中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (10): 2239-2253 DOI: 10.7536/PC220122 Previous Articles   Next Articles

• Review •

Preparation and Environmental Applications of 2D Nanomaterial MXenes

Kang Chun1, Lin Yanxin2, Jing Yuanju1, Wang Xinbo1()   

  1. 1 School of Environmental Science and Engineering, Shandong University,Qingdao 266237, China
    2 Qingdao Hengyuan Thermoelectricity Co., Ltd,Qingdao 266510, China
  • Received: Revised: Online: Published:
  • Contact: Wang Xinbo
  • Supported by:
    National Natural Science Foundation of China(21908018); National Natural Science Foundation of China(22078174); Youth Innovation Program of Universities in Shandong Province(2019KJD007); support from the State Key Laboratory of Fine Chemicals, Dalian University(KF2114)
Richhtml ( 34 ) PDF ( 720 ) Cited
Export

EndNote

Ris

BibTeX

MXene is a new type of two-dimensional layered nanomaterial obtained by delamination of Mn+1AXn phase material (MAX phase), which is constructed with transition metal carbide, nitride or carbonitride. MXenes have attracted ever-increasing interest due to their unique characteristics such as high surface area, excellent metal conductivity, mechanical stability, as well as their magnetic properties, and have been widely applied in the field of energy storage, catalysis, adsorption, and many other fields. Herein, we summarize the recent advances in MXenes preparation strategies and their applications in terms of environmental purpose, including adsorption of heavy metals, radioactive metals and organic compound, selective adsorption of carbon dioxide, photocatalysis, electrocatalysis, membrane separation, sensor, biological activity, electromagnetic absorption and shielding, and so on. Finally, the current challenges and future opportunities of MXenes to put forwards real applications are discussed.

Fig. 1 Element replacement approach for the delamination of MXenes.Copyright2019,American Chemical Society
Fig. 2 Concentrations of MXenes in solution plotted with respect to solvent properties: (a) surface tension, (b) boiling point of the solvent, both fitted by Boltzmann functions (equations in the insets), (c) solvent molecular weight fitted linearly excluding outliers: water and nonpolar solvents (toluene, hexane, and dichlorobenzene), and (d) solvent viscosity fitted linearly excluding DCB, DMF, and water. Star data points represent “good” solvents. Red data points represent the outliers excluded from the fits. Copyright2017, American Chemical Society
Table 1 Comparison of preparation methods of MXenes and their surface properties
Fig. 3 (A) Illustration of the mechanism of U O 2 2 + adsorption[25].Copyright2018,American Chemical Society;(B)Synthesis of MXenes-derived hierarchical titanate nanostructures (HTNs) for effective radionuclide sequestration[38].Copyright2019, Elsevier B.V(B)
Fig. 4 Comparison of electromagnetic shielding performance of MXenes material with the existing materials[107]. Copyright 2020, American association for the advancement of science
[1]
Li J R, Kuppler R J, Zhou H C. Chem. Soc. Rev., 2009, 38(5): 1477.

doi: 10.1039/b802426j
[2]
Stoller M D, Park S, Zhu Y W, An J, Ruoff R S. Nano Lett., 2008, 8(10): 3498.

doi: 10.1021/nl802558y pmid: 18788793
[3]
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science, 2004, 306(5696): 666.

doi: 10.1126/science.1102896
[4]
Khazaei M, Arai M, Sasaki T, Estili M, Sakka Y. Phys. Chem. Chem. Phys., 2014, 16(17): 7841.

doi: 10.1039/C4CP00467A
[5]
Zhao Y, Watanabe K, Hashimoto K. J. Am. Chem. Soc., 2012, 134(48): 19528.

doi: 10.1021/ja3085934
[6]
Naguib M, Kurtoglu M, Presser V, Lu J, Niu J J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Adv. Mater., 2011, 23(37): 4248.

doi: 10.1002/adma.201102306
[7]
Chaudhari N K, Jin H, Kim B, San Baek D, Joo S H, Lee K. J. Mater. Chem. A, 2017, 5: 24564.

doi: 10.1039/C7TA09094C
[8]
Ghidiu M, Lukatskaya M R, Zhao M Q, Gogotsi Y, Barsoum M W. Nature, 2014, 516(7529): 78.

doi: 10.1038/nature13970
[9]
Halim J, Lukatskaya M R, Cook K M, Lu J, Smith C R, N Slund L K, May S J, Hultman L, Gogotsi Y, Eklund P. Chemistry of Materials A Publication of the American Chemical Society, 2014, 26(7): 2374.
[10]
Wang X, Garnero C, Rochard G, Magne D, Morisset S, Hurand S, Chartier P, Rousseau J, Cabioc’h T, Coutanceau C, Mauchamp V, CÉlÉrier S. J. Mater. Chem. A, 2017, 5(41): 22012.

doi: 10.1039/C7TA01082F
[11]
Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y. Adv. Mater., 2014, 26(7): 992.

doi: 10.1002/adma.201304138
[12]
Morel A, Borjon-Piron Y, Porto R L, Brousse T, BÉlanger D. J. Electrochem. Soc., 2016, 163(6): A1077.

doi: 10.1149/2.1221606jes
[13]
Zhong Y, Xia X H, Shi F, Zhan J Y, Tu J P, Fan H J. Adv. Sci., 2016, 3(5): 1500286.

doi: 10.1002/advs.201500286
[14]
Urbankowski P, Anasori B, Makaryan T, Er D, Gogotsi Y. Nanoscale, 2016, 8(22): 11385.

doi: 10.1039/c6nr02253g pmid: 27211286
[15]
Li T F, Yao L L, Liu Q L, Gu J J, Luo R C, Li J H, Yan X D, Wang W Q, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Angew. Chem. Int. Ed., 2018, 57(21): 6115.

doi: 10.1002/anie.201800887
[16]
Li M, Lu J, Luo K, Li Y B, Chang K K, Chen K, Zhou J, Rosen J, Hultman L, Eklund P, Persson P O Å, Du S Y, Chai Z F, Huang Z R, Huang Q. J. Am. Chem. Soc., 2019, 141(11): 4730.

doi: 10.1021/jacs.9b00574
[17]
Li Y B, Shao H, Lin Z F, Lu J, Liu L Y, Duployer B, Persson P O Å, Eklund P, Hultman L, Li M, Chen K, Zha X H, Du S Y, Rozier P, Chai Z F, Raymundo-Piñero E, Taberna P L, Simon P, Huang Q. Nat. Mater., 2020, 19: 894.

doi: 10.1038/s41563-020-0657-0
[18]
Shi H H, Zhang P P, Liu Z C, Park S, Lohe M R, Wu Y P, Shaygan Nia A, Yang S, Feng X L. Angew. Chem. Int. Ed., 2021, 60(16): 8689.

doi: 10.1002/anie.202015627
[19]
Yang S, Zhang P P, Wang F X, Ricciardulli A G, Lohe M R, Blom P W M, Feng X L. Angew. Chem. Int. Ed., 2018, 57(47): 15491.

doi: 10.1002/anie.201809662
[20]
Pang S Y, Wong Y T, Yuan S G, Liu Y, Tsang M K, Yang Z B, Huang H T, Wong W T, Hao J H. J. Am. Chem. Soc., 2019, 141(24): 9610.

doi: 10.1021/jacs.9b02578
[21]
Maleski K, Mochalin V N, Gogotsi Y. Chem. Mater., 2017, 29(4): 1632.

doi: 10.1021/acs.chemmater.6b04830
[22]
Zhang Q X, Lai H R, Fan R Z, Ji P Y, Fu X L, Li H. ACS Nano, 2021, 15(3): 5249.

doi: 10.1021/acsnano.0c10671
[23]
Chowdhury S, Mazumder M A J, Al-Attas O, Husain T. Sci. Total. Environ., 2016, 569/570: 476.

doi: 10.1016/j.scitotenv.2016.06.166
[24]
GrandclÉment C, Seyssiecq I, Piram A, Wong-Wah-Chung P, Vanot G, Tiliacos N, Roche N, Doumenq P. Water Res., 2017, 111: 297.

doi: 10.1016/j.watres.2017.01.005
[25]
Wang L, Song H, Yuan L Y, Li Z J, Zhang Y J, Gibson J K, Zheng L R, Chai Z F, Shi W Q. Environ. Sci. Technol., 2018, 52(18): 10748.

doi: 10.1021/acs.est.8b03711 pmid: 30149698
[26]
Peng Q M, Guo J X, Zhang Q R, Xiang J Y, Liu B Z, Zhou A G, Liu R P, Tian Y J. J. Am. Chem. Soc., 2014, 136(11): 4113.

doi: 10.1021/ja500506k
[27]
Guo J X, Peng Q M, Fu H, Zou G D, Zhang Q R. J. Phys. Chem. C, 2015, 119(36): 20923.

doi: 10.1021/acs.jpcc.5b05426
[28]
Gu P C, Xing J L, Wen T, Zhang R, Wang J, Zhao G X, Hayat T, Ai Y J, Lin Z, Wang X K. Environ Sci Nano, 2018, 5(4): 946.

doi: 10.1039/C8EN00029H
[29]
Fard A K, McKay G, Chamoun R, Rhadfi T, Preud’Homme H, Atieh M A. Chem. Eng. J., 2017, 317: 331.

doi: 10.1016/j.cej.2017.02.090
[30]
Shahzad A, Rasool K, Miran W, Nawaz M, Jiang J, Mahmoud KA, Lee D S. Journal of Hazardous Materials, 2018, 344: 811.

doi: S0304-3894(17)30848-8 pmid: 29172167
[31]
Shahzad A, Rasool K, Miran W, Nawaz M, Jang J, Mahmoud K A, Lee D S. J. Hazard. Mater., 2018, 344: 811.

doi: S0304-3894(17)30848-8 pmid: 29172167
[32]
Ying Y L, Liu Y, Wang X Y, Mao Y Y, Cao W, Hu P, Peng X S. ACS Appl. Mater. Interfaces, 2015, 7(3): 1795.

doi: 10.1021/am5074722
[33]
Zhang P C, Wang L, Du K, Wang S Y, Huang Z W, Yuan L Y, Li Z J, Wang H Q, Zheng L R, Chai Z F, Shi W Q. J. Hazard. Mater., 2020, 396: 122731.

doi: 10.1016/j.jhazmat.2020.122731
[34]
Wang S Y, Wang L, Li Z J, Zhang P C, Du K, Yuan L Y, Ning S Y, Wei Y Z, Shi W Q. J. Hazard. Mater., 2021, 408: 124949.

doi: 10.1016/j.jhazmat.2020.124949
[35]
Zou G D, Guo J X, Peng Q M, Zhou A G, Zhang Q R, Liu B Z. J. Mater. Chem. A, 2016, 4(2): 489.

doi: 10.1039/C5TA07343J
[36]
Wang L, Tao W Q, Yuan L Y, Liu Z R, Huang Q, Chai Z F, Gibson J K, Shi W Q. Chem. Commun., 2017, 53(89): 12084.

doi: 10.1039/C7CC06740B
[37]
Zhang Y J, Lan J H, Wang L, Wu Q Y, Wang C Z, Bo T, Chai Z F, Shi W Q. J. Hazard. Mater., 2016, 308: 402.

doi: 10.1016/j.jhazmat.2016.01.053
[38]
Zhang P, Wang L, Yuan L Y, Lan J H, Chai Z F, Shi W Q. Chem. Eng. J., 2019, 370: 1200.

doi: 10.1016/j.cej.2019.03.286
[39]
Tran N M, Ta Q T H, Sreedhar A, Noh J S. Appl. Surf. Sci., 2021, 537: 148006.

doi: 10.1016/j.apsusc.2020.148006
[40]
Mashtalir O, Cook K M, Mochalin V N, Crowe M, Barsoum M W, Gogotsi Y. J. Mater. Chem. A, 2014, 2(35): 14334.

doi: 10.1039/C4TA02638A
[41]
Kim S, Yu M, Yoon Y. ACS Appl. Mater. Interfaces, 2020, 12(14): 16557.

doi: 10.1021/acsami.0c02454
[42]
Li K K, Zou G D, Jiao T F, Xing R R, Zhang L X, Zhou J X, Zhang Q R, Peng Q M. Colloids Surf. A Physicochem. Eng. Aspects, 2018, 553: 105.

doi: 10.1016/j.colsurfa.2018.05.044
[43]
Kim S, Gholamirad F, Yu M, Park C M, Jang A, Jang M, Taheri-Qazvini N, Yoon Y. Chem. Eng. J., 2021, 406: 126789.

doi: 10.1016/j.cej.2020.126789
[44]
Meng F Y, Seredych M, Chen C, Gura V, Mikhalovsky S, Sandeman S, Ingavle G, Ozulumba T, Miao L, Anasori B, Gogotsi Y. ACS Nano, 2018, 12(10): 10518.

doi: 10.1021/acsnano.8b06494
[45]
Persson I, Halim J, Lind H, Hansen T W, Wagner J B, Näslund L Å, Darakchieva V, Palisaitis J, Rosen J, Persson P O Å. Adv. Mater., 2019, 31(2): 1805472.

doi: 10.1002/adma.201805472
[46]
Halmann M. Nature, 1978, 275(5676): 115.

doi: 10.1038/275115a0
[47]
Zeng Z P, Yan Y B, Chen J, Zan P, Tian Q H, Chen P. Adv. Funct. Mater., 2019, 29(2): 1806500.

doi: 10.1002/adfm.201806500
[48]
Low J, Zhang L Y, Tong T, Shen B J, Yu J G. J. Catal., 2018, 361: 255.

doi: 10.1016/j.jcat.2018.03.009
[49]
Liu N, Lu N, Yu H T, Chen S, Quan X. Chemosphere, 2020, 246: 10.
[50]
Hisatomi T, Kubota J, Domen K. Chem. Soc. Rev., 2014, 43(22): 7520.

doi: 10.1039/c3cs60378d pmid: 24413305
[51]
Li X, Bai Y, Shi X, Su N, Nie G Z, Zhang R M, Nie H B, Ye L Q. Mater. Adv., 2021, 2(5): 1570.

doi: 10.1039/D0MA00938E
[52]
Xiao R, Zhao C X, Zou Z Y, Chen Z P, Tian L, Xu H T, Tang H, Liu Q Q, Lin Z X, Yang X F. Appl. Catal. B Environ., 2020, 268: 118382.

doi: 10.1016/j.apcatb.2019.118382
[53]
Wang H, Peng R, Hood Z D, Naguib M, Adhikari S P, Wu Z L. ChemSusChem, 2016, 9(12): 1490.

doi: 10.1002/cssc.201600165 pmid: 27219205
[54]
Chen C R, Xun L J, Zhang P, Zhang J L, Tian B Z. Res Chem Intermed, 2019, 45(6): 3513.

doi: 10.1007/s11164-019-03805-4
[55]
Qiao X Q, Zhang Z W, Li Q H, Hou D F, Zhang Q C, Zhang J, Li D S, Feng P Y, Bu X H. J. Mater. Chem. A, 2018, 6(45): 22580.

doi: 10.1039/C8TA08294D
[56]
Wang S B, Guan B Y, Lu Y, Lou X W. J. Am. Chem. Soc., 2017, 139(48): 17305.

doi: 10.1021/jacs.7b10733
[57]
Huang H S, Jiang X, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. Appl. Catal. B Environ., 2021, 284: 119754.

doi: 10.1016/j.apcatb.2020.119754
[58]
Yuan Z T, Huang H S, Li N J, Chen D Y, Xu Q F, Li H, He J H, Lu J M. J. Hazard. Mater., 2021, 409: 125027.

doi: 10.1016/j.jhazmat.2020.125027
[59]
Liu A M, Liang X Y, Ren X F, Guan W X, Gao M F, Yang Y N, Yang Q Y, Gao L G, Li Y Q, Ma T L. Adv. Funct. Mater., 2020, 30(38): 2003437.

doi: 10.1002/adfm.202003437
[60]
Shi M M, Bao D, Wulan B R, Li Y H, Zhang Y F, Yan J M, Jiang Q. Adv. Mater., 2017, 29(17): 1606550.

doi: 10.1002/adma.201606550
[61]
Gruber N, Galloway J N. Nature, 2008, 451(7176): 293.

doi: 10.1038/nature06592
[62]
Zhu X J, Mou S Y, Peng Q L, Liu Q, Luo Y L, Chen G, Gao S Y, Sun X P. J. Mater. Chem. A, 2020, 8(4): 1545.

doi: 10.1039/C9TA13044F
[63]
Zhao J X, Zhang L, Xie X Y, Li X H, Ma Y J, Liu Q, Fang W H, Shi X F, Cui G L, Sun X P. J. Mater. Chem. A, 2018, 6(47): 24031.

doi: 10.1039/C8TA09840A
[64]
Li L, Wang X Y, Guo H R, Yao G, Yu H B, Tian Z Q, Li B H, Chen L. Small Methods, 2019, 3(11): 1900337.

doi: 10.1002/smtd.201900337
[65]
Li J, Zhan G M, Yang J H, Quan F J, Mao C L, Liu Y, Wang B, Lei F C, Li L J, Chan A W M, Xu L P, Shi Y B, Du Y, Hao W C, Wong P K, Wang J F, Dou S X, Zhang L Z, Yu J C. J. Am. Chem. Soc., 2020, 142(15): 7036.

doi: 10.1021/jacs.0c00418
[66]
Li L X, Sun W J, Zhang H Y, Wei J L, Wang S X, He J H, Li N J, Xu Q F, Chen D Y, Li H, Lu J M. J. Mater. Chem. A, 2021, 9(38): 21771.

doi: 10.1039/D1TA06664A
[67]
Sun W J, Ji H Q, Li L X, Zhang H Y, Wang Z K, He J H, Lu J M. Angewandte Chemie Int. Ed., 2021, 60(42): 22933.

doi: 10.1002/anie.202109785
[68]
Cheng F Y, Chen J. Chem. Soc. Rev., 2012, 41(6): 2172.

doi: 10.1039/c1cs15228a
[69]
Seitz L C, Dickens C F, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang H Y, Norskov J K, Jaramillo T F. Science, 2016, 353(6303): 1011.

doi: 10.1126/science.aaf5050
[70]
Yu M Z, Zhou S, Wang Z Y, Zhao J J, Qiu J S. Nano Energy, 2018, 44: 181.

doi: 10.1016/j.nanoen.2017.12.003
[71]
Xie X H, Chen S G, Ding W, Nie Y, Wei Z D. Chem. Commun., 2013, 49(86): 10112.

doi: 10.1039/c3cc44428g
[72]
Cui C, Cheng R F, Zhang H, Zhang C, Ma Y H, Shi C, Fan B B, Wang H L, Wang X H. Adv. Funct. Mater., 2020, 30(47): 2000693.

doi: 10.1002/adfm.202000693
[73]
Li N, Chen X Z, Ong W J, MacFarlane D R, Zhao X J, Cheetham A K, Sun C H. ACS Nano, 2017, 11(11): 10825.

doi: 10.1021/acsnano.7b03738
[74]
Zhao Q, Zhang C, Hu R M, Du Z G, Gu J N, Cui Y, Chen X, Xu W J, Cheng Z J, Li S M, Li B, Liu Y F, Chen W H, Liu C T, Shang J X, Song L, Yang S B. ACS Nano, 2021, 15(3): 4927.

doi: 10.1021/acsnano.0c09755 pmid: 33617242
[75]
Zhang L Y, Jiang H C, Zhang J F, Huang Y F, Tian J W, Deng X W, Zhao X H, Zhang W L. Nanotechnology, 2020, 31(1): 015504.

doi: 10.1088/1361-6528/ab435f
[76]
Wang Y J, Wang J K, Han G K, Du C Y, Deng Q H, Gao Y Z, Yin G P, Song Y. Ceram. Int., 2019, 45(2): 2411.

doi: 10.1016/j.ceramint.2018.10.160
[77]
Chen J M, Xia Y J, Dai Q Z. Electrochimica Acta, 2015, 165: 277.

doi: 10.1016/j.electacta.2015.02.029
[78]
Yang L M, Chen Z L, Cui D, Luo X B, Liang B, Yang L X, Liu T, Wang A J, Luo S L. Chem. Eng. J., 2019, 359: 894.

doi: 10.1016/j.cej.2018.11.099
[79]
Li L X, Zhang G C, Sun W J, Zhang H Y, Wang S X, Wei J L, He J H, Song K, Lu J M. Chem. Eng. J., 2022, 433, Part 1: 134415.

doi: 10.1016/j.cej.2021.134415
[80]
Karahan H E, Goh K, Zhang C J, Yang E, Yıldırım C, Chuah C Y, Ahunbay M G, Lee J, Tantekin-Ersolmaz B, Chen Y, Bae T H. Adv. Mater., 2020, 32(29): 1906697.

doi: 10.1002/adma.201906697
[81]
Ding L, Wei Y Y, Li L B, Zhang T, Wang H H, Xue J, Ding L X, Wang S Q, Caro J, Gogotsi Y. Nat. Commun., 2018, 9: 155.

doi: 10.1038/s41467-017-02529-6 pmid: 29323113
[82]
Shen J, Liu G Z, Ji Y F, Liu Q, Cheng L, Guan K C, Zhang M C, Liu G P, Xiong J, Yang J, Jin W Q. Adv. Funct. Mater., 2018, 28(31): 1801511.

doi: 10.1002/adfm.201801511
[83]
Fan Y Y, Wei L Y, Meng X X, Zhang W M, Yang N T, Jin Y, Wang X B, Zhao M W, Liu S M. J. Membr. Sci., 2019, 569: 117.

doi: 10.1016/j.memsci.2018.10.017
[84]
Xing Y D, Akonkwa G, Liu Z, Ye H Q, Han K. ACS Appl. Nano Mater., 2020, 3(2): 1526.

doi: 10.1021/acsanm.9b02322
[85]
Xu Z, Liu G Z, Ye H, Jin W Q, Cui Z F. J. Membr. Sci., 2018, 563: 625.

doi: 10.1016/j.memsci.2018.05.044
[86]
Yang X J, Liu Y C, Hu S X, Yu F T, He Z Z, Zeng G Y, Feng Z H, Sengupta A. Polym. Adv. Technol., 2021, 32(3): 1000.

doi: 10.1002/pat.5148
[87]
Li Z K, Wei Y Y, Gao X, Ding L, Lu Z, Deng J J, Yang X F, Caro J, Wang H H. Angew Chem-Int Edit, 2020, 59(24): 9751.

doi: 10.1002/anie.202002935
[88]
Chen W Y, Jiang X F, Lai S N, Peroulis D, Stanciu L. Nat. Commun., 2020, 11: 1302.

doi: 10.1038/s41467-020-15092-4
[89]
Kahn N, Lavie O, Paz M, Segev Y, Haick H. Nano Lett., 2015, 15(10): 7023.

doi: 10.1021/acs.nanolett.5b03052
[90]
Kearney D J, Hubbard T, Putnam D. Dig. Dis. Sci., 2002, 47(11): 2523.

doi: 10.1023/A:1020568227868
[91]
Kim N H, Choi S J, Kim S J, Cho H J, Jang J S, Koo W T, Kim M, Kim I D. Sens. Actuat. B Chem., 2016, 224: 185.

doi: 10.1016/j.snb.2015.10.021
[92]
Koo W T, Yu S, Choi S J, Jang J S, Cheong J Y, Kim I D. ACS Appl. Mater. Interfaces, 2017, 9(9): 8201.

doi: 10.1021/acsami.7b01284
[93]
Kim S J, Koh H J, Ren C G, Kwon O, Maleski K, Cho S Y, Anasori B, Kim C K, Choi Y K, Kim J, Gogotsi Y, Jung H T. ACS Nano, 2018, 12(2): 986.

doi: 10.1021/acsnano.7b07460
[94]
Jiang Q Q, Wang H J, Wei X Q, Wu Y, Gu W L, Hu L Y, Zhu C Z. Anal. Chimica Acta, 2020, 1119: 11.

doi: 10.1016/j.aca.2020.04.049
[95]
Rasool K, Helal M, Ali A, Ren C G, Gogotsi Y, Mahmoud K A. ACS Nano, 2016, 10(3): 3674.

doi: 10.1021/acsnano.6b00181
[96]
Wu F, Zheng H L, Wang W Z, Wu Q, Zhang Q, Guo J Y, Pu B Z, Shi X Y, Li J B, Chen X M, Hong W L. Sci. China Mater., 2021, 64(3): 748.

doi: 10.1007/s40843-020-1451-7
[97]
Zhou L, Zheng H, Liu Z X, Wang S Q, Liu Z, Chen F, Zhang H P, Kong J, Zhou F T, Zhang Q Y. ACS Nano, 2021, 15(2): 2468.

doi: 10.1021/acsnano.0c06287 pmid: 33565857
[98]
Nasr Esfahani A, Katbab A, Taeb A, Simon L, Pope M A. Eur. Polym. J., 2017, 95: 520.

doi: 10.1016/j.eurpolymj.2017.08.038
[99]
Abbasi H, Antunes M, Velasco J I. Prog. Mater. Sci., 2019, 103: 319.

doi: 10.1016/j.pmatsci.2019.02.003
[100]
Kumar P, Narayan Maiti U, Sikdar A, Kumar Das T, Kumar A, Sudarsan V. Polym. Rev., 2019, 59(4): 687.

doi: 10.1080/15583724.2019.1625058
[101]
Cui G Z, Sun X D, Zhang G Y, Zhang Z, Liu H, Gu J, Gu G X. Mater. Lett., 2019, 252: 8.

doi: 10.1016/j.matlet.2019.05.053
[102]
Weng C X, Wang G R, Dai Z H, Pei Y M, Liu L Q, Zhang Z. Nanoscale, 2019, 11(47): 22804.

doi: 10.1039/C9NR07988B
[103]
Liang L Y, Li Q M, Yan X, Feng Y Z, Wang Y M, Zhang H B, Zhou X P, Liu C T, Shen C Y, Xie X L. ACS Nano, 2021, 15(4): 6622.

doi: 10.1021/acsnano.0c09982
[104]
Feng W L, Luo H, Zeng S F, Chen C, Deng L W, Tan Y Q, Zhou X S, Peng S M, Zhang H B. Mater. Chem. Front., 2018, 2(12): 2320.

doi: 10.1039/C8QM00436F
[105]
Liang L Y, Han G J, Li Y, Zhao B, Zhou B, Feng Y Z, Ma J M, Wang Y M, Zhang R, Liu C T. ACS Appl. Mater. Interfaces, 2019, 11(28): 25399.

doi: 10.1021/acsami.9b07294
[106]
Wang Y, Gao X, Zhang L J, Wu X M, Wang Q G, Luo C Y, Wu G L. Appl. Surf. Sci., 2019, 480: 830.

doi: 10.1016/j.apsusc.2019.03.049
[107]
Iqbal A, Shahzad F, Hantanasirisakul K, Kim M K, Kwon J, Hong J, Kim H, Kim D, Gogotsi Y, Koo C M. Science, 2020, 369(6502): 446.

doi: 10.1126/science.aba7977
[108]
Shahzad F, Alhabeb M, Hatter C B, Anasori B, Man Hong S, Koo C M, Gogotsi Y. Science, 2016, 353(6304): 1137.

doi: 10.1126/science.aag2421
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Zonghan Xue, Nan Ma, Weigang Wang. Nitrated Mono-Aromatic Hydrocarbons in the Atmosphere [J]. Progress in Chemistry, 2022, 34(9): 2094-2107.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[9] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[10] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[11] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[12] Jin Zhou, Pengpeng Chen. Modification of 2D Nanomaterials and Their Applications in Environment Pollution Treatment [J]. Progress in Chemistry, 2022, 34(6): 1414-1430.
[13] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[14] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[15] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.