Z, Li Z Y, Zheng Z G, Li Q. Nat. Commun., 2022, 13: 2712.
[30]
Zheng Z, Hu H, Zhang Z, Liu B, Li M, Qu D H, Tian H, Zhu W H, Feringa B L. Nat. Photonics, 2022, 16: 226.
[31]
Hu H, Liu B, Li M, Zheng Z, Zhu W H. Adv. Mater., 2022, 34: 2110170.
[32]
Wang M, Song H, Li Y W. Progress in Chemistry, 2022, 34: 1734.
(王萌, 宋贺, 李烨文. 化学进展, 2022, 34: 1734.).

doi: 10.7536/PC211013
[33]
Bisoyi H K, Li Q. Chem. Rev., 2022, 122: 4887.
[34]
Zheng Z G, Lu Y Q, Li Q. Adv. Mater., 2020, 32: e1905318.
[35]
Yang Y, Wang L, Yang H, Li Q. Small Science, 2021, 1: 2100007.
[36]
Yang J, Zhao W, He W, Yang Z, Wang D, Cao H. J. Mater. Chem. C, 2019, 7: 13352.
[37]
Henrich O, Stratford K, Cates M E, Marenduzzo D. Phys. Rev. Lett., 2011, 106: 107801.
[38]
Shibayama S, Higuchi H, Okumura Y, Kikuchi H. Adv. Funct. Mater., 2013, 23: 2387.
[39]
Zhang Y X, Yoshida H, Cho S, Fukuda J I, Ozaki M. ACS Appl. Mater. Interfaces, 2021, 13: 36130.
[40]
Yang J, Zhao W, Yang Z, He W, Wang J, Ikeda T, Jiang L. ACS Appl. Mater. Interfaces, 2019, 11: 46124.
[41]
Kikuchi H, Izena S, Higuchi H, Okumura Y, Higashiguchi K. Soft Matter, 2015, 11: 4572.

doi: 10.1039/c5sm00711a pmid: 25947305
[42]
Higashiguchi K, Yasui K, Kikuchi H. J. Am. Chem. Soc., 2008, 130: 6326.

doi: 10.1021/ja801553g pmid: 18439009
[43]
Tanaka S, Yoshida H, Kawata Y, Kuwahara R, Nishi R, Ozaki M. Sci. Rep., 2015, 5: 1.
[44]
Wang L, Li Q. Adv. Funct. Mater., 2016, 26: 10.
[45]
Cao W, Munoz A, Palffy-Muhoray P, Taheri B. Nat. Mater., 2002, 1: 111.
[46]
Wu Y P, Wu S, Tian X J, Wang X, Wu W X, Zou G, Zhang Q J. Soft Matter, 2011, 7: 716.
[47]
White T J, Bricker R L, Natarajan L V, Tabiryan N V, Green L, Li Q, Bunning T J. Adv. Funct. Mater., 2009, 19: 3484.
[48]
Gao J, Tian M, He Y, Yi H, Guo J. Adv. Funct. Mater., 2021, 32: 2107145.
[49]
Xiong X Y, Huang X, Liu Y, Feng A, Wang Z M, Cheng X, He Z X, Wang S, Guo J T, Yan X B. Chem. Eng. J., 2022, 445: 136576.
[50]
Petriashvili G, De Santo M P, Devadze L, Zurabishvili T, Sepashvili N, Gary R, Barberi R. Macromol. Rapid Commun., 2016, 37: 500.
[51]
Zhan Y, Schenning A P, Broer D J, Zhou G, Liu D. Adv. Funct. Mater., 2018, 28: 1707436.
[52]
Malin?ík J, Kohout M, Svoboda J, Stulov S, Pociecha D, Böhmová Z, Novotná V. J. Mol. Liq., 2022, 346: 117842.
[53]
Ali A A, Kharbash R, Kim Y. Anal. Chim. Acta, 2020, 1110: 199.
[54]
Epstein E S, Martinetti L, Kollarigowda R H, Carey-De La Torre O, Moore J S, Ewoldt R H, Braun P V. J. Am. Chem. Soc., 2019, 141: 3597.

doi: 10.1021/jacs.8b12762 pmid: 30661352
[55]
Kawabata K, Yoneyama H, Goto H. Mol. Cryst. Liq. Cryst., 2009, 515: 3.
[56]
Yan J, Li Y, Wu S T. Opt. Lett., 2011, 36: 1404.
[57]
Kim D Y, Lee S A, Kong D G, Park M, Choi Y J, Jeong K U. ACS Appl. Mater. Interfaces, 2015, 7: 6195.
[58]
Wang M, Zou C, Li C, Sun J, Wang L, Hu W, Zhang C, Zhang L, He W, Yang H. Adv. Opt. Mater., 2018, 6: 1800409.
[59]
Chen X, Wang L, Li C, Xiao J, Ding H, Liu X, Zhang X, He W I, Yang H. Chem. Commun., 2013, 49: 10097.
[60]
Zhou K, Bisoyi H K, Jin J Q, Yuan C L, Liu Z, Shen D, Lu Y Q, Zheng Z G, Zhang W, Li Q. Adv. Mater., 2018, 30: 1800237.
[61]
Wang J, Lin C G, Zhang J, Wei J, Song Y F, Guo J. J. Mater. Chem. C, 2015, 3: 4179.
[62]
Wang M, Hu W, Wang L, Guo D Y, Lin T H, Zhang L, Yang H. J. Mater. Chem. C, 2018, 6: 7740.
[63]
Jiang S A, Wu C H, Mo T S, Huang S Y, Lee C R. Crystals, 2020, 10: 906.
[64]
Sharadhi N, Vimala S, Nurjahan K, Veerabhadraswamy B N, Nair G G. Liq. Cryst., 2019, 1.
[65]
Wang L, Gutierrez-Cuevas K G, Bisoyi H K, Xiang J, Singh G, Zola R S, Kumar S, Lavrentovich O D, Urbas A, Li Q. Chem. Commun. (Camb.), 2015, 51: 15039.
[66]
Qiu Y, Yang Y, Valenzuela C, Zhang X, Yang M, Xue P, Ma J, Liu Z, Wang L, Feng W. Adv. Opt. Mater., 2022, 10: 2102475.
[67]
He W L, Zhang W K, Xu H, Li L H, Yang Z, Cao H, Wang D, Zheng Z G, Yang H A. Phys. Chem. Chem. Phys., 2016, 18: 29028.

pmid: 27752664
[68]
Heppke G, Krumrey M, Oestreicher F. Mol. Cryst. Liq. Cryst., 1983, 99: 99.
[69]
Hisakado Y, Kikuchi H, Nagamura T, Kajiyama T. Adv. Mater., 2005, 17: 96.
[70]
Yan J, Cheng H C, Gauza S, Li Y, Jiao M, Rao L, Wu S-T. Appl. Phys. Lett., 2010, 96: 071105.
[71]
Chen Y, Wu S-T. Appl. Phys. Lett., 2013, 102: 171110.
[72]
Kitzerow H S. Mol. Cryst. Liq. Cryst., 1991, 202: 51.
[73]
Alexander G P, Marenduzzo D. EPL, 2008, 81: 66004.
[74]
Sridurai V, Mathews M, Yelamaggad C V, Nair G G. ACS Appl. Mater. Interfaces, 2017, 9: 39569.
[75]
Chen C W, Li C C, Jau H C, Yu L C, Hong C L, Guo D Y, Wang C T, Lin T H. ACS Photonics, 2015, 2: 1524.
[76]
Du X W, Hou D S, Li X, Sun D P, Lan J F, Zhu J L, Ye W J. ACS Appl. Mater. Interfaces, 2019, 11: 22015.
[77]
Lu S-Y, Chien L-C. Opt. Lett., 2010, 35: 562.
[78]
Wang M, Zou C, Sun J, Zhang L, Wang L, Xiao J, Li F, Song P, Yang H. Adv. Funct. Mater., 2017, 27: 1702261.
[79]
Wang M, Hu W, Li Z, Song H, Jiang P, Yang S, Yang H. Liq. Cryst., 2021, 48: 2046.
[80]
Manda R, Pagidi S, Heo Y, Lim Y J, Kim M, Lee S H. NPG Asia Mater., 2020, 12: 1.
[81]
Guo D Y, Chen C W, Li C C, Jau H C, Lin K H, Feng T M, Wang C T, Bunning T J, Khoo I C, Lin T H. Nat. Mater., 2020, 19: 94.
[82]
Castles F, Morris S M, Hung J M, Qasim M M, Wright A D, Nosheen S, Choi S S, Outram B I, Elston S J, Burgess C, Hill L, Wilkinson T D, Coles H J. Nat. Mater., 2014, 13: 817.

doi: 10.1038/nmat3993 pmid: 24880732
[83]
Zhang Y S, Jiang S A, Lin J D, Yang P C, Lee C R. Adv. Opt. Mater., 2021, 9: 2001427.
[84]
Schlafmann K R, White T J. Nat. Commun., 2021, 12: 4916.

doi: 10.1038/s41467-021-25112-6 pmid: 34389708
[85]
Hu W, Sun J, Wang Q, Zhang L, Yuan X, Chen F, Li K, Miao Z, Yang D, Yu H. Adv. Funct. Mater., 2020, 30: 2004610.
[86]
Yang Y, Zhang X, Chen Y, Yang X, Ma J, Wang J, Wang L, Feng W. ACS Appl. Mater. Interfaces, 2021, 13: 41102.
[87]
Meng F S, Zheng C L, Yang W J, Guan B, Wang J X, Ikeda T, Jiang L. Adv. Funct. Mater., 2022, 32: 2110985.
[1] Meng Wang, He Song, Yewen Li. Three Dimensional Self-Assembled Blue Phase Liquid Crystalline Photonic Crystal [J]. Progress in Chemistry, 2022, 34(8): 1734-1747.
[2] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[3] Cheng Chen, Zhiqiang Dong, Haowen Chen, Yang Chen, Zhigang Zhu, Weiheng Shih. Two-Dimensional Photonic Crystals [J]. Progress in Chemistry, 2018, 30(6): 775-784.
[4] Zhang Huijie, Wang Shirong, Xiao Yin, Li Xianggao. Electrically Responsive Photonic Crystals [J]. Progress in Chemistry, 2014, 26(10): 1690-1700.
[5] Wang Wenqian, Chen Linfeng, Wen Yongqiang*, Zhang Xueji, Song Yanlin, Jiang Lei. Mesoporous Silica Nanoparticle-Based Controlled-Release System [J]. Progress in Chemistry, 2013, 25(05): 677-691.
[6] Li Heng, Wang Jingxia, Wang Rongming, Song Yanlin. Optical Manipulation and Application by Three Dimensional Colloidal Photonic Crystals [J]. Progress in Chemistry, 2011, 23(6): 1060-1068.
[7] Rao Yanying, Qian Weiping. Ordered Metal Nanoshell Materials [J]. Progress in Chemistry, 2011, 23(12): 2489-2497.
[8] Liu Dan, Wang Tao, Liu Xinxing, Wang Chaoyang, Tong Zhen. Intelligent Cell Detachment Materials Based on Poly(N-Isopropylacrylamide) [J]. Progress in Chemistry, 2011, 23(11): 2353-2359.
[9] Ding Tao1 Liu Zhanfang2 Song Kai1*. Preparation of 3D Photonic Crystals [J]. Progress in Chemistry, 2008, 20(09): 1283-1293.
[10] Li Xiaojing1|Qiao Guanjun1*|Chen Jierong2|Zhou Xi1. Application on the Photonic Band Gap of Titanium Dioxide Photonic Crystals [J]. Progress in Chemistry, 2008, 20(04): 491-498.
[11] Wang Yulian1,Guo Ming2,Zheng Xuefang1**,Tang Qian1, Gao Dabin1. The Photonic Crystal in Hydrogel [J]. Progress in Chemistry, 2007, 19(10): 1475-1481.
[12] Hu Jinglei,Wang Rong,Zhou Dongshan|Xue Gi**. Left-Handed Materials and Negative Refraction [J]. Progress in Chemistry, 2007, 19(05): 813-819.
[13] Ding Jing,Gao Jining,Tang Fangqiong**. Fabrication of Colloidal Crystal Array by Self-Assembly Methods [J]. Progress in Chemistry, 2004, 16(03): 321-.