中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (7): 1126-1137 DOI: 10.7536/PC200711 Previous Articles   Next Articles

• Review •

Fabrication and Application of Photonic Crystal Biochemical Sensor

Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo*()   

  1. Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
  • Received: Revised: Online: Published:
  • Contact: Aiqin Luo
  • About author:
    * Corresponding author e-mail:
Richhtml ( 52 ) PDF ( 1166 ) Cited
Export

EndNote

Ris

BibTeX

Photonic crystal biochemical sensing is a promising analytical method which amplifies or converts biochemical signals into photoelectrically readable signals and performs quantitative or semi-quantitative analysis by instruments or naked eyes, based on the structural characteristics of photonic crystals. This review mainly focuses on the three aspects of the photonic crystal biochemical sensor: material selection and fabrication, sensing mechanism, design and application. Firstly, in terms of material selection and fabrication, this article reviews the monodisperse colloidal nanoparticles, electromagnetic composite colloidal nanoparticles, nanowires, metal organic frameworks and so on. Secondly, the sensing mechanism is briefly introduced from three aspects: structure color, slow light effect and photoelectric conversion mechanism. Further, the design and application of visible photonic crystal biochemical sensor, fluorescence enhanced photonic crystal biochemical sensor, Raman enhanced photonic crystal biochemical sensor, evanescent wave enhanced photonic crystal biochemical sensor, surface infrared absorption enhanced photonic crystal biochemical sensor and photoelectric signal enhanced photonic crystal biochemical sensor are reviewed, based on the perspective of interaction effect of photonic crystal and light. Finally, the future of photonic crystal biochemical sensor is prospected.

Contents

1 Introduction

2 Material selection and fabrication of photonic crystal biochemical sensor

2.1 Monodisperse colloidal nanoparticles

2.2 Electromagnetic composite colloidal nanoparticles

2.3 Nanowires

2.4 Metal organic frameworks

2.5 Other materials

3 Sensing mechanism of photonic crystal biochemical sensor

3.1 Structure color

3.2 Slow light effect

3.3 Photoelectric conversion mechanism

4 Design and application of photonic crystal biochemical sensor

4.1 Visible photonic crystal biochemical sensor

4.2 Fluorescence enhanced photonic crystal biochemical sensor

4.3 Raman enhanced photonic crystal biochemical sensor

4.4 Evanescent wave enhanced photonic crystal biochemical sensor

4.5 Surface infrared absorption enhanced photonic crystal biochemical sensor

4.6 Photoelectric signal enhanced photonic crystal biochemical sensor

4.7 Other photonic crystal biochemical sensors

5 Conclusion and outlook

Fig. 1 Construction methods of photonic crystals. (a) vertical deposition self-assembly; (b) vertical lifting; (c) self-assembly of 2D photonic crystals; (d) magnetic field induction; (e) electric field induction; (f) layer by layer assembly of nanowires)[32,35⇓⇓⇓⇓⇓⇓~42]
Fig. 2 Bragg-Snell diffraction peak displacement diagram of photonic crystals induced by external stimuli
Fig. 3 Slow light mechanism in photonic crystals waveguide. (a) Patterns of Fabry-Perot; (b) Patterns of Brillouin zone edge Littrow; (c) Patterns of inside Brillouin zone anticrossing modes[53,54]
Fig. 4 Schematic diagram of photo-generated electron-hole reaction of photoelectrochemical active material. (a) redox reaction; (b) electron-hole recombination; (c) photocurrent formation under external electric field[56]
Fig. 5 Photonic crystal biochemical sensor for identifying ethanol content[57]
Fig. 6 Simplified scheme of molecularly imprinted inverse opal photonic crystals’ construction[60]
Table 1 Visible molecularly imprinted photonic crystal biochemical sensors for molecules detection
Fig. 7 The diagram of eight-channel photonic crystal microfluidic device
Table 2 Fluorescence enhanced photonic crystal biochemical sensor for molecules detection
Fig. 8 Au NPs incorporated inverse opal photonic crystal capillary for SERS[78]
Fig. 9 Schematic diagram of bacteria captured by photonic crystal cavity[82]
Fig. 10 Schematic illustration of the detection mechanism of photoelectric signal enhanced photonic crystal biochemical sensors under light excitation[85]
Table 3 Other photonic crystal biochemical sensors for molecules detection
[1]
Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Chem. Soc. Rev., 2012, 41(8):3297.

doi: 10.1039/c2cs15267c
[2]
Wang H, Zhang K Q. Sensors, 2013, 13(4):4192.

doi: 10.3390/s130404192 pmid: 23539027
[3]
Carr D M, Ellsworth A A, Fisher G L, Valeriano W W, Vasco J P, Guimarães P S S, de Andrade R R, da Silva E R, Rodrigues W N. Biointerphases, 2018, 13(3):03B406.

doi: 10.1116/1.5019725
[4]
Martin L G, Nathan M, Heath E. O’ B, Joseph L, George A, Martin J. C, Ruth O, Heather M. W. Sci. Adv., 2018, 4(4):eaan8917.

doi: 10.1126/sciadv.aan8917
[5]
Gu Z Z, Zhao Y J, Xie Z Y. Struct. Color Mater., 2018. 351.
( 顾忠泽, 赵远锦, 谢卓颖. 结构色纳米材料, 2018. 351. )
[6]
Xiong R, Luan J Y, Kang S, Ye C H, Singamaneni S, Tsukruk V V. Chem. Soc. Rev., 2020, 49(3):983.

doi: 10.1039/c8cs01007b pmid: 31960001
[7]
Wu E Q, Peng Y, Zhang X H, Bai J L, Song Y Q, He H L, Fan L X, Qu X C, Gao Z X, Liu Y, Ning B A. ACS Appl. Mater. Interfaces, 2017, 9(7):5778.

doi: 10.1021/acsami.6b14498
[8]
Gu X X, Liu Y X, Chen G P, Wang H, Shao C M, Chen Z Y, Lu P H, Zhao Y J. ACS Appl. Mater. Interfaces, 2018, 10(40):33936.

doi: 10.1021/acsami.8b11175
[9]
Chen T, Deng Z Y, Yin S N, Chen S, Xu C. J. Mater. Chem. C, 2016, 4(7):1398.

doi: 10.1039/C5TC03834K
[10]
Tan Y F, Tang T T, Xu H S, Zhu C Q, Cunningham B T. Biosens. Bioelectron., 2015, 73:32.

doi: 10.1016/j.bios.2015.05.041
[11]
Wu S L, Liu T F, Tang B T, Li L, Zhang S F. ACS Appl. Mater. Interfaces, 2019, 11(10):10171.

doi: 10.1021/acsami.8b21092
[12]
Qi Y, Chu L, Niu W B, Tang B T, Wu S L, Ma W, Zhang S F. Adv. Funct. Mater., 2019, 29(40):1903743.

doi: 10.1002/adfm.v29.40
[13]
Debnath K, Clementi M, Bucio T D, Khokhar A Z, Sotto M, Grabska K M, Bajoni D, Galli M, Saito S, Gardes F Y. Opt. Express, 2017, 25(22):27334.

doi: 10.1364/OE.25.027334 pmid: 29092209
[14]
Lei J L, Hou S L, Yuan P, Wang D B, Li X X, Wang H Q, Cao M H. Infrar. Laser Eng., 2018, 47(S1):119.
[15]
Baek S, Ha S J, Lee H, Kim K, Kim D, Moon J H. ACS Appl. Mater. Interfaces, 2017, 9(42):37006.

doi: 10.1021/acsami.7b09885
[16]
Zhao X D, Yang Y B, Wang Y C, Hao Y Y, Chen Z H, Zhang M D. 2018: 117106.
[17]
Yang Y T, Xu T, Xu Y F, Hang Z H. Opt. Lett., 2017, 42(16):3085.

doi: 10.1364/OL.42.003085
[18]
Liu M, Li K, Kong F M, Zhao J, Meng H T. Optik, 2018, 161:27.

doi: 10.1016/j.ijleo.2018.01.128
[19]
Su X, Sun X Q, Wu S L, Zhang S F. Nanoscale, 2017, 9(22):7666.

doi: 10.1039/C7NR01172E
[20]
Niu W B, Zhao K, Qu L C, Zhang S F. J. Mater. Chem. C, 2018, 6(31):8385.

doi: 10.1039/C8TC01787E
[21]
Wang J, Li J Y, Zeng C, Qu Q, Wang M F, Qi W, Su R X, He Z M. ACS Appl. Mater. Interfaces, 2020, 12(4):4699.

doi: 10.1021/acsami.9b16773
[22]
Resende S, Frasco M F, Sales M G F. Sens. Actuat. B: Chem., 2020, 312:127947.

doi: 10.1016/j.snb.2020.127947
[23]
Zhang W L, Gao N, Cui J C, Wang C, Wang S Q, Zhang G X, Dong X B, Zhang D Q, Li G T. Chem. Sci., 2017, 8(9):6281.

doi: 10.1039/C7SC02409F
[24]
Ye B F, Ding H B, Cheng Y, Gu H C, Zhao Y J, Xie Z Y, Gu Z Z. Adv. Mater., 2014, 26(20):3270.

doi: 10.1002/adma.v26.20
[25]
Song Y Q, Bai J L, Zhang R, Wu E Q, Wang J, Li S, Ning B A, Wang M L, Gao Z X, Peng Y. Sens. Actuat. B: Chem., 2020, 310:127671.

doi: 10.1016/j.snb.2020.127671
[26]
Chen K, Ma H R. Mater. Rep., 2018, 32(4):1094.
( 陈可, 马会茹. 材料导报, 2018, 32(4):1094.)
[27]
Galisteo-López J F, Ibisate M, Sapienza R, Froufe-Pérez L S, Blanco Á, López C. Adv. Mater., 2011, 23(1):30.

doi: 10.1002/adma.v23.1
[28]
Fenzl C, Hirsch T, Wolfbeis O S. Angew. Chem. Int. Ed., 2014, 53(13):3318.

doi: 10.1002/anie.201307828
[29]
Zhang H J, Wang S R, Xiao Y, Li X G. Prog. Chem., 2014, 26(10):1690.
( 张慧捷, 王世荣, 肖殷, 李祥高. 化学进展, 2014, 26(10):1690.)

doi: 10.7536/PC140515
[30]
Kim E, Kim S Y, J0 G, Kim S, Park M J. ACS Appl. Mater. Interfaces, 2012, 4(10):5179.

doi: 10.1021/am3011115
[31]
Liu C, Tong Y L, Yu X Q, Shen H X, Zhu Z J, Li Q, Chen S. ACS Appl. Mater. Interfaces, 2020, 12(2):2816.

doi: 10.1021/acsami.9b18012
[32]
Liu Z H, Zhang X, Liang A X, Sun L Q, Luo A Q. Chin. J. Chrom., 2019, 37(3):287.
( 刘哲涵, 张鑫, 梁阿新, 孙立权, 罗爱芹. 色谱, 2019, 37(3):287.)
[33]
Yan D, Li R B, Lu W, Piao C M, Qiu L L, Meng Z H, Wang S S. Anal., 2019, 144(6):1892.

doi: 10.1039/C8AN01236A
[34]
Yang S M, Míguez H, Ozin G A. Adv. Funct. Mater., 2002, 12(6/7):425.

doi: 10.1002/1616-3028(20020618)12:6/7【-逻*辑*与-】#x00026;lt;425::AID-ADFM425【-逻*辑*与-】#x00026;gt;3.0.CO;2-U
[35]
Gu Z Z, Fujishima A, Sato O. Chem. Mater., 2002, 14(2):760.

doi: 10.1021/cm0108435
[36]
Zhou Z C, Zhao X S. Langmuir, 2004, 20(4):1524.

doi: 10.1021/la035686y
[37]
Wang Y F, Xie T S, Yang J, Lei M, Fan J, Meng Z H, Xue M, Qiu L L, Qi F L, Wang Z. Anal. Chimica Acta, 2019, 1070: 97.

doi: 10.1016/j.aca.2019.04.031
[38]
Wang Y F, Fan J, Meng Z H, Xue M, Qiu L L. Anal. Methods, 2019, 11(22):2875.

doi: 10.1039/C9AY00674E
[39]
Colodrero S, Ocaña M, Míguez H. Langmuir, 2008, 24(9):4430.

doi: 10.1021/la703987r pmid: 18366232
[40]
Ge J P, Lee H, He L, Kim J, Lu Z D, Kim H, Goebl J, Kwon S, Yin Y D. J. Am. Chem. Soc., 2009, 131(43):15687.

doi: 10.1021/ja903626h
[41]
Yang H S, Jang J, Lee B S, Kang T H, Park J J, Yu W R. Langmuir, 2017, 33(36):9057.

doi: 10.1021/acs.langmuir.7b01919
[42]
Lv J, Ding D F, Yang X K, Hou K, Miao X, Wang D W, Kou B C, Huang L, Tang Z Y. Angew. Chem. Int. Ed., 2019, 58(23):7783.

doi: 10.1002/anie.v58.23
[43]
Li Z W, Wang M S, Zhang X L, Wang D W, Xu W J, Yin Y D. Nano Lett., 2019, 19(9):6673.

doi: 10.1021/acs.nanolett.9b02984
[44]
Ko K H, Park E, Lee H, Lee W. ACS Appl. Mater. Interfaces, 2018, 10(14):11776.

doi: 10.1021/acsami.7b17122
[45]
Kuppler R J, Timmons D J, Fang Q R, Li J R, Makal T A, Young M D, Yuan D Q, Zhao D, Zhuang W J, Zhou H C. Coord. Chem. Rev., 2009, 253(23/24):3042.

doi: 10.1016/j.ccr.2009.05.019
[46]
Wu Y N, Li F T, Zhu W, Cui J C, Tao C A, Lin C X, Hannam P M, Li G T. Angew. Chem. Int. Ed., 2011, 50(52):12518.

doi: 10.1002/anie.201104597
[47]
Avci C, Imaz I, Carné-Sánchez A, Pariente J A, Tasios N, Pérez-Carvajal J, Alonso M I, Blanco A, Dijkstra M, López C, Maspoch D. Nat. Chem., 2018, 10(1):78.

doi: 10.1038/nchem.2875
[48]
Liu C, Tong Y L, Yu X Q, Shen H X, Zhu Z J, Li Q, Chen S. ACS Appl. Mater. Interfaces, 2020, 12(2):2816.

doi: 10.1021/acsami.9b18012
[49]
Li Z, Gosztola D J, Sun C J, Heald S M, Sun Y G. J. Mater. Chem. C, 2015, 3(11):2455.

doi: 10.1039/C5TC00077G
[50]
Shi W H, Cheng M F, Chen Q S, Wang S H, Zhou J, Wu Z Y. Microchimica Acta, 2020, 187(8):1.

doi: 10.1007/s00604-019-3921-8
[51]
Li H, Wang J X, Wang R M, Song Y L. Prog. Chem., 2011, 23(6):1060.
( 李珩, 王京霞, 王荣明, 宋延林. 化学进展, 2011, 23(6):1060.)
[52]
Paquet C, Kumacheva E. Mater. Today, 2008, 11(4):48.
[53]
Chen L. Master Dissertation of University of Electronic Science and Technology of China, 2016.
( 陈璐. 电子科技大学硕士学位论文, 2016.)
[54]
Lv S Y. J. Yanan Univ., 2013, 32(4): 22.
( 吕淑媛. 延安大学学报, 2013, 32(4): 22.)
[55]
Sun B, Ai S Y. Prog. Chem., 2014, 26(5):834.
( 孙兵, 艾仕云. 化学进展, 2014, 26(5):834.)
[56]
Chen C. Doctoral Dissertation of Shanghai Jiao Tong University, 2013.
( 陈晨. 上海交通大学博士学位论文, 2013.)
[57]
Yu Y H, Brandt S, Nicolas N J, Aizenberg J. ACS Appl. Mater. Interfaces, 2020, 12(1):1924.

doi: 10.1021/acsami.9b19836
[58]
Wang F Y, Zhu Z G, Xue M, Xue F, Wang Q H, Meng Z H, Lu W, Chen W, Qi F L, Yan Z Q. Sens. Actuat. B: Chem., 2015, 220:222.

doi: 10.1016/j.snb.2015.05.057
[59]
Ahmad O S, Bedwell T S, Esen C, Garcia-Cruz A, Piletsky S A. Trends Biotechnol., 2019, 37(3):294.

doi: S0167-7799(18)30249-X pmid: 30241923
[60]
Li L, Lin Z Z, Huang Z Y, Peng A H. Food Chem., 2019, 281:57.

doi: 10.1016/j.foodchem.2018.12.073
[61]
Chen W, Lei W, Xue M, Xue F, Meng Z H, Zhang W B, Qu F, Shea K J. J. Mater. Chem. A, 2014, 2(20):7165.

doi: 10.1039/c4ta00048j
[62]
Deng J Z, Chen S, Chen J L, Ding H L, Deng D W, Xie Z Y. ACS Appl. Mater. Interfaces, 2018, 10(40):34611.

doi: 10.1021/acsami.8b11655
[63]
Fuchs S, Berger R, Klomp L, Koning T. Mol. Genet. Genom, 2005, 85(3):168.
[64]
Vignolini S, Rudall P J, Rowland A V, Reed A, Moyroud E, Faden R B, Baumberg J J, Glover B J, Steiner U. PNAS, 2012, 109(39):15712.

pmid: 23019355
[65]
Rizvi A S, Murtaza G, Yan D, Irfan M, Xue M, Meng Z H, Qu F. Talanta, 2020, 208:120403.

doi: 10.1016/j.talanta.2019.120403
[66]
Zhang Y L, Pan Z, Yuan Y X, Sun Z M, Ma J K, Huang G B, Xing F B, Gao J P. Phys. Chem. Chem. Phys., 2013, 15(40):17250.

doi: 10.1039/c3cp52213j
[67]
Zhang Y X, Zhao P Y, Yu L P. Sens. Actuat. B: Chem., 2013, 181:850.

doi: 10.1016/j.snb.2013.02.079
[68]
MacConaghy K I, Geary C I, Kaar J L, Stoykovich M P. J. Am. Chem. Soc., 2014, 136(19):6896.

doi: 10.1021/ja5031062 pmid: 24761969
[69]
Qiu X Z, Chen W M, Luo Y L, Wang Y L, Wang Y L, Guo H S. Anal. Chimica Acta, 2020,1093: 142.
[70]
Chen S L, Sun H, Huang Z J, Jin Z K, Fang S Y, He J H, Liu Y Y, Zhang Y, Lai J P. RSC Adv., 2019, 9(29):16831.

doi: 10.1039/C9RA01600G
[71]
Zhang Y Q, Li Q R, Guo P, Zhang E S, Wu K, Liu Y, Lv H, Hou X Y, Wang J J. J. Mater. Chem. C, 2018, 6(27):7326.

doi: 10.1039/C8TC01461B
[72]
Gao B B, Liao J L, Guo M Z, Liu H, He B F, Gu Z Z. Adv. Funct. Mater., 2019, 29(51):1970349.

doi: 10.1002/adfm.v29.51
[73]
Ren W J, Qin M, Hu X T, Li F Y, Wang Y F, Huang Y, Su M, Li W B, Qian X, Tang K L, Song Y L. Anal. Chem., 2018, 90(11):6371.

doi: 10.1021/acs.analchem.8b01549
[74]
Gao B B, Yang Y Q, Liao J L, He B F, Liu H. Lab a Chip, 2019, 19(21):3602.

doi: 10.1039/C9LC00907H
[75]
Wang H, Sun X K, Zhang T X, Chen X, Zhu J Y, Xu W, Bai X, Dong B, Cui H N, Song H W. J. Mater. Chem. C, 2018, 6(1):147.

doi: 10.1039/C7TC04824F
[76]
Chi J J, Shao C M, Du X, Liu H, Gu Z Z. ACS Appl. Mater. Interfaces, 2018, 10(45):39144.

doi: 10.1021/acsami.8b11552
[77]
Zhang Y Q, Mu L D, Zhou R, Li P, Liu J Q, Gao L J, Heng L P, Jiang L. J. Mater. Chem. C, 2016, 4(41):9841.

doi: 10.1039/C6TC03862J
[78]
Zhao X W, Xue J Y, Mu Z D, Huang Y, Lu M, Gu Z Z. Biosens. Bioelectron., 2015, 72:268.

doi: 10.1016/j.bios.2015.05.036
[79]
Chen G J, Zhang K L, Luo B B, Hong W, Chen J, Chen X D. Biosens. Bioelectron., 2019, 143:111596.

doi: 10.1016/j.bios.2019.111596
[80]
Zhao Y, Zhang X J, Ye J, Chen L M, Lau S P, Zhang W J, Lee S T. ACS Nano, 2011, 5(4):3027.

doi: 10.1021/nn2001068 pmid: 21443259
[81]
Qi D, Lu L J, Wang L Z, Zhang J L. J. Am. Chem. Soc., 2014, 136(28):9886.

doi: 10.1021/ja5052632
[82]
Van Leest T, Caro J. Lab a Chip, 2013, 13(22):4358.

doi: 10.1039/c3lc50879j
[83]
Chang Y H, Hasan D H, Dong B W, Wei J X, Ma Y M, Zhou G Y, Ang K W, Lee C. ACS Appl. Mater. Interfaces, 2018, 10(44):38272.

doi: 10.1021/acsami.8b16623
[84]
Puzzo D, Arsenault A, Manners I, Ozin G. Angew. Chem. Int. Ed., 2009, 48(5):943.

doi: 10.1002/anie.v48:5
[85]
Chen X, Li D Y, Pan G C, Zhou D L, Xu W, Zhu J Y, Wang H, Chen C, Song H W. Nanoscale, 2018, 10(22):10505.

doi: 10.1039/c8nr02115e pmid: 29799052
[86]
Dang X M, Song Z L, Zhao H M. Sens. Actuat. B: Chem., 2020, 310:127888.

doi: 10.1016/j.snb.2020.127888
[87]
Pan D D, Xun M Y, Lan H Z, Li J L, Wu Z, Guo Y X. Anal. Bioanal. Chem., 2019, 411(29):7737.

doi: 10.1007/s00216-019-02109-1
[88]
Zhao W T. Doctoral Dissertation of Beijing Institute of Technology University, 2015.
( 赵文涛. 北京理工大学博士学位论文, 2015.)
[89]
Zhang Y A, Huan S M, Qian C T, Wu Q Z, He J F. Appl. Polym. Sci., 2016, 133:43191.
[90]
Zhang Y H, Ren H H, Yu L P. Anal. Methods, 2018, 10(1):101.

doi: 10.1039/C7AY02283B
[91]
Liu X Y, Fang H X, Yu L P. Talanta, 2013, 116:283.

doi: 10.1016/j.talanta.2013.05.003
[92]
Wu Z, Hu X B, Tao C A, Li Y, Liu J, Yang C D, Shen D Z, Li G T. J. Mater. Chem., 2008, 18(45):5452.

doi: 10.1039/b811189h
[93]
Sai N, Wu Y T, Sun Z, Huang G W, Gao Z X. Talanta, 2015, 144:157.

doi: 10.1016/j.talanta.2015.05.079 pmid: 26452805
[94]
Zhang R F, Zeng F, Pang F, Ge J P. ACS Appl. Mater. Interfaces, 2018, 10(49):42241.

doi: 10.1021/acsami.8b14437
[95]
Mbous Y P, Hayyan M, Hayyan A, Wong W F, Hashim M A, Looi C Y. Biotechnol. Adv., 2017, 35(2):105.

doi: S0734-9750(16)30152-5 pmid: 27923764
[96]
Liu Y Y, Wang, Yu J R, Zhu J, Hu Z M. J. Donghua Univ., 2018, 44(1):45.
( 刘莹莹, 王彦, 于俊荣, 诸静, 胡祖明. 东华大学学报, 2018, 44(1):45.)
[97]
Wang H Q, Su Z M, Li C H. Chin. Sci. Bull., 2020, 65(1):37.

doi: 10.1360/TB-2019-0427
( 王洪芹, 苏治名, 李承辉. 科学通报, 2020, 65(1):37.)
[1] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[2] Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*. Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites [J]. Progress in Chemistry, 2018, 30(11): 1749-1760.
[3] Yang Yukun, Wang Xiaomin, Fang Guozhen, Yun Yaguang, Guo Ting, Wang Shuo. Electrochemiluminescence Analysis Based on Molecular Imprinting Technique [J]. Progress in Chemistry, 2016, 28(9): 1351-1362.
[4] Shi Xingbo, Wen Chao, Fu Zhaodi, Deng Fangming, Zheng Shu, Liu Qiuyun. Photo Properties and Applications of Single Quantum Dots [J]. Progress in Chemistry, 2014, 26(11): 1781-1792.
[5] Zhang Hui, He Hua, Li Jie, Li Hui, Yao Yuyang. Water-Compatible Molecular Imprinting Separation Technique and Its Application in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(10): 2140-2150.
[6] . Molecularly Imprinted Functional Materials Based on Polysaccharides [J]. Progress in Chemistry, 2010, 22(11): 2165-2172.
[7] . Preparation and Application of Core-shell Magnetic Molecularly Imprinted Polymer Microspheres [J]. Progress in Chemistry, 2010, 22(09): 1819-1825.
[8] . Molecular Imprinting Technology Based on Cyclodextrins [J]. Progress in Chemistry, 2010, 22(05): 888-897.
[9] Liu Yong Shu Yuanjie Liu Xueyong Xiong Ying Zhong Fachun Sun Yi. Application of Molecular Imprinting and Fluorescence Analysis Techniques in Explosive Detection [J]. Progress in Chemistry, 2009, 21(12): 2712-2717.
[10] Si Bianjing Chen Changbao Zhou Jie. New-Generation Molecular Imprinting Technique [J]. Progress in Chemistry, 2009, 21(09): 1813-1819.
[11] Yan Changling1,2 Lu Yan1,2 ** . Two-Dimensional Imprinting of Protein Molecules [J]. Progress in Chemistry, 2008, 20(06): 969-974.
[12] Gai Qingqing1,3 Liu Qiuye1 He Xiwen1** Li Wenyou1 Chen Langxing1 Zhang Yukui1,2**. Molecularly Imprinting Technology for Protein Recognition [J]. Progress in Chemistry, 2008, 20(06): 957-968.
[13] Wang Xuejun, Xu Zhenliang*|Yang Zuoguo,Bing Naici. Molecular Recognition in Aqueous Media with Molecular Imprinting Technique [J]. Progress in Chemistry, 2007, 19(05): 805-812.
[14] Guo Tianying**,Zhang Liying,Hao Guangjie,Song Moudao,Zhang Banghua. Molecular Imprinting Polymers for Chiral Separation of Amino Acid Derivatives [J]. Progress in Chemistry, 2004, 16(04): 638-.
[15] Shi Ruixue,Guo Chenghai,Zou Xiaohong,Zhu Chunye,Zuo Yanjun,Deng Yundu. The Development of Research in Molecular Imprinting Technique [J]. Progress in Chemistry, 2002, 14(03): 182-.