中文
Announcement
More
Progress in Chemistry 2022, Vol. 34 Issue (8): 1831-1862 DOI: 10.7536/PC210933 Previous Articles   Next Articles

• Review •

Fluorescent Probes for Cysteine Detection

Yuhang Zhou, Sha Ding, Yong Xia(), Yuejun Liu   

  1. School of Packaging and Materials Engineering, Hunan University of Technology,Zhuzhou 412007, China
  • Received: Revised: Online: Published:
  • Contact: Yong Xia
  • Supported by:
    Scientific Research Fund of Hunan Provincial Education Department(20C0593)
Richhtml ( 47 ) PDF ( 656 ) Cited
Export

EndNote

Ris

BibTeX

Cysteine (Cys) is one of the three biological thiols. It is the only natural amino acid containing a reducing sulfhydryl group among the twenty natural amino acids. It is one of the basic amino acids that composes intracellular polypeptides and proteins. It participates in redox regulation of cells, regulates the redox balance in the body, and maintains the normal metabolism of the body, which plays a vital role in the physiological process. However, abnormal levels of Cys concentration in the body can cause a series of physiological diseases, and the concentration of Cys in the body has clinical significance as a biomarker of several diseases. Therefore, the effective identification and detection of cysteine is favored by more and more researchers. Compared with traditional detection methods, fluorescent probes have been widely used to detect biological thiols because of their simple operation, high sensitivity, rapid response and real-time detection. Based on the structural and performance characteristics of common fluorophores, this article reviews the fluorescent probes used to detect Cys in the past three years, focuses on their sensing mechanisms, briefly describes its biological applications, and prospects the future research directions and application prospects of Cys probes.

Contents

1 Introduction

2 Organic small molecule fluorescent probes for detecting Cys

2.1 Coumarin-based fluorescent probes for Cys detection

2.2 Rhodamine-based fluorescent probes for Cys detection

2.3 Benzothiazole-based fluorescent probes for Cys detection

2.4 Fluorescein-based fluorescent probes for Cys detection

2.5 Naphthalimide-based fluorescent probes for Cys detection

2.6 BODIPY-based fluorescent probes for Cys detection

2.7 Cyanine-based fluorescent probes for Cys detection Cys probes

2.8 NBD-based fluorescent probes for Cys detection Cys

2.9 Others fluorescent probes for Cys detection

3 Nano-fluorescent probes for Cys detection

3.1 Based on quantum dots for Cys detection

3.2 Based on gold nanomaterials for Cys detection

3.3 Based on Carbon dots for Cys detection

4 Based on fluorescent protein probes for Cys detection

5 Conclusion and outlook

Fig. 1 The structures of three biothiols
Fig. 2 The structure of coumarin
Fig. 3 Reaction mechanism of probe 1 for Cys[30]
Fig. 4 Reaction mechanism of probe 2 for Cys[31]
Fig. 5 Reaction mechanism of probe 3 for Cys[32]
Fig. 6 Reaction mechanism of probe 4 for Cys[33]
Fig. 7 Reaction mechanism of probe 5 for Cys[34]
Fig. 8 Reaction mechanism of probe 6 for Cys[35]
Fig. 9 Reaction mechanism of probe 7 for Cys[36]
Fig. 10 Reaction mechanism of probe 8 for Cys[37]
Fig. 11 The structure of rhodamine
Fig. 12 Reaction mechanism of probe 9 for Cys[52]
Fig. 13 Reaction mechanism of probe 10 for Cys[53]
Fig. 14 Reaction mechanism of probe 11 for Cys[54]
Fig. 15 Reaction mechanism of probe 12 for Cys[55]
Fig. 16 Reaction mechanism of probe 13 for Cys[56]
Fig. 17 Reaction mechanism of probe 14 for Cys[57]
Fig. 18 The structure of benzothiazole
Fig. 19 Reaction mechanism of probe 15 for Cys[62]
Fig. 20 Reaction mechanism of probe 16 for Cys[63]
Fig. 21 Reaction mechanism of probe 17 for Cys[64]
Fig. 22 Reaction mechanism of probe 18 for Cys[65]
Fig. 23 Reaction mechanism of probe 19 for Cys[66]
Fig. 24 Reaction mechanism of probe 20 for Cys[67]
Fig. 25 Reaction mechanism of probe 21 for Cys[68]
Fig. 26 Reaction mechanism of probe 22 for Cys[69]
Fig. 27 Reaction mechanism of probe 23 for Cys[70]. Copyright 2019, Royal Society of Chemistry
Fig. 28 The structure of fluorescein
Fig. 29 Reaction mechanism of probe 24 for Cys[76]
Fig. 30 Reaction mechanism of probe 25 for Cys[77]
Fig. 31 Reaction mechanism of probe 26 for Cys[78]
Fig. 32 Reaction mechanism of probe 27 for Cys[79]
Fig. 33 Reaction mechanism of probe 28 for Cys[80]
Fig. 34 Reaction mechanism of probe 29 for Cys[81]
Fig. 35 Reaction mechanism of probe 30 for Cys[82]
Fig. 36 The structure of naphthalimide
Fig. 37 Reaction mechanism of probe 31 for Cys[90]
Fig. 38 Reaction mechanism of probe 32 for Cys[91]
Fig. 39 Reaction mechanism of probe 33 for Cys[92]
Fig. 40 Reaction mechanism of probe 34 for Cys[93]
Fig. 41 Reaction mechanism of probe 35 for Cys[94]
Fig. 42 Reaction mechanism of probe 36 for Cys[95]
Fig. 43 Reaction mechanism of probe 37 for Cys[96]
Fig. 44 The structure of BODIPY
Fig. 45 Reaction mechanism of probe 38 for Cys[107]
Fig. 46 Reaction mechanism of probe 39 for Cys[108]
Fig. 47 Reaction mechanism of probe 40 for Cys[109]
Fig. 48 Reaction mechanism of probe 41 for Cys[110]
Fig. 49 Reaction mechanism of probe 42 for Cys[111]
Fig. 50 Reaction mechanism of probe 43 for Cys[112]
Fig. 51 Reaction mechanism of probe 44 for Cys[113]
Fig. 52 Reaction mechanism of probe 45 for Cys[114]
Fig. 53 Reaction mechanism of probe 46 for Cys[115]
Fig. 54 The structure of cyanine
Fig. 55 Reaction mechanism of probe 47 for Cys[119]
Fig. 56 Reaction mechanism of probe 48 for Cys[120]
Fig. 57 Reaction mechanism of probe 49 for Cys[121]
Fig. 58 Reaction mechanism of probe 50 for Cys[122]
Fig. 59 Reaction mechanism of probe 51 for Cys[123]
Fig. 60 Reaction mechanism of probe 52 for Cys[124]
Fig. 61 Reaction mechanism of probe 53 for Cys[125]
Fig. 62 Reaction mechanism of probe 54 for Cys[126]
Fig. 63 The structure of BD and NBD
Fig. 64 Reaction mechanism of probe 55 for Cys[133]
Fig. 65 Reaction mechanism of probe 56 for Cys[134]
Fig. 66 Reaction mechanism of probe 57 for Cys[135]
Fig. 67 Reaction mechanism of probe 58 for Cys[136]
Fig. 68 Reaction mechanism of probe 59 for Cys[137]
Fig. 69 Reaction mechanism of probe 60 for Cys[138]
Fig. 70 Reaction mechanism of probe 61 for Cys[139]
Fig. 71 Reaction mechanism of probe 62 for Cys[140]
Fig. 72 Reaction mechanism of probe 63 for Cys[141]
Fig. 73 Reaction mechanism of probe 64 for Cys[142]
Fig. 74 Reaction mechanism of probe 65 for Cys[143]
Fig. 75 Reaction mechanism of probe 66 for Cys[144]
Fig. 76 Reaction mechanism of probe 67 for Cys[145]
Fig. 77 Reaction mechanism of probe 68 for Cys[150]
Fig. 78 Reaction mechanism of probe 69 for Cys[151]
Fig. 79 Reaction mechanism of probe 70 for Cys[158]. Copyright 2021, Royal Society Of Chemistry
Fig. 80 Reaction mechanism of probe 71 for Cys[159]
Fig. 81 Reaction mechanism of probe 73 for Cys[160]
Fig. 82 Reaction mechanism of probe 74 for Cys[161]
Fig. 83 Reaction mechanism of probe 75 for Cys[162]
Fig. 84 Reaction mechanism of probe 76 for Cys[162].Copyright 2020, Royal Society Of Chemistry
Fig. 85 Reaction mechanism of probe 77 for Cys[164]
Fig. 86 Reaction mechanism of probe 78 for Cys[166]
Fig. 87 Reaction mechanism of probe 79 for Cys[167]
Fig. 88 Reaction mechanism of probe 80 for Cys[168]
Fig. 89 Reaction mechanism of probe 81 for Cys[169]. Copyright 2020, Royal Society Of Chemistry
Fig. 90 Reaction mechanism of probe 82 for Cys[170]. Copyright 2020, American Chemical Society
Fig. 91 Reaction mechanism of probe 83 for Cys[171]. Copyright 2021, Royal Society Of Chemistry
Fig. 92 Reaction mechanism of probe 84 for Cys[172]. Copyright 2020, Royal Society Of Chemistry
Fig. 93 Reaction mechanism of probe 85 for Cys[173]
Fig. 94 Reaction mechanism of probe 86 for Cys[176]
Fig. 95 Reaction mechanism of probe 87 for Cys[177]
Table 1 Summary of Cys fluorescent probe
Probe Fluorophore λex/λex LOD Time Solvent Application ref
1 Coumarin 381/461 nm 6 nM 15 min DMSO/PBS(VV=1∶9) A357 cells 30
2 Coumarin 454/505 nm 0.24 μM 10 min HEPES/DMSO(VV=6∶4) BHK-21 cells 31
3 Coumarin 430/495 nm 49 nM 3 min PBS Liver tissues 32
4 Coumarin 326/466 nm 2 μM - EtOH/H2O (VV=9∶1) Living cells 33
5 Coumarin 322/511 nm 88.2 nM 18 min PBS Living cells 34
6 Coumarin 510/560 nm 0.28 μM 30 min EtOH/PBS (VV=1∶1) HeLa cells 35
7 Coumarin 360/470 nm - 60 min DMSO/PBS (V∶V=1∶199) HeLa cells 36
8 Coumarin 460/536 nm 0.3 μM - EtOH/PBS(VV=1∶1) - 37
9 Rhodamine 410/462 nm 0.12 μM 10 min EtOH/PBS (VV=1∶2) Caov 3 cells 52
10 Rhodamine 549/584 nm 20 μM 1.5 min DMSO/PBS(VV=1∶1) BSA/water 53
11 Rhodamine 440/467 nm 1.5 μM 20 min EtOH/PBS (VV=3∶7) HeLa cells 54
12 Rhodamine 395/590 nm 0.47 μM 30 min DMSO/PBS (VV=1∶9) Liver tissues 55
13 Rhodamine 365/579 nm 0.282 μM - - Human serum 54
14 Rhodamine 530/574 nm 0.01 μM - aqueous - 55
15 Benzothiazole 423/686 nm 0.20 μM 14 min HEPES/ methanol / acetonitrile (V∶V∶V=1∶1∶1∶1) HeLa cells 62
16 Benzothiazole 370/478 nm 0.478 μM 2 min DMSO/PBS (VV=1∶1) HeLa cells 63
17 Benzothiazole 365/710 nm 0.40 μM 120 min DMSO/PBS (VV=1∶1) HeLa cells 64
18 Benzothiazole 405/595 nm 74 nM 3 min DMSO/PBS (VV=1∶1) Mitochondria 65
19 Benzothiazole 430/740 nm 0.062 μM 15 min ACN/ H2O (VV=99∶1) A549 cells 66
20 Benzothiazole 411/713 nm 116 nM 15 min CH3CN/PBS (VV=1∶1) HeLa cells 67
21 Benzothiazole 365/607 nm 0.12 μM 80 min DMSO/Tris-HCl(VV=99∶1)(V∶V=1∶99) MCF-7 cells 68
22 Benzothiazole 340/455 nm 37 nM 30 min DMSO/PBS (VV=1∶9) HeLa cells 69
23 benzothiazole - 20 s ACN/ H2O (VV=1∶1) - 70
24 Fluorescein 538/567 nm 39.2 nM 14 min PBS HepG2 cells 76
25 Fluorescein 480/520 nm - - MeCN/PBS A549 cells 77
26 Fluorescein 460/515 nm 182 nM 30 min CH3CN/PBS (VV=6∶4) A549 cells 78
27 Fluorescein 337/520 nm 6.5 μM 27 min DMSO/PBS (VV=1∶3) - 79
28 Fluorescein 491/519 nm 0.021 μM - DMSO/PBS (VV=5∶95) HeLa cells 80
29 Fluorescein 450/532 nm 3.0 nM 5 min EtOH/PBS(VV=9∶1) L929 cells 81
30 Fluorescein - 0.6 μM - PBS Human Serum 82
31 Naphthalimide 620/665 nm 0.093 μM 20 min PBS HeLa cells 90
32 Naphthalimide 365/413 nm 0.31 nM 80 min EtOH/PBS(VV=9∶1) THLE2 cells 91
33 Naphthalimide 450/550 nm 0.31 nM 5 min PBS Zebrafish 92
34 Naphthalimide 402/559 nm 0.87 μM 55 min DMF/ H2O (VV=7∶3) Livig cells 93
35 Naphthalimide 405/571nm 16.7 nM 40 min PBS MCF-7 cells 94
36 Naphthalimide 488/590 nm 9.87 nM 4 min CTAB/PBS (VV=1∶9) MCF-7 cells 95
37 Naphthalimide 450/550 nm 0.065 μM 2 h CTAB/PBS (VV=1∶9) MCF-7 cells 96
38 BODIPY 365/524 nm 52 nM 10 min ACN/PBS (VV=2∶3) HeLa cells 107
39 BODIPY 465/567 nm 51 nM - CH3CN/PBS (V∶V=1∶1) HeLa cells 108
40 BODIPY 700/730 nm 5.23 μM 3 min THF/PBS (VV=1∶1) - 109
41 BODIPY 550/617 nm 72 nM 2 min ACN/PBS VV=2∶3) HeLa cells 110
42 BODIPY 580/685nm 118 nM 90 min CH3CN/PBS (VV=1∶1) HeLa cells 111
43 BODIPY 365/407 nm 4.1 nM 2 min DMSO/PBS (VV=1∶9) HepG2 cells 112
44 BODIPY 370/521 nm 33 nM - DMSO/PBS (VV=1∶1) HepG2 cells 113
45 BODIPY 480/512 nm - 60 min EtOH/PBS (VV=1∶2) HeLa cells 114
46 BODIPY 670/710 nm 2.29 μM - ACN/PBS (VV=1∶4) HepG2 cells 115
47 Cyanine 660/750 nm 0.39 μM 90 min DMSO/PBS (VV=1∶1) HeLa cells 119
48 Cyanine 561/604 nm 13.4 μM 30 min DMSO/PBS (VV=1∶9) Mitochondria 120
49 Cyanine 535/635 nm 0.09 μM 30 min HEPES Lung cancer 121
50 Cyanine 650/743 nm 0.17 μM 60 min HEPES HeLa cells 122
51 Cyanine 650/776 nm 0.47 μM 25 min DMSO/PBS (VV=1∶4) MCF-7 cells 123
52 Cyanine 470/550 nm 94 nM 60 min MeCN/PBS (VV=1∶9) MCF-7 cells U87 cells 124
53 Cyanine 565/635 nm 228 nM - DMSO/PBS (VV=3∶7) HeLa cells 125
54 Cyanine 680/780 nm 7.7 μM 15 min DMSO/PBS (VV=1∶1) HeLa cells 126
55 NBD 478/550 nm 0.12 μM - DMSO/H2O (VV=1∶9) GBM cells 133
56 NBD 365/470 nm 22.6 nM 30 min DMF/PBS (VV=2∶3) HeLa cells 134
57 NBD 488/555 nm 0.44 μM 210 s DMSO/PBS (VV=1∶9) HeLa cells 135
58 NBD 470/565 nm 0.008 μM 25 min DMSO/PBS (VV=1∶4) HeLa cells 136
59 NBD 470/547 nm 0.015 μM 10 min DMF/PBS (VV=1∶9) HeLa cells 137
60 Isophorone 365/680 nm 36.93 nM 6 min EtOH/PBS (VV=1∶1) HeLa cells 138
61 Isoflurone 450/660 nm 79 nM - DMSO/PBS (VV=3∶7) HepG2 cells 139
62 Isophorone 505/666 nm 86.9 nM - DMSO/PBS (VV=1∶4) HeLa cells 140
63 Chalcone 400/504 nm 80 nM - DMSO/PBS (VV=1∶1) HeLa cells 141
64 Schiff base 445/526 nm 36.4 nM - EtOH/PBS (VV=3∶7) Zebrafish 142
65 Imidazo [1,5-a]pyridine 340/475 nm 0.07 μM 10 min DMSO/PBS (VV=1∶9) HeLa cells 143
66 Flavonoid 365/530 nm 42.3 nM 15 min DMSO/H2O (VV=1∶4) HeLa cells 144
67 Naphthalene 380/524 nm 11 nM 10 min DMSO/PBS (VV=1∶99) HeLa cells 145
68 CQDs - 242 nM - Aqueous River water 150
69 CQDs 368/530 nm 0.96 nM 2.5 min Aqueous Drug/Water 151
70 GQDs 420/480 nm 140 nM - Aqueous - 158
71 GQDs - - - Aqueous Blood 159
72 GQDs - 1.69 nM - PBS Blood 160
73 GQDs - 0.234 nM - PBS Blood 160
74 AuNCs 430/600 nm 0.42 μM 10 min Aqueous Serum 161
75 AuNCs 495/660 nm 30.4 nM - PBS Liver 162
76 AuNCs/AuNPs - 1.4 μM 6 min Tris-HCl buffer solution Serum 163
77 AuNPs 88 nM 13 min Aqueous Drug 164
78 AuNPs - 1 μM - Aqueous - 166
79 AuNPs - 5.88 μM 2 min PBS - 167
80 N,S-CDs 450/513 nm 23 nM - Aqueous HCT 116 cells 168
81 AgNPs/CDs 365/425 nm 68.5 nM - BR buffer - 169
82 CDs 410/530 nm 0.34 μM - Aqueous HCT 116 cells 170
83 N-CDs 365/450 nm 0.21 μM - PBS Serum 171
84 CDs 360/460 nm 0.047 μM - Acetate buffer - 172
85 CDs 450/556 nm - - Pure water Lysosome 173
86 GFP 493/620 nm 18.7 μM 30 min EtOH/PBS (VV=1∶1) Bel-7402 cells 176
87 GFP 470/534 nm 4.98 nM 27 min EtOH/PBS (VV=1∶1) Bel-7402 cells 177
[1]
Yin H F, Gao M J, Jiang W J, Gan Y H, Li C, Kang Y F, Meng Y L, Xin Z H. Spectrosc. Lett., 2020, 53(9): 664.

doi: 10.1080/00387010.2020.1821063
[2]
Liu Y, Wu Y X, Zhang D L, Zhong H M, Li D, He K D, Wei W T, Yu S R. Talanta, 2020, 220: 121364.
[3]
Zhang R, Yong J X, Yuan J L, Xu Z P. Coord. Chem. Rev., 2020, 408: 213182.
[4]
Al-Busafi S N, Al-Kindi S M, Suliman F E O, Al-Kalbani A A. Asian J. Chem., 2019, 31(12): 2909.

doi: 10.14233/ajchem.2019.22286
[5]
Chao J B, Duan Y X, Zhang Y B, Huo F J, Yin C X. J. Mol. Struct., 2020, 1219: 128629.
[6]
Chen S, Hou P, Sun J, Wang H, Liu L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 241: 118655.
[7]
Chen S, Hou P, Wang J, Fu S, Liu L. J. Photochem. Photobiol. A, 2018, 363: 7.

doi: 10.1016/j.jphotochem.2018.05.025
[8]
Chen T, Pei X, Yue Y, Huo F, Yin C. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 209: 223.

doi: 10.1016/j.saa.2018.10.049
[9]
Chen Z Y, Sun Q, Yao Y H, Fan X X, Zhang W B, Qian J H. Biosens. Bioelectron., 2017, 91: 553.

doi: 10.1016/j.bios.2017.01.013
[10]
Zhang Y Y, Yang M, Shao Z Y, Xu H D, Chen Y, Yang Y L, Xu W F, Liao X L. Microchem. J., 2020, 158: 105327.
[11]
Zhou J, Yu C M, Li Z, Peng P P, Zhang D T, Han X, Tang H Z, Wu Q, Li L, Huang W. Anal. Methods, 2019, 11(10): 1312.

doi: 10.1039/C9AY00041K
[12]
Zhou T T, Yang Y T, Zhou K Y, Xu W Z, Li W. Chin. J. Org. Chem., 2019, 39(12): 3498.

doi: 10.6023/cjoc201906004
[13]
Zhang S W, Xia Q W, Wang F, Wang T, Jia X D, Yuan Y, Zhang M, Chen G. Tetrahedron Lett., 2021, 87: 153157.
[14]
Yang Y, Wang H, Wei Y L, Zhou J, Zhang J F, Zhou Y. Chin. Chem. Lett., 2017, 28(10): 2023.

doi: 10.1016/j.cclet.2017.08.051
[15]
Jin Q, Feng L, Wang D D, Wu J J, Hou J, Dai Z R, Sun S G, Wang J Y, Ge G B, Cui J N, Yang L. Biosens. Bioelectron., 2016, 83: 193.

doi: 10.1016/j.bios.2016.04.075
[16]
Weerapana E, Wang C, Simon G M, Richter F, Khare S, Dillon M B D, Bachovchin D A, Mowen K, Baker D, Cravatt B F. Nature, 2010, 468(7325): 790.

doi: 10.1038/nature09472
[17]
Boer S A, Cox R P, Beards M J, Wang H X, Donald W A, Bell T D M, Turner D R. Chem. Commun., 2019, 55(5): 663.

doi: 10.1039/C8CC09191A
[18]
Chen L Y, Oh H, Wu D, Kim M H, Yoon J. Chem. Commun., 2018, 54(18): 2276.

doi: 10.1039/C7CC09901K
[19]
Manna A K, Mondal J, Rout K, Patra G K. J. Photochem. Photobiol. A Chem., 2018, 367: 74.

doi: 10.1016/j.jphotochem.2018.08.018
[20]
Qiao H X, Meng Y L, Zhang Y X, Sun J X, Wang T, Zhang X J, Wang F F, Kang Y F. Chem. Pap., 2018, 72(6): 1461.

doi: 10.1007/s11696-018-0401-2
[21]
Goud N S, Pooladanda V, Mahammad G S, Jakkula P, Gatreddi S, Qureshi I A, Alvala R, Godugu C, Alvala M. Chem. Biol. Drug Des., 2019, 94(5): 1919.

doi: 10.1111/cbdd.13578
[22]
Zhang Y D, Song N, Li Y Y, Yang Z Y, Chen L, Sun T T, Xie Z G. J. Mater. Chem. B, 2019, 7(30): 4717.

doi: 10.1039/C9TB01165J
[23]
Lingaraju G S, Balaji K S, Jayarama S, Anil S M, Kiran K R, Sadashiva M P. Bioorg. Med. Chem. Lett., 2018, 28(23/24): 3606.

doi: 10.1016/j.bmcl.2018.10.046
[24]
Savanur H M, Pawashe G M, Kim K M, Kalkhambkar R G. ChemistrySelect, 2018, 3(33): 9648.

doi: 10.1002/slct.201801408
[25]
Chang H Q, Zhao X L, Wu W N, Jia L, Wang Y. J. Lumin., 2017, 182: 268.

doi: 10.1016/j.jlumin.2016.10.041
[26]
Li S, Cao D, Meng X, Hu Z, Li Z, Yuan C, Zhou T, Han X, Ma W. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 230: 118022.
[27]
Zhu L, Yang X Q, Luo X B, Hu B, Huang W. Inorg. Chem. Commun., 2020, 114: 107823.
[28]
Li S L, Cao D L, Meng X J, Hu Z Y, Li Z C, Yuan C C, Zhou T, Han X H, Ma W B. J. Photochem. Photobiol. A Chem., 2020, 392: 112427.
[29]
Puthiyedath T, Bahulayan D. Sens. Actuat. B Chem., 2018, 272: 110.

doi: 10.1016/j.snb.2018.05.126
[30]
Cao C, Feng Y, Li H, Yang Y, Song X R, Wang Y Z, Zhang G L, Dou W, Liu W S. Talanta, 2020, 219: 121353.
[31]
Cao C, Jing C L, Feng Y, Song X R, Liu W S, Zhang G L, Dou W, Ru J X. Dyes Pigments, 2022, 197: 109823.
[32]
Cheng T Y, Huang W M, Gao D, Yang Z, Zhang C J, Zhang H X, Zhang J J, Li H, Yang X F. Anal. Chem., 2019, 91(16): 10894.
[33]
Chu Y F, Cen Y J, Song Y X, Xu Z X, Hu L P, Li H Q, Yang C L. Color. Technol., 2020, 136(4): 381.

doi: 10.1111/cote.12476
[34]
Zhang Y B, Zhang Y, Yue Y K, Chao J B, Huo F J, Yin C X. Sens. Actuat. B Chem., 2020, 320: 128348.
[35]
Zou F X, Wang C, Song W W, Shen L J, Xu R S, Wang M, Sun T M, Wang J. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 257: 119775.
[36]
Xiao Y T, Guo K, Wei J, Gao X W, Yi D, Li Y, Yu X Q, Zhang C, Wang Q. Tetrahedron Lett., 2020, 61(44): 152462.
[37]
Hien N K, van Bay M, Tran P D, Khanh N T, Luyen N D, Vo Q V, Van D U, Nam P C, Quang D T. RSC Adv., 2020, 10(60): 36265.
[38]
Gao Z G, Kan C, Liu H B, Zhu J, Bao X F. Tetrahedron, 2019, 75(9): 1223.

doi: 10.1016/j.tet.2019.01.029
[39]
Zhang Y B, Xia S, Fang M X, Mazi W F, Zeng Y B, Johnston T, Pap A, Luck R L, Liu H Y. Chem. Commun., 2018, 54(55): 7625.

doi: 10.1039/C8CC03520B
[40]
Tian X Y, Liu H W, Wei F F, Wang X C, Zhao S N, Liu C J, Tse Y C, Wong K M C. ChemPlusChem, 2020, 85(8): 1639.

doi: 10.1002/cplu.202000384
[41]
Gu T C, Mo S Y, Mu Y Q, Huang X, Hu L M. Sens. Actuat. B Chem., 2020, 309: 127731.
[42]
Shen S L, Huang X Q, Jiang H L, Lin X H, Cao X Q. Anal. Chimica Acta, 2019, 1046: 185.

doi: 10.1016/j.aca.2018.09.054
[43]
Leng J C, Xin J T, Zhou H, Li K, Hu W, Zhang Y J. Int. J. Quantum Chem., 2021, 121(2): e26345.
[44]
Gandra U R, Courjaret R, Machaca K, Al-Hashimi M, Bazzi H S. Sci. Rep., 2020, 10: 19519.
[45]
Zhu Z F, Ding H C, Wang Y S, Fan C B, Tu Y Y, Liu G, Pu S Z. J. Photochem. Photobiol. A Chem., 2020, 400: 112657.
[46]
Yang Y, Guo Z, Ye J, Gao C Y, Liu J, Duan L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 248: 119238.
[47]
Zhang M, Shen C, Jia T, Qiu J, Zhu H, Gao Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 231: 118105.
[48]
Shellaiah M, Thirumalaivasan N, Aazaad B, Awasthi K, Sun K W, Wu S P, Lin M C, Ohta N. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 242: 118757.
[49]
Li Z P, Xiong W, He X J, Qi X L, Ding F, Shen J L. Anal., 2020, 145(12): 4239.

doi: 10.1039/D0AN00582G
[50]
Gong S Y, Hong J X, Zhou E B, Feng G Q. Talanta, 2019, 201: 40.

doi: 10.1016/j.talanta.2019.03.111
[51]
Qian M, Zhang L W, Pu Z J, Xia J, Chen L L, Xia Y, Cui H Y, Wang J Y, Peng X J. J. Mater. Chem. B, 2018, 6(47): 7916.

doi: 10.1039/C8TB02218F
[52]
Yu Y T, Wang J B, Xiang H, Ying L K, Wu C Y, Zhou H W, Liu H Y. Dyes Pigments, 2020, 183: 108710.
[53]
Liu K, Gu H, Sun Y Z, Xu C, Yang S Z, Zhu B L. Food Chem., 2021, 356: 129658.
[54]
Xia S, Zhang Y B, Fang M X, Mikesell L, Steenwinkel T E, Wan S L, Phillips T, Luck R L, Werner T, Liu H Y. ChemBioChem, 2019, 20(15): 1986.

doi: 10.1002/cbic.201900071
[55]
Liu Z K, Wang Q Q, Wang H, Su W T, Dong S L. Sensors, 2020, 20(6): 1746.

doi: 10.3390/s20061746
[56]
Xue H Y, Yu M, He K Y, Liu Y N, Cao Y Y, Shui Y H, Li J, Farooq M, Wang L. Anal. Chimica Acta, 2020, 1127: 39.

doi: 10.1016/j.aca.2020.06.039
[57]
Maiti P, Singha T, Chakraborty U, Roy S D, Karmakar P, Dey B, Hussain S A, Paul S, Paul P K. Mater. Chem. Phys., 2019, 234: 158.

doi: 10.1016/j.matchemphys.2019.06.001
[58]
Wang H Y, Zhao S F, Xu Y K, Li L L, Li B, Pei M S, Zhang G Y. J. Mol. Struct., 2020, 1203: 127384.
[59]
Zheng Y L, Zhang H C, Tian D H, Duan D C, Dai F, Zhou B. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 238: 118429.
[60]
Yan F Y, Sun J R, Zang Y Y, Sun Z H, Zhang H, Wang X. J. Iran. Chem. Soc., 2020, 17(12): 3179.

doi: 10.1007/s13738-020-01998-9
[61]
Zhu J, Gao Q, Tong Q, Wu G. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 225: 117506.
[62]
Ren H X, Huo F J, Zhang Y B, Zhao S H, Yin C X. Sens. Actuat. B Chem., 2020, 319: 128248.
[63]
Anusuyadevi K, Wu S P, Velmathi S. J. Photochem. Photobiol. A Chem., 2020, 403: 112875.
[64]
Zhang X, Zhang L, Ma W W, Zhou Y, Lu Z N, Xu S Y. Front. Chem., 2019, 7: 32.

doi: 10.3389/fchem.2019.00032 pmid: 30775362
[65]
Wei Y N, Lin B, Shu Y, Wang J H. Anal., 2021, 146(14): 4642.

doi: 10.1039/D1AN00758K
[66]
Zhao L H, He X, Huang Y B, Li J L, Li Y L, Tao S, Sun Y, Wang X H, Ma P Y, Song D Q. Sens. Actuat. B Chem., 2019, 296: 126571.
[67]
Long Y, Liu J R, Tian D H, Dai F, Zhang S X, Zhou B. Anal. Chem., 2020, 92(20): 14236.
[68]
Tang L J, Xu D, Tian M Y, Yan X M. J. Lumin., 2019, 208: 502.

doi: 10.1016/j.jlumin.2019.01.022
[69]
Yang Y S, Yuan Z H, Zhang X P, Xu J F, Lv P C, Zhu H L. J. Mater. Chem. B, 2019, 7(18): 2911.

doi: 10.1039/c9tb00273a
[70]
Gholami M D, Manzhos S, Sonar P, Ayoko G A, Izake E L. Anal., 2019, 144(16): 4908.

doi: 10.1039/C9AN01055F
[71]
Liu Y C, Xiang K Q, Tian B Z, Zhang J L. Tetrahedron Lett., 2016, 57(23): 2478.

doi: 10.1016/j.tetlet.2016.04.068
[72]
Picard-Lafond A, Larivière D, Boudreau D. ACS Omega, 2020, 5(1): 701.

doi: 10.1021/acsomega.9b03333 pmid: 31956820
[73]
Erdemir S, Kocyigit O. Dyes Pigments, 2017, 145: 72.

doi: 10.1016/j.dyepig.2017.05.053
[74]
Li X Y, Yu Z Y, Li N, Jia H S, Wei H, Wang J, Song Y T. Dyes Pigments, 2019, 162: 281.

doi: 10.1016/j.dyepig.2018.10.044
[75]
Kang H M, Xu H T, Fan C B, Liu G, Pu S Z. J. Photochem. Photobiol. A Chem., 2018, 367: 465.

doi: 10.1016/j.jphotochem.2018.09.001
[76]
Ji Y, Dai F, Zhou B. Talanta, 2019, 197: 631.

doi: 10.1016/j.talanta.2019.01.084
[77]
Shi L M, Yan C X, Guo Z Q, Chi W J, Wei J L, Liu W M, Liu X G, Tian H, Zhu W H. Nat. Commun., 2020, 11: 793.

doi: 10.1038/s41467-020-14615-3
[78]
Karaku塂 E, Sayar M, Dartar S, Kaya B U, Emrullahoğlu M. Chem. Commun., 2019, 55(34): 4937.

doi: 10.1039/C9CC01774G
[79]
Wang J L, Wang H, Hao Y F, Yang S X, Tian H Y, Sun B G, Liu Y G. Food Chem., 2018, 262: 67.

doi: 10.1016/j.foodchem.2018.04.084
[80]
Du W, Liu R J, Fang J G, Gao H, Wang Y W, Peng Y. Tetrahedron, 2019, 75(36): 130477.
[81]
Liu C, Shang Y, Zhao T, Liang L J, He S, Zhao L C, Zeng X S, Wang T H. Sens. Actuat. B Chem., 2021, 348: 130632.
[82]
Qin X, Yuan C L, Chen Y Y, Wang Y L. J. Photochem. Photobiol. B Biol., 2020, 210: 111986.
[83]
Huang L N, Chen Y, Zhao Y Q, Wang Y M, Xiong J W, Zhang J F, Wu X H, Zhou Y. Chin. Chem. Lett., 2020, 31(11): 2941.

doi: 10.1016/j.cclet.2020.06.006
[84]
Yuan W W, zhong X L, Han Q R, Jiang Y L, Shen J, Wang B X. J. Photochem. Photobiol. A Chem., 2020, 400: 112701.
[85]
Li M, Du F, Xue P, Tan X, Liu S, Zhou Y, Chen J, Bai L. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 227: 117760.
[86]
Tian M J, Wang C Y, Ma Q J, Bai Y, Sun J G, Ding C F. ACS Omega, 2020, 5(29): 18176.
[87]
Ou P, Wang Y, Hao C, Peng Y, Zhou L Y. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 245: 118886.
[88]
Liu J, Liu X J, Lu S S, Zhang L L, Feng L, Zhong S L, Zhang N, Bing T, Shangguan D H. Anal., 2020, 145(20): 6549.

doi: 10.1039/D0AN01314E
[89]
He M, Sun H, Wei J, Zhang R, Han X, Ni Z. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 247: 119138.
[90]
Hou X, Li Z, Li Y, Zhou Q, Liu C, Fan D, Wang J, Xu R, Xu Z. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 246: 119030.
[91]
Aydin D, Karuk Elmas S N, Akin Geyik G, Bostanci A, Arslan F N, Savran T, Sadi G, Yilmaz I. New J. Chem., 2021, 45(36): 16617.
[92]
Zhu H C, Zhang H M, Liang C X, Liu C Y, Jia P, Li Z L, Yu Y M, Zhang X, Zhu B C, Sheng W L. Anal., 2019, 144(23): 7010.

doi: 10.1039/C9AN01760G
[93]
Wang Y P, Chen J, Shu Y, Wang J H, Qiu H D. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2022, 266: 120409.
[94]
Li K B, Qu W B, Shen Q X, Zhang S Q, Shi W, Dong L, Han D M. Dyes Pigments, 2020, 173: 107918.
[95]
Rong Y F, Wang C, Chuai P F, Song Y F, Zhou S, Hou P, Liu X J, Wei L H, Song X Z. New J. Chem., 2019, 43(33): 13212.
[96]
Cao J, Jiang X X, Fu N Y. Dyes Pigments, 2020, 174: 107978.
[97]
Yue J L, Wang N N, Wang J M, Tao Y F, Wang H, Liu J Y, Zhang J, Jiao J R, Zhao W L. Anal. Methods, 2021, 13: 2908.

doi: 10.1039/D1AY00740H
[98]
Uriel C, Permingeat C, Ventura J, Avellanal-Zaballa E, Bañuelos J, García-Moreno I, Gómez A M, Lopez J C. Chem. Eur. J., 2020, 26(24): 5304.

doi: 10.1002/chem.202000766
[99]
Sun R P, Wang L S, Jiang C, Du Z Y, Chen S W, Wu W S. J. Fluoresc., 2020, 30(4): 883.

doi: 10.1007/s10895-020-02544-9
[100]
Song Y T, Tao J Y, Wang Y, Cai Z C, Fang X Y, Wang S F, Xu H J. Inorganica Chimica Acta, 2021, 516: 120099.
[101]
Yang J, Zhang R, Zhao Y, Tian J, Wang S, Gros C P, Xu H. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2021, 248: 119199.
[102]
Zhang J, Wang N N, Ji X, Tao Y F, Wang J M, Zhao W L. Chem. Eur. J., 2020, 26(19): 4172.

doi: 10.1002/chem.201904470
[103]
Gao L X, Tian M, Zhang L, Liu Y, Jiang F L. Dyes Pigments, 2020, 180: 108434.
[104]
Zhu X Y, Wu H, Guo X F, Wang H. Dyes Pigments, 2019, 165: 400.

doi: 10.1016/j.dyepig.2019.02.050
[105]
Li C, Sun Q, Zhao Q, Cheng X. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 228: 117720.
[106]
Cao T, Gong D Y, Zheng L, Wang J M, Qian J, Liu W, Cao Y P, Iqbal K, Qin W W, Iqbal A. Anal. Chimica Acta, 2019, 1078: 168.

doi: 10.1016/j.aca.2019.06.033
[107]
Wang N N, Chen M, Gao J H, Ji X, He J L, Zhang J, Zhao W L. Talanta, 2019, 195: 281.

doi: 10.1016/j.talanta.2018.11.066
[108]
Wang N N, Ji X, Wang H, Wang X H, Tao Y F, Zhao W L, Zhang J. Anal. Sci., 2020, 36(11): 1317.

doi: 10.2116/analsci.20P134
[109]
Pham T C, Choi Y, Bae C, Tran C S, Kim D, Jung O S, Kang Y C, Seo S, Kim H S, Yun H, Zhou X, Lee S Y. RSC Adv., 2021, 11(17): 10154.
[110]
Ji X, Wang N N, Zhang J, Xu S, Si Y B, Zhao W L. Dyes Pigments, 2021, 187: 109089.
[111]
Tao Y F, Ji X, Zhang J, Jin Y, Wang N N, Si Y B, Zhao W L. ChemBioChem, 2020, 21(21): 3131.

doi: 10.1002/cbic.202000313
[112]
Mei Y, Li H, Song C Z, Chen X G, Song Q H. Chem. Commun., 2021, 57(79): 10198.
[113]
Wang L F, Qian Y. J. Photochem. Photobiol. A Chem., 2019, 372: 122.

doi: 10.1016/j.jphotochem.2018.12.013
[114]
Wang L, Wang J B, Xia S, Wang X X, Yu Y T, Zhou H W, Liu H Y. Talanta, 2020, 219: 121296.
[115]
Jia L, Niu L Y, Yang Q Z. Anal. Chem., 2020, 92(15): 10800.
[116]
Zhou E B, Gong S Y, Feng G Q. Sens. Actuat. B Chem., 2019, 301: 127075.
[117]
Aristova D, Volynets G, Chernii S, Losytskyy M, Balanda A, Slominskii Y, Mokhir A, Yarmoluk S, Kovalska V. R. Soc. Open Sci., 2020, 7(7): 200453.
[118]
Jin D, Wang B W, Hou Y Q, Du Y C, Li X, Chen L G. Dyes Pigments, 2019, 170: 107612.
[119]
Yang X, Wang Y, Zhao M X, Yang W. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2019, 212: 10.

doi: 10.1016/j.saa.2018.12.042
[120]
Zhu Y D, Pan H T, Song Y Y, Jing C, Gan J A, Zhang J J. Dyes Pigments, 2021, 191: 109376.
[121]
Zhang X Y, He N, Huang Y, Yu F B, Li B W, Lv C J, Chen L X. Sens. Actuat. B Chem., 2019, 282: 69.

doi: 10.1016/j.snb.2018.11.056
[122]
Men Y H, Zhou X M, Yan Z J, Niu L Q, Luo Y, Wang J M, Wang J H. Anal. Sci., 2020, 36(9): 1053.

doi: 10.2116/analsci.20P016
[123]
Fang H B, Chen Y C, Wang Y J, Geng S S, Yao S K, Song D F, He W J, Guo Z J. Sci. China Chem., 2020, 63(5): 699.

doi: 10.1007/s11426-019-9688-y
[124]
Li R X, Kassaye H, Pan Y P, Shen Y Z, Li W Q, Cheng Y R, Guo J X, Xu Y, Yin H P, Yuan Z W. Biomater. Sci., 2020, 8(21): 5994.

doi: 10.1039/D0BM01237H
[125]
Niu L Q, Luo Y, Gan Y, Cao Q J, Zhu C J, Wang M X, Wang J M, Zhang W H, Wang J H. Talanta, 2020, 219: 121291.
[126]
Zhang H H, Yan C X, Li H, Shi L, Wang R F, Guo Z Q, Zhu W H. ACS Appl. Bio Mater., 2021, 4(3): 2001.

doi: 10.1021/acsabm.0c00260 pmid: 35014325
[127]
de Almeida R F M, Santos T C B, da Silva L C, Suchodolski J, Krasowska A, Stokowa-Sołtys K, Puchalska M, Starosta R. Dyes Pigments, 2021, 184: 108771.
[128]
Cao X J, Chen L N, Zhang X, Liu J T, Chen M Y, Wu Q R, Miao J Y, Zhao B X. Anal. Chimica Acta, 2016, 920: 86.

doi: 10.1016/j.aca.2016.03.029
[129]
Wang J, Niu L, Huang J, Yan Z, Wang J,. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2018, 192: 52.

doi: 10.1016/j.saa.2017.10.064
[130]
Xu Z Y, Wu Z Y, Tan H Y, Yan J W, Liu X L, Li J Y, Xu Z Y, Dong C Z, Zhang L. Anal. Methods, 2018, 10(27): 3375.

doi: 10.1039/C8AY00797G
[131]
Wang J M, Niu L Q, Huang J, Yan Z J, Zhou X M, Wang J H. Dyes Pigments, 2018, 158: 151.

doi: 10.1016/j.dyepig.2018.05.039
[132]
Yang Y, Zhang D, Xu M, Wang J, Chen J, Wang L. Monatsh. Chem., 2018, 149 (6): 1003.

doi: 10.1007/s00706-018-2143-9
[133]
An J M, Kang S, Huh E, Kim Y, Lee D, Jo H, Joung J F, Kim V J, Lee J Y, Dho Y S, Jung Y, Hur J K, Park C, Jung J, Huh Y, Ku J L, Kim S, Chowdhury T, Park S, Kang J S, Oh M S, Park C K, Kim D. Chem. Sci., 2020, 11(22): 5658.

doi: 10.1039/D0SC01085E
[134]
Lu Z L, Lu Y N, Sun X, Fan C H, Long Z Y, Gao L Y. Bioorg. Chem., 2019, 92: 103215.
[135]
Zhou N, Huo F, Yue Y, Ma K, Yin C. Chin. Chem. Lett., 2020, 31 (11): 2970.

doi: 10.1016/j.cclet.2020.07.001
[136]
Jing X, Yu F, Lin W. Spectrochimica Acta A Mol. Biomol. Spectrosc., 2020, 240: 118555.
[137]
Yang M W, Fan J L, Sun W, Du J J, Long S R, Peng X J. Dyes Pigments, 2019, 168: 189.

doi: 10.1016/j.dyepig.2019.04.056
[138]
Qian M, Zhang L W, Wang J Y. New J. Chem., 2019, 43(24): 9614.

doi: 10.1039/C9NJ01643K
[139]
Qian M, Xia J, Zhang L W, Chen Q X, Guo J L, Cui H Y, Kafuti Y S, Wang J Y, Peng X J. Sens. Actuat. B Chem., 2020, 321: 128441.
[140]
Ge C P, Shen F G, Yin Y Y, Chang K W, Zhang X, Zhou P X, Li J M, Liu Y X, Lu C B. Talanta, 2021, 223: 121758.
[141]
Zhao G M, Yang W G, Li F Z, Deng Z M, Hu Y H. J. Lumin., 2020, 226: 117506.
[142]
Guo X J, Wan C Y, Li J J, Xiao Y Z, Cao Q L, Zhang Q, Zhang P, Ding C F. Dyes Pigments, 2022, 197: 109880.
[143]
Sheng H C, Hu Y H, Zhou Y, Fan S M, Cao Y, Zhao X X, Yang W G. Dyes Pigments, 2019, 160: 48.

doi: 10.1016/j.dyepig.2018.07.036
[144]
Li X R, Ma H, Qian J, Cao T, Teng Z D, Iqbal K, Qin W W, Guo H C. Talanta, 2019, 194: 717.

doi: 10.1016/j.talanta.2018.10.095
[145]
Long Z, Chen L, Dang Y C, Chen D G, Lou X D, Xia F. Talanta, 2019, 204: 762.

doi: S0039-9140(19)30689-7 pmid: 31357363
[146]
Sahoo D, Mandal A, Mandal P, Set J. J. Photochem. Photobiol. A Chem., 2022, 422: 113562.
[147]
Chen J R, Sun N, Chen H H, Zhang Y T, Wang X L, Zhou N D. Food Chem., 2022, 367: 130754.
[148]
Kou X L, Jiang S C, Park S J, Meng L Y. Dalton Trans., 2020, 49(21): 6915.

doi: 10.1039/D0DT01004A
[149]
Molaei M J. Anal. Methods, 2020, 12(10): 1266.

doi: 10.1039/C9AY02696G
[150]
Jiang X Q, Huang J B, Chen T Y, Zhao Q, Xu F, Zhang X M. Int. J. Biol. Macromol., 2020, 153: 412.

doi: 10.1016/j.ijbiomac.2020.03.026
[151]
Wang Z H, Zhang L, Hao Y M, Dong W J, Liu Y, Song S M, Shuang S M, Dong C, Gong X J. Anal. Chimica Acta, 2021, 1144: 1.

doi: 10.1016/j.aca.2020.11.054
[152]
Hai X, Feng J, Chen X W, Wang J H. J. Mater. Chem. B, 2018, 6(20): 3219.

doi: 10.1039/C8TB00428E
[153]
Yan Y B, Gong J, Chen J, Zeng Z P, Huang W, Pu K Y, Liu J Y, Chen P. Adv. Mater., 2019, 31(21): 1808283.
[154]
Fang B Y, Li C, Song Y Y, Tan F, Cao Y C, Zhao Y D. Biosens. Bioelectron., 2018, 100: 41.

doi: S0956-5663(17)30589-4 pmid: 28858680
[155]
Gao X, Zhang B, Zhang Q, Tang Y W, Liu X Y, Li J R. Colloids Surf. B Biointerfaces, 2018, 172: 207.

doi: 10.1016/j.colsurfb.2018.08.010
[156]
Kadian S, Sethi S K, Manik G. Mater. Chem. Front., 2021, 5(2): 627.

doi: 10.1039/D0QM00550A
[157]
Jiménez-López J, Llorent-Martínez E J, Ortega-Barrales P, Ruiz-Medina A. Microchimica Acta, 2019, 186(12): 781.

doi: 10.1007/s00604-019-3920-9
[158]
Deng X C, Zhao J W, Ding Y, Tang H L, Xi F N. New J. Chem., 2021, 45(40): 19056.
[159]
Liu X T, Su X G. Microchimica Acta, 2020, 187(9): 1.

doi: 10.1007/s00604-019-3921-8
[160]
Xue G, Yu S, Qiang Z, Xiuying L, Tang L, Jiangrong L. Anal. Chim. Acta, 2020, 1108: 46.

doi: 10.1016/j.aca.2020.01.062
[161]
Zhang Y Y, Xu H D, Chen Y, You X S, Pu Y X, Xu W F, Liao X L. J. Fluoresc., 2020, 30(6): 1491.

doi: 10.1007/s10895-020-02618-8
[162]
Niu Y X, Ding T, Liu J M, Zhang G L, Tong L L, Cheng X F, Yang Y M, Chen Z Z, Tang B. Talanta, 2021, 223: 121745.
[163]
Li X F, Qiao J, Li Z W, Qi L. Anal., 2020, 145(6): 2233.

doi: 10.1039/C9AN02495F
[164]
Nguyen Q K, Hoang T H, Bui X T, Nguyen T A H, Pham T D, Pham T N M. Microchem. J., 2021, 168: 106481.
[165]
Thuy Nguyen T T, Han O A, Lim E B, Haam S, Park J S, Lee S W. RSC Adv., 2021, 11(16): 9664.

doi: 10.1039/d1ra00013f pmid: 35423462
[166]
Liu L, Hao Y J, Li Z, Chen C, Wu M Y, Feng S. Chem. Pap., 2020, 74(6): 1839.

doi: 10.1007/s11696-019-01032-0
[167]
Chaicham C, Tuntulani T, Promarak V, Tomapatanaget B. Sens. Actuat. B Chem., 2019, 282: 936.

doi: 10.1016/j.snb.2018.11.150
[168]
Mohandoss S, Palanisamy S, Priya V V, Mohan S K, Shim J J, Yelithao K, You S G, Lee Y R. Microchem. J., 2021, 167: 106280.
[169]
Xiang F, Li J Z, Liu Z D. Anal., 2019, 144(23): 7057.

doi: 10.1039/C9AN01488H
[170]
Natesan T, Wu S P. ACS Appl. Bio. Mater., 2020, 3: 6439.

doi: 10.1021/acsabm.0c00868
[171]
Zhao N, Song J Q, Huang Z, Yang X Y, Wang Y S, Zhao L S. RSC Adv., 2021, 11(53): 33662.
[172]
Lu C F, Liu Y, Wen Q, Liu Y, Wang Y Y, Rao H B, Shan Z, Zhang W, Wang X X. Nanotechnology, 2020, 31(44): 445703.
[173]
Liu Q L, Niu X Y, Zhang Y, Zhao Y, Xie K X, Yang B R, He Q, Lv S Y, Li L. Nanoscale, 2020, 12(24): 13010.
[174]
Liu Y, Wolstenholme C H, Carter G C, Liu H B, Hu H, Grainger L S, Miao K, Fares M, Hoelzel C A, Yennawar H P, Ning G, Du M Y, Bai L, Li X S, Zhang X. J. Am. Chem. Soc., 2018, 140(24): 7381.

doi: 10.1021/jacs.8b02176 pmid: 29883112
[175]
Oscar B G, Zhu L D, Wolfendeen H, Rozanov N D, Chang A, Stout K T, Sandwisch J W, Porter J J, Mehl R A, Fang C. Front. Mol. Biosci., 2020, 7: 131.

doi: 10.3389/fmolb.2020.00131
[176]
Shen B X, Qian Y. Dyes Pigments, 2019, 166: 350.

doi: 10.1016/j.dyepig.2019.03.034
[177]
Shen B X, Zhu W Y, Zhi X, Qian Y. Talanta, 2020, 208: 120461.
[1] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[2] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[3] Liqing Li, Minghao Zheng, Dandan Jiang, Shuxin Cao, Kunming Liu, Jinbiao Liu. Colorimetric and Fluorescent Probes Based on the Oxidation of o-Phenylenediamine for the Detection of Bio-Molecules [J]. Progress in Chemistry, 2022, 34(8): 1815-1830.
[4] Fanyong Yan, Yueyan Zang, Yuyang Zhang, Xiang Li, Ruijie Wang, Zhentong Lu. The Fluorescent Probe for Detecting Glutathione [J]. Progress in Chemistry, 2022, 34(5): 1136-1152.
[5] Hui Zhao, Wenbo Hu, Quli Fan. Two-Photon Fluorescence Probe in Bio-Sensor [J]. Progress in Chemistry, 2022, 34(4): 815-823.
[6] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[7] Dan Zhao, Changtao Wang, Lei Su, Xueji Zhang. Application of Fluorescence Nanomaterials in Pathogenic Bacteria Detection [J]. Progress in Chemistry, 2021, 33(9): 1482-1495.
[8] Bin Li, Yanyan Fu, Jiangong Cheng. Fluorescent Probes for Detection of Organophosphorus Nerve Agents and Simulants [J]. Progress in Chemistry, 2021, 33(9): 1461-1472.
[9] Quanfei Zhu, Jundi Hao, Jingwen Yan, Yu Wang, Yuqi Feng. FAHFAs: Biological Functions, Analysis and Synthesis [J]. Progress in Chemistry, 2021, 33(7): 1115-1125.
[10] Chunping Ren, Wen Nie, Junqiang Leng, Zhenbo Liu. Reactive Fluorescent Probe for Hypochlorite [J]. Progress in Chemistry, 2021, 33(6): 942-957.
[11] Xiaohan Hou, Shengnan Liu, Qingzhi Gao. Application of Small-Molecule Fluorescent Probes in the Development of Green Pesticides [J]. Progress in Chemistry, 2021, 33(6): 1035-1043.
[12] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[13] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[14] Yuanyuan Liu, Yun Guo, Xiaogang Luo, Genyan Liu, Qi Sun. Detection of Metal Ions, Small Molecules and Large Molecules by Near-Infrared Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(2): 199-215.
[15] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
Viewed
Full text


Abstract

Fluorescent Probes for Cysteine Detection