中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2316-2328 DOI: 10.7536/PC211220 Previous Articles   

• Review •

Preparation of Mesoporous Carbon Materials via Emulsion Method

Zhao Xiaoxi, Wang Cong, Tian Yong(), Wang Xiufang()   

  1. College of Pharmacy, Guangdong Pharmaceutical University,Guangzhou 510006, China
  • Received: Revised: Online: Published:
  • Contact: Tian Yong, Wang Xiufang
  • Supported by:
    Natural Science Foundation of Guangdong Province(2022A1515011225); Key Project for Innovation/ Enhancing Guangdong Pharmaceutical University(2020ZDZX2023)
Richhtml ( 49 ) PDF ( 886 ) Cited
Export

EndNote

Ris

BibTeX

Mesoporous carbons with unique features, such as high specific surface area, regular pore channels, homogeneous nano-framework, and tunable pore size, stand out from carbonaceous materials and are applied in a wide range of fields, including energy storage and conversion, catalyst, adsorption as well as drug delivery. Microemulsion method is characterized by simple preparation process, environmental friendliness, feasibility for large-scale production, and controllable product structure, which has made a breakthrough in preparation of mesoporous carbon with controllable pore structure and special morphology. Herein, the research progress of microemulsion preparation of mesoporous carbon is reviewed and the reaction mechanisms are analyzed. Besides, influencing factors controlling the pore morphology and internal structure of mesoporous carbon materials are further investigated. Finally, applications of novel mesoporous carbon materials in the fields of energy storage, catalyst, adsorption and drug delivery are summarized, and the future development prospects are put forward.

Fig. 1 The development of mesoporous carbon[10,14,15,23,27,28]
Table 1 Technology comparison for mesoporous carbon nanoparticles prepared by microemulsion methods
Fig. 2 (a) Schematic illustration of the construction of bowl-like mesoporous carbon nanoparticles; (b~d) SEM images of mesoporous nanoparticles under different TMB content[27]. Copyright? 2016, American Chemical Society
Fig. 3 (a) Electron microscopic images of HOCFs generated at different hydrothermal times; (b) Schematic growth mechanism of the HOCFs[19]; Copyright 2017, American Chemical Society. (c) TEM images and nitrogen sorption isotherms of mesoporous carbon @silicon nanoparticles synthesized with different ethanol concentrations[44]. Copyright 2021, Elsevier
Fig. 4 (a) fabrication procedure of the desired hole-shell microparticles from W/O/W emulsions[51]; Copyright 2017, Wiley. (b) microfluidic production of mesoporous carbon spheres[53]. Copyright 2015, Elsevier
Fig. 5 (a) Schematic illustration of the formation process for the carbon nanospheres with various morphology[60]; Copyright 2019, American Chemical Society. (b) Schematic illustration of the formation process and (c) TEM images of the gradient-pore mesoporous carbon nanospheres[61]. Copyright 2021, Elsevier
Fig. 6 (a) Schematic representation and electron microscopy images of mesophase transition of polydopamine particles[74]; Copyright 2018, Wiley. (b) schematic illustration of the construction mechanisms of anisotropic polymeric particles[28]. Copyright 2021, Wiley
Fig. 7 (a) schematic diagram of synthesis of multi-chamber mesoporous carbon nanospheres[76]; Copyright 2017, Wiley. the interior structural evolution of MCMs as a function of (b) base concentration, and (c) temperature and amount of phenol[77]. Copyright 2019, American Chemical Society
Fig. 8 (a) synthesis diagram and electron microscope image of PtCo@HPS[37];Copyright 2014, Nature.(b) dendritic Au/RA-MC catalyst was used for the hydrogenation of 4-nitrophenol to 4-aminophenol[85]; Copyright 2020, Wiley
Fig. 9 (a) Confocal microscopy images of HaCaT cells co-cultured with raspberry-like mesoporous carbon[40]; Copyright 2020, Elsevier. (b) schematic diagram of hemolysis experiment of MC@MS and cell uptake experimental result[44]. Copyright 2021, Elsevier
[45]
Wang W, Zhang M J, Chu L Y. Acc. Chem. Res., 2014, 47: 373.

doi: 10.1021/ar4001263
[46]
Liu W Y, Wang W, Ju X J, Liu Z, Xie R, Chu L Y. Chem. Eng. Sci., 2021, 231: 116242.

doi: 10.1016/j.ces.2020.116242
[47]
Sundararajan P, Wang J, Rosen L A, Procopio A, Rosenberg K. Chem. Eng. Sci., 2018, 178: 199.

doi: 10.1016/j.ces.2017.12.013
[48]
Lee D, Weitz D A. Small, 2009, 5: 1932.

doi: 10.1002/smll.200900357
[49]
Chen C H, Abate A R, Lee D, Terentjev E M, Weitz D A. Adv. Mater., 2009, 21: 3201.

doi: 10.1002/adma.200900499
[50]
Werner J G, Lee H, Wiesner U, Weitz D A. ACS Nano, 2021, 15: 3490.

doi: 10.1021/acsnano.1c00068 pmid: 33556234
[51]
Wang W, Zhang M J, Xie R, Ju X J, Yang C, Mou C L, Weitz D A, Chu L Y. Angew. Chem. Int. Ed., 2013, 52: 8084.

doi: 10.1002/anie.201301590 pmid: 23754517
[52]
Pan Y C, Ju M H, Wang C Q, Zhang L X, Xu N P. Chem Commun., 2010, 46: 3732.

doi: 10.1039/c003161e
[53]
Ge H, Xu H B, Lu T Y, Li J, Chen H S, Wan J D. J. Colloid Interface. Sci., 2016, 461: 168.

doi: 10.1016/j.jcis.2015.09.018
[54]
Wang W, Xie R, Ju X J, Liu Z, Chu L Y. Prog. Chem., 2018, 30 (1): 44.

doi: 10.7536/PC170835
汪伟, 谢锐, 巨晓洁, 刘壮, 褚良银. 化学进展, 2018, 30 (1): 44.).

doi: 10.7536/PC170835
[55]
Liu C, Yu M H, Li Y, Li J S, Wang J, Yu C Z, Wang L J. Nanoscale, 2015, 7: 11580.

doi: 10.1039/C5NR02389K
[56]
Zhao J H, Shan W D, Zhang P F, Dai S. Chem. Eng. J., 2020, 381: 122579.

doi: 10.1016/j.cej.2019.122579
[57]
Zhang Y H, Liu B H, Borjigin T, Xia S B, Yang X F, Sun S H, Guo H. J. Power Sources, 2020, 450: 227696.

doi: 10.1016/j.jpowsour.2019.227696
[58]
Tang J, Liu J, Li C L, Li Y Q, Tade M O, Dai S, Yamauchi Y. Angew. Chem., 2015, 54: 588.
[59]
Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y. J. Am. Chem. Soc., 2005, 127: 13508.

doi: 10.1021/ja0545721
[60]
Peng L, Hung C T, Wang S, Zhang X M, Zhu X H, Zhao Z W, Wang C Y, Tang Y, Li W, Zhao D Y. J. Am. Chem. Soc., 2019, 141: 7073.

doi: 10.1021/jacs.9b02091
[61]
Peng L, Peng H, Hung C T, Guo D Y, Duan L L, Ma B, Liu L L, Li W, Zhao D Y. Chem, 2021, 7: 1020.

doi: 10.1016/j.chempr.2021.01.001
[62]
Liu Q, Li H, Cui X, Liu X, Zhang X, Yang Y React. Funct. Polym., 2019, 144: 104349.

doi: 10.1016/j.reactfunctpolym.2019.104349
[63]
Du J, Yu Y F, Liu L, Lv H J, Chen A B, Hou S L. ACS Appl. Energy Mater., 2019, 2: 4402.

doi: 10.1021/acsaem.9b00578
[64]
Meng T J, Nsabimana A, Liu Z Y, Jia H X, An S Y, Wang H, Zhang Y F. J. Colloid Interface Sci., 2020, 579: 12.

doi: 10.1016/j.jcis.2020.06.053
[65]
Liang J, Kou H R, Ding S J. Adv. Funct. Mater., 2020, 31: 2007801.

doi: 10.1002/adfm.202007801
[66]
Li Y, Tan H B, Salunkhe R R, Tang J, Shrestha L K, Bastakoti B P, Rong H P, Takei T, Henzie J, Yamauchi Y, Ariga K. Chem. Commun., 2016, 53: 236.

doi: 10.1039/C6CC07360C
[67]
Zhao T C, Zhu X H, Hung C T, Wang P Y, Elzatahry A, Al-Khalaf A A, Hozzein W N, Zhang F, Li X M, Zhao D Y. J. Am. Chem. Soc., 2018, 140: 10009.

doi: 10.1021/jacs.8b06127
[68]
Agrawal G, Agrawal R. ACS Appl. Nano Mater., 2019, 2: 1738.

doi: 10.1021/acsanm.9b00283
[69]
Chen C H, Xie L, Wang Y. Nano Res., 2019, 12: 1267.

doi: 10.1007/s12274-019-2324-9
[70]
Fu J Y, Gu Z Y, Liu Y, Zhang J, Song H, Yang Y N, Yang Y, Noonan O, Tang J, Yu C Z. Chem. Sci., 2019, 10: 10388.

doi: 10.1039/C9SC02961C
[71]
Zhu X H, Xia Y, Zhang X M, Al-Khalaf A A, Zhao T C, Xu J X, Peng L, Hozzein W N, Li W, Zhao D Y. J. Mater. Chem. A, 2019, 7:8975.

doi: 10.1039/C9TA01478K
[72]
Wang J, Chang Z, Ding B, Li T, Yang G L, Pang Z B, Nakato T, Eguchi M, Kang Y, Na J B, Guan B Y, Yamauchi Y. Angew. Chem. Int. Ed., 2020, 59: 19570.

doi: 10.1002/anie.202007063
[73]
Guan B Y, Yu L, Lou X W. Adv. Mater., 2016, 28: 9596.

doi: 10.1002/adma.201603622
[74]
Guan B Y, Zhang S L, Lou X W. Angew. Chem. Int. Ed., 2018, 57: 6176.

doi: 10.1002/anie.201801876
[75]
Hu X, Li J W, Zhong G B, Liu Y J, Yuan J, Lei S, Zhan H B, Wen Z H. Small, 2020, 16: e2005534.
[76]
Zhang L H, He B, Li W C, Lu A H. Adv. Energy Mater., 2017, 7: 1701518.

doi: 10.1002/aenm.201701518
[77]
Liu D, Xue N, Wei L, Zhang Y, Qin Z, Li X, Binks B P, Yang H. Angew. Chem. Int. Ed., 2018, 57: 10899.

doi: 10.1002/anie.201805022
[1]
Liu J, Wickramaratne N P, Qiao S Z, Jaroniec M. Nat. Mater., 2015, 14: 763.

doi: 10.1038/nmat4317
[2]
Pan P, Zhang T, Yue Q, Elzatahry AA, Alghamdi A, Cheng X, Deng Y. Adv. Sci., 2020, 7: 2000443.

doi: 10.1002/advs.202000443
[3]
Wickramaratne N P, Xu J T, Wang M, Zhu L, Dai L M, Jaroniec M. Chem., Mater., 2014, 26: 2802.
[4]
Wu Z X, Wu D W, Liu W J, Selomulya C, Chen X D, Zhao D Y. Angew. Chem., 2013, 125: 14009.

doi: 10.1002/ange.201307608
[5]
Li W, Liu J, Zhao D Y. Nat. Rev. Mater., 2016, 1: 6023.
[6]
Zu L, Zhang W, Qu L, Liu L, Li W, Yu A, Zhao D Y. Adv. Energy Mater., 2020, 10: 2002152.

doi: 10.1002/aenm.202002152
[7]
Doustkhah E, Lin J J, Rostamnia S, Len C, Luque R, Luo X, Bando Y, Wu K C, Kim J, Yamauchi Y, Yusuke I. Chem.Eur.J., 2019, 25: 1614.
[8]
Goscianska J, Olejnik A, Ejsmont A, Galarda A, Wuttke S. J. Colloid Interface Sci., 2021, 586: 673.

doi: 10.1016/j.jcis.2020.10.137
[9]
Kresge C T, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359: 710.

doi: 10.1038/359710a0
[10]
Ryoo R, Joo S H, Shinae J. J. Phys. Chem. B, 1999, 103: 7743.

doi: 10.1021/jp991673a
[11]
Han S, Hyeon T. Chem. Commun., 1999, 19: 1955.
[12]
Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem. Mater., 2006, 18: 4447.

doi: 10.1021/cm060921u
[13]
Huang Y, Cai H, Yu T, Zhang F, Zhang F, Meng Y, Gu D, Wan Y, Sun X, Tu B, Zhao D Y. Angew. Chem., 2007, 119: 1107.

doi: 10.1002/ange.200603665
[14]
Meng Y, Gu D, Zhang F, Shi Y, Yang H, Li Z, Yu C, Tu B, Zhao D Y. Angew. Chem., 2005, 117: 7215.

doi: 10.1002/ange.200501561
[15]
Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angew. Chem., 2010, 122: 8159.

doi: 10.1002/ange.201002849
[16]
Chen Y, Xu P, Wu M, Meng Q, Chen H, Shu Z, Wang J, Zhang L, Li Y, Shi J L. Adv. Mater., 2014, 26: 4294.

doi: 10.1002/adma.201400303
[17]
Qi J, Lai X, Wang J, Tang H, Ren H, Yang Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H, Wang D. Chem. Soc. Rev., 2015, 44: 6749.

doi: 10.1039/C5CS00344J
[78]
Ye W, Wang L, Yin Y, Fan X, Cheng Y, Gao H, Zhang H, Zhang Q, Luo G, Wang M S. ACS Energy Lett., 2021, 6: 2145.

doi: 10.1021/acsenergylett.1c00456
[79]
Ren D F, Xu J Q, Chen N, Ye Z X, Li X F, Chen Q F, Ma S Y. Colloids Surf. A Physicochem. Eng. Asp., 2021, 611: 125773.

doi: 10.1016/j.colsurfa.2020.125773
[80]
Na X M, Gao F, Zhang L Y, Su Z G, Ma G H. ACS Macro Lett., 2012, 1: 697.

doi: 10.1021/mz200222d
[81]
Qian Q, Huang X, Zhang X, Xie Z, Wang Y. Angew. Chem. Int. Ed., 2013, 52: 10625.

doi: 10.1002/anie.201305003
[82]
Tan H, Tang J, Henzie J, Li Y, Xu X, Chen T, Wang Z, Wang J, Ide Y, Bando Y, Yamauchi Y. ACS Nano, 2018, 12: 5674.

doi: 10.1021/acsnano.8b01502
[83]
Guo D Y, Fu Y X, Bu F X, Liang H C, Duan L L, Zhao Z W, Wang C Y, El-Toni A M, Li W, Zhao D Y. Small Methods, 2021, 5: 2001137.

doi: 10.1002/smtd.202001137
[84]
Zhang W, Zhu K R, Ren W X, He H L, Liang H C, Zhai Y P, Li W. Adv. Mater. Interfaces, 2022, 9: 2101528.

doi: 10.1002/admi.202101528
[85]
Yang X Y, Lu P H, Yu L, Pan P P, Elzatahry A A, Alghamdi A, Luo W, Cheng X W, Deng Y H. Adv. Funct. Mater., 2020, 30: 2002488.

doi: 10.1002/adfm.202002488
[86]
Zhou T S, Zhou Y, Ma R G, Zhou Z Z, Liu G H, Liu Q, Zhu Y F, Wang J C. Carbon, 2017, 114: 177.

doi: 10.1016/j.carbon.2016.12.011
[87]
Bi T J, Wan J F, Yang S L, Yu X J, Ma F W. Nano, 2015, 10: 1550076.

doi: 10.1142/S1793292015500769
[88]
Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D Y, AlBahily K, Vinu A. Chem. Soc. Rev., 2020, 49: 4360.

doi: 10.1039/D0CS00075B
[89]
Yang Y Q, Chuah C Y, Bae T H. ACS Sustain. Chem. Eng., 2021, 9: 2017.

doi: 10.1021/acssuschemeng.0c06280
[90]
Lakhi K S, Singh G, Kim S, Baskar A V, Joseph S, Yang J H, Ilbeygi H, Ruban S J M, Vu V T H, Vinu A. Microporous Mesoporous Mater., 2018, 267: 134.

doi: 10.1016/j.micromeso.2018.03.024
[91]
Choma J, Jedynak K, Fahrenholz W, Ludwinowicz J, Jaroniec M. Appl. Surf. Sci., 2014, 289: 592.

doi: 10.1016/j.apsusc.2013.11.051
[92]
Lakhi K S, Park D H, Singh G, Talapaneni S N, Ravon U, Al-Bahily K, Vinu A. J. Mater. Chem. A, 2017, 5: 16220.

doi: 10.1039/C6TA10716H
[93]
Liu L, Xu S D, Wang F Y, Song Y J, Liu J, Gao Z M, Yuan Z Y. RSC Adv., 2017, 7: 12524.

doi: 10.1039/C6RA26424G
[94]
Wu Z, Webley P A, Zhao D Y. J. Mater. Chem., 2012, 22: 11379.

doi: 10.1039/c2jm16183d
[18]
Zhang H, Noonan O, Huang X, Yang Y, Xu C, Zhou L, Yu C. ACS Nano, 2016, 10: 4579.

doi: 10.1021/acsnano.6b00723
[19]
Chen C, Wang H, Han C, Deng J, Wang J, Li M, Tang M, Jin H, Wang Y J. Am. Chem. Soc., 2017, 139: 2657.

doi: 10.1021/jacs.6b10841
[20]
Zhang Z, Qin M, Jia B, Zhang H, Wu H, Qu X. Chem. Commun., 2017, 53: 2922.

doi: 10.1039/C7CC00219J
[21]
Peng L, Peng H R, Liu Y, Wang X, Hung C, Zhao Z W, Chen G, Li W, Mai L Q, Zhao D Y. Sci. Adv., 2021, 7: eabi7403.

doi: 10.1126/sciadv.abi7403
[22]
Jung D S, Hwang T H, Lee J H, Koo H Y, Shakoor R A, Kahraman R, Jo Y N, Park M S, Choi J W. Nano Lett., 2014, 14: 4418.

doi: 10.1021/nl501383g pmid: 25007002
[23]
Qiao Z A, Guo B, Binder A J, Chen J, Veith G M, Dai S Nano Lett., 2013, 13: 207.

doi: 10.1021/nl303889h
[24]
Huang W Q, Chong J, Tian Y, Wang X F. Chem. Eng. J., 2017, 327: 18.

doi: 10.1016/j.cej.2017.06.041
[25]
Wang Q G, He L, Zhao L Y, Liu R S, Zhang W P, Lu A H. Adv. Funct. Mater., 2019, 30: 1906117.

doi: 10.1002/adfm.201906117
[26]
Wu J H, Hu L, Wang N, Li Y M, Zhao D K, Li L G, Peng X W, Cui Z M, Ma L J, Tian Y, Wang X F. Appl. Catal. B, 2019, 254: 55.

doi: 10.1016/j.apcatb.2019.04.064
[27]
Guan B Y, Yu L, Lou X W. J. Am. Chem. Soc., 2016, 138: 11306.

doi: 10.1021/jacs.6b06558
[28]
Li C, Peng H, Cai J, Li L, Zhang J, Mai Y. Adv. Mater., 2021, 33: e2102930.
[29]
Fan J B, Song Y Y, Liu H, Lu Z Y, Zhang F L, Liu H L, Meng J X, Gu L, Wang S T, Jiang L. Sci. Adv., 2017, 3: e1603203.

doi: 10.1126/sciadv.1603203
[30]
Liu Y D, Goebl J, Yin Y D. Chem. Soc. Rev., 2013, 42: 2610.

doi: 10.1039/C2CS35369E
[31]
Schacht S, Hou Q, Voigt-Martin I G, Stucky G D, Schiith F. Science, 1996, 273: 768.

doi: 10.1126/science.273.5276.768
[32]
Xia Y, Na X, Wu J, Ma G. Adv. Mater., 2019, 31: e1801159.
[33]
Hu J, Zhou S, Sun Y, Fang X, Wu L. Chem. Soc. Rev., 2012, 41: 4356.

doi: 10.1039/c2cs35032g
[34]
Piradashvili K, Alexandrino E M, Wurm F R, Landfester K. Chem. Rev., 2015, 116: 2141.

doi: 10.1021/acs.chemrev.5b00567
[95]
Liu L, Deng Q F, Ma T Y, Lin X Z, Hou X X, Liu Y P, Yuan Z Y. J. Mater. Chem., 2011, 21: 16001.

doi: 10.1039/c1jm12887f
[96]
Kalantari M, Zhang J, Liu Y, Yu C Z. Chemosphere, 2019, 215: 716.

doi: S0045-6535(18)31926-X pmid: 30352371
[97]
Kalantari M, Yu M H, Noonan O, Song H, Xu C, Huang X D, Xiang F X, Wang X L, Yu C Z. Chemosphere, 2017, 166: 109.

doi: S0045-6535(16)31286-3 pmid: 27689890
[98]
Zhu X J, Chong J, Hu T, Wang X F, Tian Y. J. Mater. Chem. A, 2017, 5: 8297.

doi: 10.1039/C6TA10892J
[99]
Wang W, Wang P, Chen L, Zhao M, Hung C T, Yu C, Al-Khalaf A A, Hozzein W N, Zhang F, Li X, Zhao D Y. Chem., 2020, 6: 1097.

doi: 10.1016/j.chempr.2020.01.010
[100]
Xing Y, Zhou Y, Zhang Y, Zhang C, Deng X, Dong C, Shuang S. ACS Biomater. Sci. Eng., 2020, 6: 1573.

doi: 10.1021/acsbiomaterials.0c00042
[101]
Teng Z, Wang C, Tang Y, Li W, Bao L, Zhang X, Su X, Zhang F, Zhang J, Wang S, Zhao D Y, Lu G. J. Am. Chem. Soc., 2018, 140: 1385.

doi: 10.1021/jacs.7b10694
[102]
Zhuo S Y, Yu X, Wang C, Liu S L, Wang X F, Tian Y. Mater. Lett., 2021, 289: 129440.

doi: 10.1016/j.matlet.2021.129440
[103]
Liu J, Xie L, Deng J, Gong Y, Tang G, Bai H, Wang Y. Chem. Mater., 2019, 31: 7186.

doi: 10.1021/acs.chemmater.9b01449
[104]
Xie H, Zhao Y, Tian Y, Wang X, Yan M. Carbon, 2019, 152: 295.

doi: 10.1016/j.carbon.2019.06.029
[105]
Fang Y, Zheng G, Yang J, Tang H, Zhang Y, Kong B, Lv Y, Xu C, Asiri A M, Zi J, Zhang F, Zhao D Y. Angew. Chem. Int. Ed., 2014, 126: 5470.

doi: 10.1002/ange.201402002
[35]
Anjali T G, Basavaraj M G. Langmuir, 2018, 35: 3.

doi: 10.1021/acs.langmuir.8b01139
[36]
Liu J, Yang T, Wang D W, Lu G Q, Zhao D Y, Qiao S Z. Nat. Commun., 2013, 4: 2798.

doi: 10.1038/ncomms3798
[37]
Wang G H, Hilgert J, Richter F H, Wang F, Bongard H J, Spliethoff B, Weidenthaler C, Schuth F. Nat. Mater., 2014, 13: 293.

doi: 10.1038/nmat3872
[38]
Liu X, Song P P, Hou J, Wang B, Xu F, Zhang X M. ACS Sustain. Chem. Eng., 2018, 6: 2797.

doi: 10.1021/acssuschemeng.7b04634
[39]
Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 21: 11518.
[40]
Liu J, Zhao Y J, Xu L L, Wang X, F Tian Y. Microporous Mesoporous Mater., 2020, 293: 109803.

doi: 10.1016/j.micromeso.2019.109803
[41]
Wang T, Sun Y, Zhang L L, Li K Q, Yi Y K, Song S Y, Li M T, Qiao Z A, Dai S. Adv. Mater., 2019, 31: 1807876.

doi: 10.1002/adma.201807876
[42]
Liu D, Peng X, Wu B, Zheng X, Chuong T T, Li J, Sun S, Stucky G D. J. Am. Chem. Soc., 2015, 137: 9772.

doi: 10.1021/jacs.5b05027
[43]
Chen C H, Li X F, Deng J, Wang Z, Wang Y. ChemSusChem., 2018, 11: 2540.

doi: 10.1002/cssc.201801215
[44]
Zhao Y J, Lyu H L, Liu Y J, Liu W J, Tian Y, Wang X F. Carbon, 2021, 183: 912.

doi: 10.1016/j.carbon.2021.07.073
[1] Xiaozhu Zhao, Wen Li, Xuerui Zhao, Naipu He, Chao Li, Xuehui Zhang. Controlled Growth of MOFs in Emulsion [J]. Progress in Chemistry, 2023, 35(1): 157-167.
[2] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[3] Zhang Lingfeng, Hu Zhongpan, Gao Zemin, Liu Yalu, Yuan Zhongyong. Preparation and Catalytic Application of Ordered Mesoporous Carbon-Based Metal Composite Materials [J]. Progress in Chemistry, 2015, 27(8): 1042-1056.
[4] Liu Lei, Yuan Zhongyong. Ordered Mesoporous Carbon Materials Synthesized by Organic-Organic Self-Assembly [J]. Progress in Chemistry, 2014, 26(05): 756-771.
[5] Tian Yong, Wang Jia, Zhong Guoying, Lin Hansen, Wang Xiufang. Synthesis and New Application of Magnetic Ordered Mesoporous Carbons [J]. Progress in Chemistry, 2012, 24(07): 1270-1276.
[6] Li Xingliang, Song Qiang, Liu Bijun, Liu Chunxia, Wang Hang, Geng Junxia, Chen Zhen, Liu Ning, Li Shoujian. Adsorption of Uranium by Carbon Materials from Aqueous Solutions [J]. Progress in Chemistry, 2011, 23(7): 1446-1453.
[7]

Li Na|Wang Xianyou**|Yi Siyong|Dai Chunling

. Template Synthesis of Mesoporous Carbon Materials [J]. Progress in Chemistry, 2008, 20(0708): 1202-1207.