中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (4): 773-786 DOI: 10.7536/PC210901   Next Articles

• Review •

Exosomes Drug Delivery Systems and Their Application in Tumor Treatment

Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun()   

  1. Wuya College of Innovation, Shenyang Pharmaceutical University,Shenyang 110016, China
  • Received: Revised: Online: Published:
  • Contact: Jin Sun
Richhtml ( 59 ) PDF ( 768 ) Cited
Export

EndNote

Ris

BibTeX

Cancer is the second leading cause of death in the world, and the incidence rate of cancer remains high every year. Although existing treatments have made significant progress in the past decade, due to the non-specific cytotoxicity, poor biocompatibility and low bioavailability of existing anti-tumor drugs, the therapeutic effect of chemotherapy and other methods is poor. Exosomes are membrane vesicles secreted by various kinds of cells with phospholipid bilayer structure and nano particle size (30~100 nm). Exosomes are the media of information exchange and material transportation between cells, carrying proteins, lipids, nucleic acids and other substances of host cells. With the in-depth study of exosomes, their application is more and more widespread. In the process of intercellular communication, exosomes can regulate the biological response of target cells, which may promote or inhibit disease. They have good biocompatibility, high stability and excellent targetability. Exosomes serving as potentially effective drug delivery systems in cancer treatment have attracted increasing attention. In order to enhance the therapeutic effect of exosomes and reduce the toxicity of drugs to normal cells, it is necessary to improve the targetability of exosomes. Researchers try to customize exosomes with different targeting categories and abilities by modifying exosomes in various ways, which endows exosomes with broad prospects in the field of targeted therapy of tumors. This review highlights the design strategy of exosomes as drug carriers to target tumors, and tries to provide new insights of exosomes-based nanocarriers in various tumor treatment. Besides, this review mainly introduces the biogenesis of exosomes, the physiological function of exosomes and their separation methods. Particular attention is paid to the design strategy of engineered exosomes targeting tumors, including using exosomes from different sources, different surface modification methods and different stimuli-responsive exosomes. Finally, we summarize and discuss the progress of exosomes as drug carriers to solid tumors, and the deficiencies of exosomes in clinical application.

Contents

1 Introduction

2 Exosomes and their characteristics

2.1 Composition of exosomes

2.2 Biogenesis of exosomes

2.3 Physiological function of exosomes

2.4 Isolation of exosomes

2.5 Drug loading mechanism of exosomes

3 The design strategy of engineered exosomes targeting tumors

3.1 Exosomes from different cell sources

3.2 Surface modification of exosomes

3.3 Stimuli-responsive exosomes

4 Application of exosomes as drug delivery carriers in tumor therapy

4.1 Lung cancer

4.2 Pancreatic cancer

4.3 Breast cancer

4.4 Colorectal cancer

4.5 Glioblastoma

5 Conclusion and outlook

Fig. 1 Biogenesis of exosomes[44]
Table 1 Comparison of advantages and disadvantages of Isolation of exosomes
Fig. 2 Isolation of exosomes[40]
Table 2 Comparison of advantages and disadvantages of different techniques for loading cargos in exosomes
Fig. 3 Schematic illustration of E-PSiNPs as drug carriers for targeted cancer chemotherapy[56]
Fig. 4 Chemical bonding modification of exosomes[95]
Fig. 5 Schematic illustration of construction and delivery of drug-loaded SMNC-EXOs[98]
Fig. 6 (A) Schematic illustration of the design of FA-AuNR@RGD-DOX-Exos and their antitumor effect under NIR irradiation. The therapeutic efficiency of FA-AuNR@RGD-DOX-Exos was evaluated in a tumor-bearing mouse model. (B) Schematic illustration of FA-AuNR@RGD-DOX-Exos as a robust nanoplatform for targeted delivery and chemo-photothermal synergistic tumor therapy[102]
Fig. 7 Illustration of endogenous nanosonosensitizers for focused US-augmented targeting delivery to recognize homotypic cancer cell, stimuli-responsive drug release, and enhanced SDT[107]
Fig. 8 Schematic representation of the exosome-like sequential-bioactivating paclitaxel prodrug nanoplatform with CTCs clearance, CuB-mediated metastasis suppression, ROS enhancement, and cascade amplified PTX chemotherapy[1]
Fig. 9 Schematic representation of RGE-Exo-SPION/Cur synthesis[124]
[1]
Wang K Y, Ye H, Zhang X B, Wang X, Yang B, Luo C, Zhao Z Q, Zhao J, Lu Q, Zhang H T, Kan Q M, Wang Y J, He Z G, Sun J. Biomaterials, 2020, 257: 120224.

doi: 10.1016/j.biomaterials.2020.120224
[2]
Cheng Q Q, Shi X J, Han M L, Smbatyan G, Lenz H J, Zhang Y. J. Am. Chem. Soc., 2018, 140(48): 16413.

doi: 10.1021/jacs.8b10047
[3]
He C J, Zheng S, Luo Y, Wang B. Theranostics, 2018, 8(1): 237.

doi: 10.7150/thno.21945
[4]
Gaurav I, Thakur A, Iyaswamy A, Wang X H, Chen X Y, Yang Z J. Molecules, 2021, 26(6): 1544.

doi: 10.3390/molecules26061544
[5]
Kibria G, Ramos E K, Wan Y, Gius D R, Liu H P. Mol. Pharmaceutics, 2018, 15(9): 3625.

doi: 10.1021/acs.molpharmaceut.8b00277
[6]
Wang Y, Zhang Y R, Cai G, Li Q. Int. J. Nanomed., 2020, 15: 4257.

doi: 10.2147/IJN.S239548 pmid: 32606676
[7]
Yu G, Jung H, Kang Y Y, Mok H. Biomaterials, 2018, 162: 71.

doi: 10.1016/j.biomaterials.2018.02.003
[8]
Record M, Carayon K, Poirot M, Silvente-Poirot S. Biochim. Et Biophys. Acta BBA Mol. Cell Biol. Lipids, 2014, 1841(1): 108.
[9]
Kahlert C, Melo S A, Protopopov A, Tang J B, Seth S, Koch M, Zhang J H, Weitz J, Chin L, Futreal A, Kalluri R. J. Biol. Chem., 2014, 289(7): 3869.

doi: 10.1074/jbc.C113.532267
[10]
Deng W Y, Tang T T, Hou Y F, Zeng Q, Wang Y F, Fan W J, Qu S L. Clin. Chimica Acta, 2019, 495: 109.

doi: 10.1016/j.cca.2019.04.051
[11]
Melzer C, Rehn V, Yang Y Y, Bähre H, von der Ohe J, Hass R. Cancers, 2019, 11(6): 798.

doi: 10.3390/cancers11060798
[12]
Rashed M H, Bayraktar E, Helal G K, Abd-Ellah M, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Int. J. Mol. Sci., 2017, 18(3): 538.

doi: 10.3390/ijms18030538
[13]
Bang C, Thum T. Int. J. Biochem. Cell Biol., 2012, 44(11): 2060.

doi: 10.1016/j.biocel.2012.08.007
[14]
Antimisiaris S, Mourtas S, Marazioti A. Pharmaceutics, 2018, 10(4): 218.

doi: 10.3390/pharmaceutics10040218
[15]
Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De Medina P, Monsarrat B, Perret B, Silvente-Poirot S, Poirot M, Record M. J. Lipid Res., 2010, 51(8): 2105.

doi: 10.1194/jlr.M003657
[16]
Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu S C, Mato J M, Falcon-Perez J M. J. Proteome Res., 2008, 7(12): 5157.

doi: 10.1021/pr8004887 pmid: 19367702
[17]
Xu W, Yang Z, Lu N. J Exp Clin Cancer Res., 2016, 35(1):156.

doi: 10.1186/s13046-016-0429-5
[18]
Robbins P D, Morelli A E. Nat. Rev. Immunol., 2014, 14(3): 195.

doi: 10.1038/nri3622 pmid: 24566916
[19]
Patil S M, Sawant S S, Kunda N K. Eur. J. Pharm. Biopharm., 2020, 154: 259.

doi: 10.1016/j.ejpb.2020.07.026
[20]
Zhao Q, Chen S, Li T, Xiao B, Zhang X. J Clin Lab Anal., 2018, 32(4): e22333.

doi: 10.1002/jcla.22333
[21]
Xu Z Q, Yang M G, Liu H J, Su C Q. J. Cell. Biochem., 2018, 119(4): 3317.

doi: 10.1002/jcb.26492
[22]
Kalluri R, LeBleu V S. Science, 2020, 367(6478): eaau6977.

doi: 10.1126/science.aau6977
[23]
Yáñez-Mó M, Siljander P R M, Andreu Z, Bedina Zavec A, Borràs F E, Buzas E I, Buzas K, Casal E, Cappello F, Carvalho J, Colá s E, Cordeiro-da Silva A, Fais S, Falcon-Perez J M, Ghobrial I M, Giebel B, Gimona M, Graner M, Gursel I, Gursel M, Heegaard N H H, Hendrix A, Kierulf P, Kokubun K, Kosanovic M, Kralj-Iglic V, Krämer-Albers E M, Laitinen S, Lässer C, Lener T, Ligeti E, Linē A, Lipps G, Llorente A, Lötvall J, Manček-Keber M, Marcilla A, Mittelbrunn M, Nazarenko I, Nolte’t Hoen E N M, Nyman T A, O’Driscoll L, Olivan M, Oliveira C, Pá llinger É, del Portillo H A, Reventós J, Rigau M, Rohde E, Sammar M, Sá nchez-Madrid F, Santarém N, Schallmoser K, Stampe Ostenfeld M, Stoorvogel W, Stukelj R, van der Grein S G, Helena Vasconcelos M, Wauben M H M, de Wever O. J. Extracell. Vesicles, 2015, 4(1): 27066.

doi: 10.3402/jev.v4.27066
[24]
Sun B C, Peng J, Wang S F, Liu X J, Zhang K H, Zhang Z Z, Wang C, Jing X G, Zhou C F, Wang Y. Rev. Neurosci., 2018, 29(5): 531.

doi: 10.1515/revneuro-2017-0059
[25]
Lindenbergh M F S, Stoorvogel W. Annu. Rev. Immunol., 2018, 36(1): 435.

doi: 10.1146/annurev-immunol-041015-055700
[26]
Ye F, Wang Y, He Q J, Cui C, Yu H L, Lu Y X, Zhu S L, Xu H Y, Zhao X L, Yin H D, Li D Y, Li H, Zhu Q. Int. J. Biol. Sci., 2020, 16(6): 904.

doi: 10.7150/ijbs.35839
[27]
Konečná B, Tóthová L, Repiská G. Int. J. Mol. Sci., 2019, 20(12):2890.

doi: 10.3390/ijms20122890
[28]
Li K Y, Chen Y H, Li A, Tan C L, Liu X B. Int. J. Cancer, 2019, 144(7): 1486.

doi: 10.1002/ijc.31774
[29]
Jiang L Q, Dong H J, Cao H, Ji X F, Luan S Y, Liu J. Med. Sci. Monit., 2019, 25: 3329.

doi: 10.12659/MSM.914027
[30]
Li Z, Wang Y J, Xiao K, Xiang S, Li Z, Weng X S. Cell. Physiol. Biochem., 2018, 47(5): 2008.

doi: 10.1159/000491469
[31]
Liang B, He X, Zhao Y X, Zhang X X, Gu N. Biomed Res. Int., 2020, 2020: 7298687.
[32]
Suh J H, Joo H S, Hong E B, Lee H J, Lee J M. Int. J. Mol. Sci., 2021, 22(3):1144.

doi: 10.3390/ijms22031144
[33]
Wang J Y, Wu F, Liu C T, Dai W W, Teng Y W, Su W H, Kong W, Gao F, Cai L J, Hou A, Jiang C L. Virol. Sin., 2019, 34(1): 59.

doi: 10.1007/s12250-019-00087-3
[34]
Kamerkar S, LeBleu V S, Sugimoto H, Yang S J, Ruivo C F, Melo S A, Lee J J, Kalluri R. Nature, 2017, 546(7659): 498.

doi: 10.1038/nature22341
[35]
Taylor D D, Shah S. Methods, 2015, 87: 3.

doi: 10.1016/j.ymeth.2015.02.019
[36]
Fitzgerald J, Leonard P, Darcy E, Sharma S, O’Kennedy R. Methods in Molecular Biology. New York: Springer, 2017, 1485: 27.
[37]
Li P, Kaslan M, Lee S H, Yao J, Gao Z Q. Theranostics, 2017, 7(3): 789.

doi: 10.7150/thno.18133
[38]
Batrakova E V, Kim M S. J. Control. Release, 2015, 219: 396.

doi: 10.1016/j.jconrel.2015.07.030
[39]
Doyle L, Wang M. Cells, 2019, 8(7): 727.

doi: 10.3390/cells8070727
[40]
Wu P P, Zhang B, Ocansey D K W, Xu W R, Qian H. Biomaterials, 2021, 269: 120467.

doi: 10.1016/j.biomaterials.2020.120467
[41]
Pomatto M A C, Bussolati B, D’Antico S, Ghiotto S, Tetta C, Brizzi M F, Camussi G. Mol. Ther. Methods Clin. Dev., 2019, 13: 133.

doi: 10.1016/j.omtm.2019.01.001
[42]
Faruqu F N, Xu L Z, Al-Jamal K T. J. Vis. Exp., 2018(142): e58814.
[43]
Sun D M, Zhuang X Y, Xiang X Y, Liu Y L, Zhang S Y, Liu C R, Barnes S, Grizzle W, Miller D, Zhang H G. Mol. Ther., 2010, 18(9): 1606.

doi: 10.1038/mt.2010.105
[44]
Zhang Y, Bi J Y, Huang J Y, Tang Y N, Du S Y, Li P Y. Int. J. Nanomed., 2020, 15: 6917.

doi: 10.2147/IJN.S264498 pmid: 33061359
[45]
Wang M, Altinoglu S, Takeda YS, Xu Q. PLoS One, 2015, 10(11): e0141860.

doi: 10.1371/journal.pone.0141860
[46]
Sun H Y, Burrola S, Wu J C, Ding W Q. Int. J. Mol. Sci., 2020, 21(17): 6097.

doi: 10.3390/ijms21176097
[47]
Morad G, Carman C V, Hagedorn E J, Perlin J R, Zon L I, Mustafaoglu N, Park T E, Ingber D E, Daisy C C, Moses M A. ACS Nano, 2019, 13(12): 13853.

doi: 10.1021/acsnano.9b04397
[48]
Shi J J, Kantoff P W, Wooster R, Farokhzad O C. Nat. Rev. Cancer, 2017, 17(1): 20.

doi: 10.1038/nrc.2016.108
[49]
Deng S Q, zhou X J, Ge Z R, Song Y T, Wang H R, Liu X H, Zhang D H. Int. J. Biochem. Cell Biol., 2019, 114: 105564.

doi: 10.1016/j.biocel.2019.105564
[50]
Yang R B, Liao Y, Wang L F, He P, Hu Y J, Yuan D Y, Wu Z D, Sun X. Front. Immunol., 2019, 10: 2346.

doi: 10.3389/fimmu.2019.02346
[51]
Li M Y, Li S S, Du C Y, Zhang Y N, Li Y, Chu L Q, Han X, Galons H, Zhang Y M, Sun H, Yu P. Eur. J. Med. Chem., 2020, 207: 112784.

doi: 10.1016/j.ejmech.2020.112784
[52]
Whiteside T L. Adv Clin Chem., 2016, 74:103.

doi: 10.1016/bs.acc.2015.12.005 pmid: 27117662
[53]
Wolfers J, Lozier A, Raposo G, Regnault A, Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L. Nat. Med., 2001, 7(3): 297.

doi: 10.1038/85438 pmid: 11231627
[54]
Taylor D D, Gercel-Taylor C. Semin. Immunopathol., 2011, 33(5): 441.

doi: 10.1007/s00281-010-0234-8
[55]
Luan X, Sansanaphongpricha K, Myers I, Chen H W, Yuan H B, Sun D X. Acta Pharmacol. Sin., 2017, 38(6): 754.

doi: 10.1038/aps.2017.12 pmid: 28392567
[56]
Yong T Y, Zhang X Q, Bie N N, Zhang H B, Zhang X T, Li F Y, Hakeem A, Hu J, Gan L, Santos H A, Yang X L. Nat. Commun., 2019, 10(1): 3838.

doi: 10.1038/s41467-019-11718-4
[57]
Qiao L, Hu S Q, Huang K, Su T, Li Z H, Vandergriff A, Cores J, Dinh P U, Allen T, Shen D L, Liang H X, Li Y J, Cheng K. Theranostics, 2020, 10(8): 3474.

doi: 10.7150/thno.39434 pmid: 32206102
[58]
Yunna C, Mengru H, Lei W, Weidong C. Eur. J. Pharmacol., 2020, 877:173090.

doi: 10.1016/j.ejphar.2020.173090
[59]
Lan J Q, Sun L, Xu F, Liu L, Hu F Q, Song D, Hou Z L, Wu W, Luo X L, Wang J, Yuan X L, Hu J B, Wang G H. Cancer Res., 2019, 79(1): 146.

doi: 10.1158/0008-5472.CAN-18-0014
[60]
Li M D, Wang T, Tian H, Wei G H, Zhao L, Shi Y J. Artif. Cells Nanomed. Biotechnol., 2019, 47(1): 3793.

doi: 10.1080/21691401.2019.1669617
[61]
Liu S J, Chen J, Shi J, Zhou W Y, Wang L, Fang W L, Zhong Y, Chen X H, Chen Y F, Sabri A, Liu S M. Basic Res. Cardiol., 2020, 115(2): 22.

doi: 10.1007/s00395-020-0781-7
[62]
Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Bae Seo J, Ofrecio J, Wollam J, Hernandez-Carretero A, Fu W, Li P, Olefsky J. Cell, 2017, 171(2): 372.

doi: S0092-8674(17)30993-5 pmid: 28942920
[63]
Wang P P, Wang H H, Huang Q Q, Peng C, Yao L, Chen H, Qiu Z, Wu Y F, Wang L, Chen W D. Theranostics, 2019, 9(6): 1714.

doi: 10.7150/thno.30716
[64]
Lin W P, Huang L F, Li Y, Fang B, Li G, Chen L L, Xu L L. Biomed Res. Int., 2019, 2019: 2820853.
[65]
Chen S, Tang Y M, Liu Y S, Zhang P, Lv L, Zhang X, Jia L F, Zhou Y S. Cell Prolif., 2019, 52(5): e12669.
[66]
Ha D H, Kim H K, Lee J, Kwon H H, Park G H, Yang S H, Jung J Y, Choi H, Lee J H, Sung S, Yi Y W, Cho B S. Cell, 2020, 9(5):1157.
[67]
Pascucci L, Coccè V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Viganò L, Locatelli A, Sisto F, Doglia S M, Parati E, Bernardo M E, Muraca M, Alessandri G, Bondiolotti G, Pessina A. J. Control. Release, 2014, 192: 262.

doi: 10.1016/j.jconrel.2014.07.042
[68]
Katakowski M, Buller B, Zheng X G, Lu Y, Rogers T, Osobamiro O, Shu W, Jiang F, Chopp M. Cancer Lett., 2013, 335(1): 201.

doi: 10.1016/j.canlet.2013.02.019 pmid: 23419525
[69]
Waisman A, Lukas D, Clausen B E, Yogev N. Semin Immunopathol., 2017, 39(2):153.

doi: 10.1007/s00281-016-0583-z pmid: 27456849
[70]
Patente T A, Pinho M P, Oliveira A A, Evangelista G C M, Bergami-Santos P C, Barbuto J A M. Front. Immunol., 2019, 9: 3176.

doi: 10.3389/fimmu.2018.03176
[71]
Veerman R E, de Güçlüler Akpinar G, Eldh M, Gabrielsson S. Trends Mol. Med., 2019, 25(5): 382.

doi: 10.1016/j.molmed.2019.02.003
[72]
Pitt J M, André F, Amigorena S, Soria J C, Eggermont A, Kroemer G, Zitvogel L. J. Clin. Investig., 2016, 126(4): 1224.

doi: 10.1172/JCI81137
[73]
Khan A R, Yang X Y, Fu M F, Zhai G X. J. Control. Release, 2018, 291: 37.

doi: 10.1016/j.jconrel.2018.10.004
[74]
Morse M A, Garst J, Osada T, Khan S, Hobeika A, Clay T M, Valente N, Shreeniwas R, Sutton M A, Delcayre A, Hsu D H, Le Pecq J B, Lyerly H K. J. Transl. Med., 2005, 3(1): 9.

doi: 10.1186/1479-5876-3-9
[75]
Toyofuku M, Nomura N, Eberl L. Nat. Rev. Microbiol., 2019, 17(1): 13.

doi: 10.1038/s41579-018-0112-2
[76]
Gujrati V, Kim S, Kim S H, Min J J, Choy H E, Kim S C, Jon S. ACS Nano, 2014, 8(2): 1525.

doi: 10.1021/nn405724x pmid: 24410085
[77]
Sedykh S, Kuleshova A, Nevinsky G. Int. J. Mol. Sci., 2020, 21(18): 6646.

doi: 10.3390/ijms21186646
[78]
Munagala R, Aqil F, Jeyabalan J, Gupta R C. Cancer Lett., 2016, 371(1): 48.

doi: 10.1016/j.canlet.2015.10.020 pmid: 26604130
[79]
Matsuda A, Patel T. Methods in Molecular Biology. New York, NY: Springer New York, 2018, 1740:187.
[80]
Aqil F, Munagala R, Jeyabalan J, Agrawal A K, Kyakulaga A H, Wilcher S A, Gupta R C. Cancer Lett., 2019, 449: 186.

doi: 10.1016/j.canlet.2019.02.011
[81]
Zhuang X Y, Deng Z B, Mu J Y, Zhang L F, Yan J, Miller D, Feng W K, McClain C J, Zhang H G. J. Extracell. Vesicles, 2015, 4(1): 28713.

doi: 10.3402/jev.v4.28713
[82]
ŞCahin F, Koçak P, Güneş M Y, Özkan İ, Yıldırım E, Kala E Y. Appl. Biochem. Biotechnol., 2019, 188(2): 381.

doi: 10.1007/s12010-018-2913-1
[83]
Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, Hutchins E, Mu J Y, Deng Z B, Luo C, Sundaram K, Sriwastva M K, Zhang L F, Hsieh M, Reiman R, Haribabu B, Yan J, Jala V R, Miller D M, van Keuren-Jensen K, Merchant M L, McClain C J, Park J W, Egilmez N K, Zhang H G. Cell Host Microbe, 2018, 24(5): 637.

doi: S1931-3128(18)30523-7 pmid: 30449315
[84]
Aqil F, Jeyabalan J, Agrawal A K, Kyakulaga A H, Munagala R, Parker L, Gupta R C. Food Funct., 2017, 8(11): 4100.

doi: 10.1039/C7FO00882A
[85]
Munir J, Lee M, Ryu S. Adv. Nutr., 2020, 11(3): 687.

doi: 10.1093/advances/nmz123
[86]
Khare T, Palakurthi S S, Shah B M, Palakurthi S, Khare S. Int. J. Mol. Sci., 2020, 21(11): 3956.

doi: 10.3390/ijms21113956
[87]
Xin L, Yuan Y W, Liu C, Zhou L Q, Liu L, Zhou Q, Li S H. Dig. Dis. Sci., 2021, 66(4): 1045.

doi: 10.1007/s10620-020-06262-x
[88]
Yuan D F, Zhao Y L, Banks W A, Bullock K M, Haney M, Batrakova E, Kabanov A V. Biomaterials, 2017, 142: 1.

doi: 10.1016/j.biomaterials.2017.07.011
[89]
Kim M S, Haney M J, Zhao Y L, Yuan D F, Deygen I, Klyachko N L, Kabanov A V, Batrakova E V. Nanomed.: Nanotechnol. Biol. Med., 2018, 14(1): 195.

doi: 10.1016/j.nano.2017.09.011
[90]
Ohno S I, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M. Mol. Ther., 2013, 21(1): 185.

doi: 10.1038/mt.2012.180
[91]
Alvarez-Erviti L, Seow Y, Yin H F, Betts C, Lakhal S, Wood M J A. Nat. Biotechnol., 2011, 29(4): 341.

doi: 10.1038/nbt.1807 pmid: 21423189
[92]
Morishita M, Takahashi Y, Nishikawa M, Ariizumi R, Takakura Y. Mol. Pharmaceutics, 2017, 14(11): 4079.

doi: 10.1021/acs.molpharmaceut.7b00760
[93]
Zhao Z, McGill J, Gamero-Kubota P, He M. Lab a Chip, 2019, 19(10): 1877.

doi: 10.1039/C8LC01279B
[94]
Lee J, Lee H, Goh U, Kim J, Jeong M, Lee J, Park J H. ACS Appl. Mater. Interfaces, 2016, 8(11): 6790.

doi: 10.1021/acsami.6b01315
[95]
Li Y Y, Zhang Y T, Li Z, Zhou K, Feng N P. ACS Biomater. Sci. Eng., 2019, 5(10): 4870.

doi: 10.1021/acsbiomaterials.9b00417
[96]
Sun W Q, Xing C Y, Zhao L B, Zhao P, Yang G D, Yuan L J. Mol. Ther. Nucleic Acids, 2020, 20: 558.

doi: 10.1016/j.omtn.2020.03.016
[97]
Hung M E, Leonard J N. J. Biol. Chem., 2015, 290(13): 8166.

doi: 10.1074/jbc.M114.621383
[98]
Qi H Z, Liu C Y, Long L X, Ren Y, Zhang S S, Chang X D, Qian X M, Jia H H, Zhao J, Sun J J, Hou X, Yuan X B, Kang C S. ACS Nano, 2016, 10(3): 3323.

doi: 10.1021/acsnano.5b06939
[99]
Zhan Q, Yi K K, Qi H Z, Li S D, Li X P, Wang Q X, Wang Y F, Liu C Y, Qiu M Z, Yuan X B, Zhao J, Hou X, Kang C S. Theranostics, 2020, 10(17): 7889.

doi: 10.7150/thno.45028 pmid: 32685027
[100]
Zhang Z J, Wang J, Chen C Y. Adv. Mater., 2013, 25(28): 3869.

doi: 10.1002/adma.201301890
[101]
Wu G H, Mikhailovsky A, Khant H A, Fu C, Chiu W, Zasadzinski J A. J. Am. Chem. Soc., 2008, 130(26): 8175.

doi: 10.1021/ja802656d
[102]
Wang J, Dong Y, Li Y W, Li W, Cheng K, Qian Y, Xu G Q, Zhang X S, Hu L, Chen P, Du W, Feng X J, Zhao Y D, Zhang Z H, Liu B F. Adv. Funct. Mater., 2018, 28(18): 1707360.

doi: 10.1002/adfm.201707360
[103]
Wang M, Lv C Y, Li S, Wang J K, Luo W Z, Zhao P C, Liu X Y, Wang Z M, Jiao Y, Sun H W, Zhao Y, Zhang P. J. Nanobiotechnology, 2021, 19(1): 210.

doi: 10.1186/s12951-021-00907-3
[104]
Qian X Q, Zheng Y Y, Chen Y. Adv. Mater., 2016, 28(37): 8097.

doi: 10.1002/adma.201602012
[105]
Canavese G, Ancona A, Racca L, Canta M, Dumontel B, Barbaresco F, Limongi T, Cauda V. Chem. Eng. J., 2018, 340: 155.

doi: 10.1016/j.cej.2018.01.060
[106]
Qian X Q, Han X X, Chen Y. Biomaterials, 2017, 142: 13.

doi: 10.1016/j.biomaterials.2017.07.016
[107]
Liu Y C, Bai L M, Guo K L, Jia Y L, Zhang K, Liu Q H, Wang P, Wang X B. Theranostics, 2019, 9(18): 5261.

doi: 10.7150/thno.33183
[108]
Schenk E L, Patil T, Pacheco J, Bunn P A. Oncol., 2021, 26(3): e454.

doi: 10.1002/onco.13590
[109]
Aqil F, Kausar H, Agrawal A K, Jeyabalan J, Kyakulaga A H, Munagala R, Gupta R. Exp. Mol. Pathol., 2016, 101(1): 12.

doi: 10.1016/j.yexmp.2016.05.013
[110]
Munagala R, Aqil F, Jeyabalan J, Agrawal A K, Mudd A M, Kyakulaga A H, Singh I P, Vadhanam M V, Gupta R C. Cancer Lett., 2017, 393: 94.

doi: S0304-3835(17)30104-0 pmid: 28202351
[111]
Bray F, Ferlay J, Soerjomataram I, Siegel R L, Torre L A, Jemal A. CA: A Cancer J. Clin., 2018, 68(6): 394.
[112]
Liu H, Qiao S S, Fan X Y, Gu Y F, Zhang Y X, Huang S. Oncol. Lett., 2021, 21(4): 298.

doi: 10.3892/ol.2021.12559
[113]
Hajizadeh F, Aghebati Maleki L, Alexander M, Mikhailova M V, Masjedi A, Ahmadpour M, Hashemi V, Jadidi-Niaragh F. Life Sci., 2021, 264: 118699.

doi: 10.1016/j.lfs.2020.118699
[114]
Mulcahy L A, Pink R C, Carter D R F. J. Extracell. Vesicles, 2014, 3(1): 24641.

doi: 10.3402/jev.v3.24641
[115]
Zhao X Y, Wu D L, Ma X D, Wang J L, Hou W J, Zhang W. Biomed. Pharmacother., 2020, 128: 110237.

doi: 10.1016/j.biopha.2020.110237
[116]
Tian Y H, Li S P, Song J, Ji T J, Zhu M T, Anderson G J, Wei J Y, Nie G J. Biomaterials, 2014, 35(7): 2383.

doi: 10.1016/j.biomaterials.2013.11.083
[117]
Siegel R L, Miller K D, Jemal A. CA: A Cancer J. Clin., 2018, 68(1): 7.
[118]
Krishna R, Mayer L D. Eur. J. Pharm. Sci., 2000, 11(4): 265.

pmid: 11033070
[119]
Valeri N, Gasparini P, Braconi C, Paone A, Lovat F, Fabbri M, Sumani K M, Alder H, Amadori D, Patel T, Nuovo G J, Fishel R, Croce C M. PNAS, 2010, 107(49): 21098.

doi: 10.1073/pnas.1015541107
[120]
Liang G F, Zhu Y L, Ali D J, Tian T, Xu H T, Si K, Sun B, Chen B A, Xiao Z D. J. Nanobiotechnology, 2020, 18(1): 10.

doi: 10.1186/s12951-019-0563-2
[121]
Shao J T, Zaro J, Shen Y X. Int. J. Nanomed., 2020, 15: 9355.

doi: 10.2147/IJN.S281890
[122]
Yang T, Martin Phurman K, Phipps R, Yin VP, Lockman P, Fogarty B, Brown A, Sc, Bai S. Pharm Res., 2015, 32(6):2003.

doi: 10.1007/s11095-014-1593-y
[123]
Tian T, Zhang H X, He C P, Fan S, Zhu Y L, Qi C, Huang N P, Xiao Z D, Lu Z H, Tannous B A, Gao J. Biomaterials, 2018, 150: 137.

doi: S0142-9612(17)30640-3 pmid: 29040874
[124]
Jia G, Han Y, An Y L, Ding Y N, He C, Wang X H, Tang Q S. Biomaterials, 2018, 178: 302.

doi: 10.1016/j.biomaterials.2018.06.029
[125]
Escudier B, Dorval T, Chaput N, André F, Caby M P, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq J B, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L. J. Transl. Med., 2005, 3(1): 10.

doi: 10.1186/1479-5876-3-10 pmid: 15740633
[126]
Sun W, Luo J D, Jiang H, Duan D D. Acta Pharmacol. Sin., 2018, 39(4): 534.

doi: 10.1038/aps.2018.17
[1] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[2] Chen Yaqiong, Song Hongdong, Wu Mao, Lu Yang, Guan Xiao. Application of Protein-Polysaccharide Complex System in the Delivery of Active Ingredients [J]. Progress in Chemistry, 2022, 34(10): 2267-2282.
[3] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[4] Xinyu Wang, Fuping Zhao, Ru Zhang, Ziru Sun, Shengnan Liu, Qingzhi Gao. Development of Hypoxia Inducible Factor-1 Small Molecule Inhibitors as Antitumor Agents [J]. Progress in Chemistry, 2021, 33(12): 2259-2269.
[5] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[6] Fenming Zhang, Yushu Tian, Ji Zheng, Kun Chen, Anchao Feng, Liqun Zhang. Biomedical Functional Polymer Based on PHPMA [J]. Progress in Chemistry, 2020, 32(2/3): 331-343.
[7] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[8] Bin Qiao, Hongfei Chen, Hui Zhang, Chenxin Cai. Analysis and Detection of Tumor Exosomes [J]. Progress in Chemistry, 2019, 31(6): 847-857.
[9] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[10] Lingchuang Bai, Jing Zhao, Yakai Feng. Multifunctional Gene Delivery Systems to Promote the Proliferation of Endothelial Cells [J]. Progress in Chemistry, 2019, 31(2/3): 300-310.
[11] Dongdong Zhang, Jingmin Liu, Yaoyao Liu, Meng Dang, Guozhen Fang, Shuo Wang. The Application of Nanoparticles in Drug Delivery [J]. Progress in Chemistry, 2018, 30(12): 1908-1919.
[12] Tianxi He, Qionglin Liang, Jiu Wang, Guoan Luo. Microfluidic Fabrication of Liposomes as Drug Carriers [J]. Progress in Chemistry, 2018, 30(11): 1734-1748.
[13] Juan Shen, Yang Zhu, Hongdong Shi, Yangzhong Liu. Multifunctional Nanodrug Delivery Systems for Platinum-Based Anticancer Drugs [J]. Progress in Chemistry, 2018, 30(10): 1557-1572.
[14] Panpan Chen, Bingbing Shi*. Supramolecular Drug Delivery Systems Based on Macrocyclic Hosts [J]. Progress in Chemistry, 2017, 29(7): 720-739.
[15] Shuai Zhou, Wei Chen, Zilin Xiao, Sheng Ye, Chendi Ding, Jiajun Fu*. Smart Drug and Gene Co-Delivery System for Cancer Therapy [J]. Progress in Chemistry, 2017, 29(5): 502-512.