中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1748-1759 DOI: 10.7536/PC211007 Previous Articles   Next Articles

• Review •

Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol

Qiyue Yang1, Qiaomei Wu1, Jiarong Qiu1, Xianhai Zeng2, Xing Tang2, Liangqing Zhang1()   

  1. 1 School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
    2 College of Energy, Xiamen University, Xiamen 361102, China
  • Received: Revised: Online: Published:
  • Contact: Liangqing Zhang
  • Supported by:
    National Natural Science Foundation of China(22108038); Tianjin University-Fuzhou University Independent Innovation Fund Cooperation Project(TF2022-10)
Richhtml ( 26 ) PDF ( 395 ) Cited
Export

EndNote

Ris

BibTeX

Furfuryl alcohol (FOL), as an important and promising organic chemical product, can be effectively converted into various high-value chemicals, such as furfural resin, urea-formaldehyde resin, phenolic resin, fruit acid, plasticizer, rocket fuel, etc. The green FOL production by catalytic hydrogenation using furfural (FAL), xylose, and fructose as raw materials has good application prospects and research values. This article systematically reviews the research status of the FOL production from FAL, xylose, and fructose on the recent advances, and summarizes from the aspects of catalyst types, catalytic efficiency and mechanism for FOL production. On this basis, the development trends of the FOL production by catalytic hydrogenation are prospected, which may provide theoretical guidance and useful reference for developing new efficient green and stable catalytic system.

Contents

1 Introduction

2 Preparation of FOL from different substrates by catalytic conversion

2.1 Preparation of FOL from FAL by catalytic conversion

2.2 Preparation of FOL from xylose by one-pot method

2.3 Preparation of FOL from fructose by one-pot method

3 Conclusion and outlook

Fig. 1 Possible reaction pathways of FAL
Fig. 2 High value-added FOL derivatives
Table 1 Preparation of FOL from FAL by noble metal catalysts
Table 2 Preparation of FOL from FAL by non-noble metal catalysts
Table 3 Preparation of FOL using alcohols as a hydrogen donor
Fig. 3 Possible reaction routes of the one-pot transformation of xylose to FOL
Table 4 Preparation of FOL from xylose
[1]
Huang L J, Wu C W, Zou C Y, Yan X Q, Wu W J. J. Northwest For. Univ., 2021, 36(2): 142.
黄丽菁, 吴彩文, 邹春阳, 闫雪晴, 吴文娟. 西北林学院学报, 2021, 36(2): 142.).
[2]
Zhang L Q, Qiu J R, Tang X, Sun Y, Zeng X H, Lin L. Chin. J. Chem., 2021, 39(9): 2467.

doi: 10.1002/cjoc.202100140
[3]
Feng Y C, Long S S, Tang X, Sun Y, Luque R, Zeng X H, Lin L. Chem. Soc. Rev., 2021, 50(10): 6042.

doi: 10.1039/D0CS01601B
[4]
Feng Y C, Long S S, Yan G H, Jia W L, Sun Y, Tang X, Zhang Z H, Zeng X H, Lin L. J. Catal., 2021, 397: 148.

doi: 10.1016/j.jcat.2021.03.031
[5]
Liu X Y, Lan G J, Li Z Q, Qian L H, Liu J, Li Y. Chin. J. Catal., 2021, 42(5): 694.

doi: 10.1016/S1872-2067(20)63699-3
刘晓艳, 蓝国钧, 李振清, 钱丽华, 刘健, 李瑛. 催化学报, 2021, 42(5): 694.).
[6]
Zhang Z C, Song Y D. Guangdong Agric. Sci., 2021, 48(1): 150.
张子晨, 宋元达. 广东农业科学, 2021, 48(1): 150.).
[7]
Jiang Y T, Song X Q, Sun Y, Zeng X H, Tang X, Lin L. Progress in Chemistry, 2017, 29(10): 1273.
蒋叶涛, 宋晓强, 孙勇, 曾宪海, 唐兴, 林鹿. 化学进展, 2017, 29(10): 1273.).

doi: 10.7536/PC170403
[8]
Tang X, Hu L, Sun Y, Zeng X H, Lin L. Prog. Chem., 2013, 25(11): 1906.

doi: 10.7536/PC130332
唐兴, 胡磊, 孙勇, 曾宪海, 林鹿. 化学进展, 2013, 25(11): 1906.).
[9]
Lin L, He B H, Sun R C, Hu R F. Prog. Chem., 2007, 19(7/8): 1206.
林鹿, 何北海, 孙润仓, 胡若飞. 化学进展, 2007, 19(7/8): 1206.).
[10]
Wang Y T, Zhao D Y, Rodríguez-PadrÓn D, Len C. Catalysts, 2019, 9(10): 796.

doi: 10.3390/catal9100796
[11]
Feng Y C, Yan G H, Wang T, Jia W L, Zeng X H, Sperry J, Sun Y, Tang X, Lei T Z, Lin L. Green Chem., 2019, 21(16): 4319.

doi: 10.1039/C9GC01331H
[12]
Zhang L Q, Zeng X H, Qiu J R, Du J, Cao X J, Tang X, Sun Y, Li S R, Lei T Z, Liu S J, Lin L. Ind. Crops Prod., 2019, 135: 330.

doi: 10.1016/j.indcrop.2019.04.045
[13]
Zhang L Q, Zeng X H, Fu N, Tang X, Sun Y, Lin L. Food Res. Int., 2018, 106: 383.

doi: 10.1016/j.foodres.2018.01.004
[14]
Long S S, Feng Y C, He F L, Zhao J Z, Bai T, Lin H B, Cai W L, Mao C W, Chen Y H, Gan L H, Liu J, Ye M D, Zeng X H, Long M N. Nano Energy, 2021, 85: 105973.
[15]
Wang H Q, Li J C, Ding N, Zeng X H, Tang X, Sun Y, Lei T Z, Lin L. Chem. Eng. J., 2020, 386: 124021.
[16]
Singh P, Kumar R. J. Polym. Environ., 2019, 27(5): 901.
[17]
Kamla N, Delhi . Synthetic Resins Technology Handbook. India: Asia Pacific Business Press, 2005. 588.
[18]
Chai X W, Sun J H, Cai Q H, Zhang C Y, Huang J M, Luo Y. Mod. Cast Iron, 2018, 38(1): 64.
柴兴旺, 孙继华, 蔡庆海, 张春岩, 黄健明, 骆洋. 现代铸铁, 2018, 38(1): 64.).
[19]
Zhang J, Feng S, Zhou X J, Du G B, Wu Z G. Journal of Southwest Forestry University, 2021, 41(1): 174.
张俊, 丰尚, 周晓剑, 杜官本, 吴志刚. 西南林业大学学报, 2021, 41(1): 174. ).
[20]
Qin Y Y, Mei J, Wu J M. China Plast. Ind., 2020, 48(5): 28.
秦英月, 梅杰, 吴景梅. 塑料工业, 2020, 48(5): 28.).
[21]
Wojcik B H. Ind. Eng. Chem., 1948, 40(2): 210.

doi: 10.1021/ie50458a007
[22]
GÓmez Millán G, Sixta H. Catalysts, 2020, 10(10): 1101.

doi: 10.3390/catal10101101
[23]
Nagaraja B M, Padmasri A H, Raju B D, Rama Rao K S. J. Mol. Catal. A Chem., 2007, 265(1/2): 90.

doi: 10.1016/j.molcata.2006.09.037
[24]
Zhang H B, Lei Y, Kropf A J, Zhang G H, Elam J W, Miller J T, Sollberger F, Ribeiro F, Akatay M C, Stach E A, Dumesic J A, Marshall C L. J. Catal., 2014, 317: 284.

doi: 10.1016/j.jcat.2014.07.007
[25]
Peng L C, Wang M M, Li H, Wang J, Zhang J H, He L. Green Chem., 2020, 22(17): 5656.

doi: 10.1039/D0GC02001J
[26]
Wang Y Q, Yang X H, Ding G Q, Zheng H Y, Li X Q, Li Y W, Zhu Y L. ChemCatChem, 2019, 11(8): 2118.

doi: 10.1002/cctc.201900157
[27]
Deng Z Q. China Chem. Trade, 2014, 6(29): 69.
邓争强. 中国化工贸易, 2014, 6(29): 69.).
[28]
Zhao J X. China Food Industry, 2021, (14): 99.
赵军侠. 中国食品工业, 2021, 328 (14): 99.).
[29]
Liu D X, Zemlyanov D, Wu T P, Lobo-Lapidus R J, Dumesic J A, Miller J T, Marshall C L. J. Catal., 2013, 299: 336.

doi: 10.1016/j.jcat.2012.10.026
[30]
Villaverde M M, Bertero N M, Garetto T F, Marchi A J. Catal. Today, 2013, 213: 87.

doi: 10.1016/j.cattod.2013.02.031
[31]
Yan K, Wu G S, Lafleur T, Jarvis C. Renew. Sustain. Energy Rev., 2014, 38: 663.

doi: 10.1016/j.rser.2014.07.003
[32]
Li M S, Hao Y F, Cárdenas-Lizana F, Keane M A. Catal. Commun., 2015, 69: 119.

doi: 10.1016/j.catcom.2015.06.007
[33]
Yuan Q Q, Zhang D M, van Haandel L, Ye F Y, Xue T, Hensen E J M, Guan Y J. J. Mol. Catal. A Chem., 2015, 406: 58.

doi: 10.1016/j.molcata.2015.05.015
[34]
Liu L J, Lou H, Chen M. Appl. Catal. A Gen., 2018, 550: 1.

doi: 10.1016/j.apcata.2017.10.003
[35]
Huang R J, Cui Q Q, Yuan Q Q, Wu H H, Guan Y J, Wu P. ACS Sustain. Chem. Eng., 2018, 6(5): 6957.

doi: 10.1021/acssuschemeng.8b00801
[36]
Nguyen-Huy C, Kim J S, Yoon S, Yang E, Kwak J H, Lee M S, An K. Fuel, 2018, 226: 607.

doi: 10.1016/j.fuel.2018.04.029
[37]
Li J, Zahid M, Sun W, Tian X Q, Zhu Y J. Appl. Surf. Sci., 2020, 528: 146983.
[38]
Sun W. Master Dissertation of Heilongjiang University, 2021.
孙旺. 黑龙江大学硕士论文, 2021.).
[39]
Gao X, Tian S Y, Jin Y Y, Wan X Y, Zhou C M, Chen R Z, Dai Y H, Yang Y H. ACS Sustain. Chem. Eng., 2020, 8(33): 12722.
[40]
Tolek W, Khruechao K, Pongthawornsakun B, Mekasuwandumrong O, Cadete Santos Aires F J, Weerachawanasak P, Panpranot J. Catal. Commun., 2021, 149: 106246.
[41]
Wang Z Q, Wang X C, Zhang C, Arai M, Zhou L L, Zhao F Y. Mol. Catal., 2021, 508: 111599.
[42]
Tukacs J M, Bohus M, DibÓ G, Mika L T. RSC Adv., 2017, 7(6): 3331.

doi: 10.1039/C6RA24723G
[43]
Ramirez-Barria C, Isaacs M, Wilson K, Guerrero-Ruiz A, Rodríguez-Ramos I. Appl. Catal. A Gen., 2018, 563: 177.

doi: 10.1016/j.apcata.2018.07.010
[44]
Li M S, Collado L, Cárdenas-Lizana F, Keane M A. Catal. Lett., 2018, 148(1): 90.

doi: 10.1007/s10562-017-2228-9
[45]
Yu H B, Zhao J H, Wu C Z, Yan B, Zhao S L, Yin H F, Zhou S H. Langmuir, 2021, 37(5): 1894.

doi: 10.1021/acs.langmuir.0c03367
[46]
Hao F, Zheng J S, He S L, Zhang H, Liu P L, Luo H A, Xiong W. Catal. Commun., 2021, 151: 106266.
[47]
Zhang J X, Wu D F. Mater. Chem. Phys., 2021, 260: 124152.
[48]
Guerrero-Torres A, JimÉnez-GÓmez C P, Cecilia J A, Porras-Vázquez J M, García-Sancho C, Quirante-Sánchez J J, Guerrero-Ruíz F, Moreno-Tost R, Maireles-Torres P. Mol. Catal., 2021, 512: 111774.
[49]
Arundhathi R, Reddy P L, Samanta C, Newalkar B L. RSC Adv., 2020, 10(67): 41120.
[50]
Wang X Q, Qiu M, Smith R L, Yang J R, Shen F, Qi X H. ACS Sustain. Chem. Eng., 2020, 8(49): 18157.
[51]
Tian Y, Wang Y Z, Zhang H Y, Xiao L F, Wu W. Catal. Lett., 2022, 152(3): 883.

doi: 10.1007/s10562-021-03680-y
[52]
Tian Y. Master Dissertation of Heilongjiang University, 2021.
田野. 黑龙江大学硕士论文, 2021. ).
[53]
MacIntosh K L, Beaumont S K. Top. Catal., 2020, 63(15/18): 1446.

doi: 10.1007/s11244-020-01341-9
[54]
Ali W A, Bharath G, Morajkar P P, Salkar A V, Haija M A, Banat F. J. Phys. D: Appl. Phys., 2021, 54(30): 305502.
[55]
Wu J, Gao G, Li J L, Sun P, Long X D, Li F W. Appl. Catal. B Environ., 2017, 203: 227.

doi: 10.1016/j.apcatb.2016.10.038
[56]
Li S J, Fan Y F, Wu C H, Zhuang C F, Wang Y, Li X M, Zhao J, Zheng Z F. ACS Appl. Mater. Interfaces, 2021, 13(7): 8507.

doi: 10.1021/acsami.1c01436
[57]
Khromova S A, Bykova M V, Bulavchenko O A, Ermakov D Y, Saraev A A, Kaichev V V, Venderbosch R H, Yakovlev V A. Top. Catal., 2016, 59(15/16): 1413.

doi: 10.1007/s11244-016-0649-0
[58]
Sebin M E, Akmaz S, Koc S N. J. Chem. Sci., 2020, 132(1): 1.

doi: 10.1007/s12039-019-1689-3
[59]
Weerachawanasak P, Krawmanee P, Inkamhaeng W, Cadete Santos Aires F J, Sooknoi T, Panpranot J. Catal. Commun., 2021, 149: 106221.
[60]
Singh G, Singh L, Gahtori J, Gupta R K, Samanta C, Bal R, Bordoloi A. Mol. Catal., 2021, 500(111339): 1.
[61]
Babu G S, Rekha V, Francis S, Lingaiah N. Catal. Lett., 2019, 149(10): 2758.

doi: 10.1007/s10562-019-02815-6
[62]
Ruiz J, Jimenez-Sanchidrian C. Curr. Org. Chem., 2007, 11(13): 1113.

doi: 10.2174/138527207781662500
[63]
Wang Y T, Zhao D Y, Liang R, Triantafyllidis K S, Yang W R, Len C. Mol. Catal., 2021, 499: 111199.
[64]
Li J, Liu J L, Zhou H J, Fu Y. ChemSusChem, 2016, 9(11): 1339.

doi: 10.1002/cssc.201600089
[65]
García-Sancho C, JimÉnez-GÓmez C P, Viar-Antuñano N, Cecilia J A, Moreno-Tost R, MÉrida-Robles J M, Requies J, Maireles-Torres P. Appl. Catal. A Gen., 2021, 609: 117905.
[66]
Kalong M, Hongmanorom P, Ratchahat S, Koo-amornpattana W, Faungnawakij K, Assabumrungrat S, Srifa A, Kawi S. Fuel Process. Technol., 2021, 214: 106721.
[67]
Gao Z, Yang L, Fan G L, Li F. ChemCatChem, 2016, 8(24): 3769.

doi: 10.1002/cctc.201601070
[68]
Wang Y T, Len C, Prinsen P, Yepez A, Luque R, Triantafyllidis K S, Karakoulia S A. ChemCatChem, 2018, 10: 3459.

doi: 10.1002/cctc.201800530
[69]
Fan Y F, Zhuang C F, Li S J, Wang Y, Zou X Q, Liu X T, Huang W M, Zhu G S. J. Mater. Chem. A, 2021, 9(2): 1110.

doi: 10.1039/D0TA10838C
[70]
Wang F, Zhang Z H. ACS Sustain. Chem. Eng., 2017, 5(1): 942.

doi: 10.1021/acssuschemeng.6b02272
[71]
Jiang S S, Huang J, Wang Y, Lu S Y, Li P, Li C Q, Li F. J. Chem. Technol. Biotechnol., 2021, 96(3): 639.
[72]
Hou P, Ma M W, Zhang P, Cao J J, Liu H, Xu X L, Yue H J, Tian G, Feng S H. New J. Chem., 2021, 45(5): 2715.

doi: 10.1039/D0NJ05638C
[73]
Li D N, Zhang J, Liu Y, Yuan H R, Chen Y. Chem. Eng. Sci., 2021, 229: 116075.
[74]
Zheng Y N, Zhang R, Zhang L, Gu Q F, Qiao Z A. Angew. Chem. Int. Ed., 2021, 60(9): 4774.

doi: 10.1002/anie.202012416
[75]
Nakanishi K, Tanaka A, Hashimoto K, Kominami H. Chem. Lett., 2018, 47(2): 254.

doi: 10.1246/cl.171053
[76]
Lange J P, Van der Heide E, Van Buijtenen J, Price R. ChemSusChem, 2012, 5(1): 150.

doi: 10.1002/cssc.201100648
[77]
Deng T Y, Xu G Y, Fu Y. Chin. J. Catal., 2020, 41(3): 404.

doi: 10.1016/S1872-2067(19)63505-9
[78]
Perez R F, Fraga M A. Green Chem., 2014, 16(8): 3942.

doi: 10.1039/C4GC00398E
[79]
Perez R F, Canhaci S J, Borges L E P, Fraga M A. Catal. Today, 2017, 289: 273.

doi: 10.1016/j.cattod.2016.09.003
[80]
Perez R F, Soares O S G P, de Farias A M D, R Pereira M F, Fraga M A. Appl. Catal. B Environ., 2018, 232: 101.

doi: 10.1016/j.apcatb.2018.03.042
[81]
Paulino P N, Perez R F, Figueiredo N G, Fraga M A. Green Chem., 2017, 19(16): 3759.

doi: 10.1039/C7GC01288H
[82]
Perez R F, Albuquerque E M, Borges L E P, Hardacre C, Fraga M A. Catal. Sci. Technol., 2019, 9(19): 5350.

doi: 10.1039/C9CY01235D
[83]
Canhaci S J, Perez R F, Borges L E P, Fraga M A. Appl. Catal. B Environ., 2017, 207: 279.

doi: 10.1016/j.apcatb.2017.01.085
[84]
Tan J J, Gao K, Su Y H, Cui J L, Zhang J, Zhao Y X. J. Mol. Catal. China, 2021, 35(2): 103.
谭静静, 高宽, 苏以豪, 崔静磊, 张静, 赵永祥. 分子催化, 2021, 35(2): 103.).
[85]
Ordomsky V V, Schouten J C, van der Schaaf J, Nijhuis T A. Appl. Catal. A Gen., 2013, 451: 6.

doi: 10.1016/j.apcata.2012.11.013
[86]
Aldosari O F, Iqbal S, Miedziak P J, Brett G L, Jones D R, Liu X, Edwards J K, Morgan D J, Knight D K, Hutchings G J. Catal. Sci. Technol., 2016, 6(1): 234.

doi: 10.1039/C5CY01650A
[87]
Cui J L, Tan J J, Cui X J, Zhu Y L, Deng T S, Ding G Q, Li Y W. ChemSusChem, 2016, 9(11): 1259.

doi: 10.1002/cssc.201600116
[88]
Xu L, Nie R F, Xu H F, Chen X J, Li Y C, Lu X Y. Ind. Eng. Chem. Res., 2020, 59(7): 2754.

doi: 10.1021/acs.iecr.9b05726
[89]
He Y C, Jiang C X, Chong G G, Di J H, Wu Y F, Wang B Q, Xue X X, Ma C L. Bioresour. Technol., 2017, 245: 841.

doi: 10.1016/j.biortech.2017.08.219
[90]
He Y C, Jiang C X, Jiang J W, Di J H, Liu F, Ding Y, Qing Q, Ma C L. Bioresour. Technol., 2017, 238: 698.

doi: 10.1016/j.biortech.2017.04.101
[91]
He Y C, Ding Y, Ma C L, Di J H, Jiang C X, Li A T. Green Chem., 2017, 19(16): 3844.

doi: 10.1039/C7GC01256J
[92]
Li Q, Hu Y, Tao Y Y, Zhang P Q, Ma C L, Zhou Y J, He Y C. Catal. Lett., 2021, 151(11): 3189.

doi: 10.1007/s10562-021-03570-3
[93]
Braun M, Antonietti M. Green Chem., 2017, 19(16): 3813.

doi: 10.1039/C7GC01055A
[94]
Dai J H, Fu X, Zhu L F, Tang J Q, Guo X W, Hu C W. ChemCatChem, 2016, 8(7): 1379.

doi: 10.1002/cctc.201501292
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[12] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[13] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[14] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[15] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.