中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (12): 2283-2307 DOI: 10.7536/PC201131 Previous Articles   Next Articles

• Review •

MOF-74 and Its Compound: Diverse Synthesis and Broad Application

Ying Geng1, Mohe Zhang2,3(), Jin Fu1, Ruisha Zhou1, Jiangfeng Song1()   

  1. 1 School of Science North University of China, Taiyuan 030051, China
    2 Beijing Institute of Technology,Beijing 100081, China
    3 China Academy of Ordnance Science, Beijing 100190,China
  • Received: Revised: Online: Published:
  • Contact: Mohe Zhang, Jiangfeng Song
  • Supported by:
    the Shanxi Provincial Natural Fund Project(201801D121068)
Richhtml ( 6 ) PDF ( 1114 ) Cited
Export

EndNote

Ris

BibTeX

MOF-74 with high-density exposed metal sites, adjustable one-dimensional pores, and high thermal stability, has attracted extensive attention and in-depth exploration of scientific researchers. This review summarizes the development of MOF-74 from the following three parts: 1) mainly focusing on the structures and assembly strategies of MOF-74 and its isomers including solvothermal method, normal temperature method, microwave assisted method, Dry-Gel method, etc. In addition, the effects of reaction solvents, auxiliary ligands, regulators and other factors on the target compound are also discussed; 2) Considering the synergy effects among the materials, the development status of MOF-74-based composite materials is also summarized, including the construction types of materials and typical synthesis methods; 3) The special properties of MOF-74 such as porosity, Lewis acid-base sites, structural stability, and the excellent performance of the composite material are further discussed in detail, which allow the MOF-74 framework material to find wide applications in the fields of catalysis, separation, detection, adsorption, and energy storage. Finally, a reasonable idea for the construction of the new MOF-74 isomers has been discussed.

Contents

1 Introduction

2 Synthesis of MOF?74?based materials

2.1 Synthesis of MOF?74 materials

2.2 Synthesis of MOF?74 isomer materials

2.3 Synthesis of MOF?74 composite materials

3 Application of MOF?74 materials

3.1 Gas adsorption and separation

3.2 Catalysis

3.3 Battery and capacitor

3.4 Chemical sensing

4 Conclusion and outlook

Fig.1 Timeline of important breakthroughs regarding MOF-74 material and its derivatives
Fig.2 Preparation of M2(dobpdc) from Metal Oxide Nanocrystals[48]
Fig.3 CPO-27-Ni synthesized in (a) pure water without modulator and in(b~j) water and EtOH, with addition of (b) 0 mmol; (c) 0.5 mmol; (d) 1 mmol; (e) 2.5 mmol; (f) 5 mmol; (g) 10 mmol; (h) 15 mmol; (i) 20; and (j) 30 mmol benzoic acid[50]
Fig.4 (a) Synthesis process of Mg2(dobdc); (b) Mg-MOF-74 and its derivatives[51]
Fig.5 Influence of the synthetic conditions on the formation of secondary building units of porous molecular networks formed Zn2+ as the nodes and 2,5-dihydroxy-1,4-benzenedicarboxylate (dobdc4-) as a linker[58]
Fig.6 A synthesis scheme of the anthracene-based MOF-74 (ANMOF-74)[59]
Table 1 Summary of MOF-74 isomer types and synthesis methods
Metal salt Ligand Reaction solvent Regulator Time and
temperature
Compound name ref
Mg(NO3)2·6H2O H4dobdc derivatives DMF∶EtOH∶H2O
(7.5 mL∶0.5 mL∶0.5 mL)
- 24 h 120 ℃ IR-MOF-74 27
Zn(ClO4)2·6H2O OCA-OH Methanol(6 mL) 4-4'bipyridine 72 h 25 ℃ OH-MOF-74 30
Zn(ClO4)2·6H2O MAC-OH Methanol(6 mL) 4-4'bipyridine 72 h 25 ℃ OH-MOF-74 30
Nitrate (Mg, Co, Ni, Mn, Sr, Ca, Ba, Zn) and acetate (Cd, Fe) metal mix H4dobdc DMF∶EtOH∶H2O
(10∶0.6∶0.6)
- 24 h 120 ℃ MM-MOF-74 32
Zn(NO3)2·6H2O H4dobdc DMF∶H2O
(6.0 mL∶0.2 mL)
- 72 h 158 ℃ UTSA-74 39
Zn(CH3COO)2·2H2O H4dobdc DMSO(50 mL) - 72 h 110 ℃ UTSA-74 60
Zn(NO3)2·6H2O H4dobdc DMF∶EtOH∶H2O
(20∶1∶1)
AlKaloid
CN/CD
72 h 120 ℃ UTSA-74 58
Zn(CH3COO)2·2H2O H4dobdc n-butanol∶DMF(13.9∶6) benzoic acid 48 h 150 ℃ UTSA-74 61
Zn(NO3)2·xH2O H4dobdc DMF∶EtOH∶H2O∶DBF
(2.0 g∶0.5 g∶0.5 g∶0.5 g)
1,2,4-triazole 72 h 158 ℃ UTSA-74 62
t-BuOLi H2obc Toluene∶methanol∶n-hexane (0.6 g∶2.2 g∶1.0 g) - 72 h 85 ℃ CPM-47 42
t-BuOLi H2onc Methanol∶n-hexane
(2.0 g∶0.8 g)
- 48 h 75 ℃ CPM-48 42
t-BuOLi H2ocm Ethanol∶ n-hexane
(0.6 g∶3.0 g)
- 72 h 75 ℃ CPM-49 42
Zn(NO3)2·6H2O H4dobdc EtOH∶NMP∶H2O
(1 mL∶20 mL∶1 mL)
AlKaloid
CN/CD
72 h 120 ℃ HIMS-74 58
Co2+ and Mn2+) ABAB DMF - 48 h 120 ℃ ANMOF-74 59
Mg(NO3)2·6H2O H3obdc DMF∶DBF∶iPrOH∶H2OTPAOH(2 g∶0.5 g∶0.5 g∶0.5 g∶50 μL) - 120 h 120 ℃ CPM-74 63
Mg(NO3)2·6H2O H3obpdc DMF∶EtOH∶H2O∶TPAOH(2.5 g∶0.5 g∶0.5 g∶0.5 g∶50 μL) - 18 h 140 ℃ CPM-75 63
Ni(NO3)2·6H2O H4bpp/H4tpp DMF∶EtOH∶H2O
(7.5 mL∶0.5 mL∶0.5 mL)
- 24 h 100 ℃ MOF-74-BPP/TPP 64
Table 2 Construction of new isomer materials
Fig.7 Synthesis process of various MOF-74 composite materials (a) ZIF-67@Co-MOF-74[40]; (b) M/MO@C[69]
Fig.8 Schematic diagram of in-situ synthesis of MOF crystals in an alginate polymer matrix, ligand diffusion (A) and metal ion diffusion (B)[75]
Table 3 Representative synthesis method of MOF-74 composites
Synthetic strategies MOFs Synthetic conditions Morphologies Sizes Ref.
Room temperature method Zn-MOF-74 nanodots DMF, Ethanol, H2O 25 ℃ 48 h Nanodots 10 nm 77
Microwave assisted
method
Ni2P/C ① DMF, Ethanol, H2O 180 ℃ 2 min
②MOF-74-Ni and NaH2PO2 were placed the tubular furnace 400 ℃ 2 h
Stick - 78
In-situ synthesis Mg-MOF-74/MgF2 DMF, Ethanol, H2O, HF 125 ℃ 24 h Layered 20 μm 79
C/ZnCo2O4@CNT ① DMF, Ethanol, H2O 100 ℃ 24 h ②vacuum-dried 80 ℃ 12 h Nanoparticles 20 nm 80
Reduction method MgO NPs/MOF ① DMF, Ethanol, H2O 125 ℃ 20 h ②1 atm H2 gas 420 ℃ 24 h Nanoparticle 2.5±0.7 nm 81
RhNiP@MOF-74 ① DMF, Ethanol, H2O 100 ℃ 24 h ② NaOH,
25 ℃,30 min
Nanoparticle 1.96 nm 82
Solvothermal method NiDOBDC@GO DMF, Ethanol, H2O 60 ℃ 24h Nanosheets 7.4 nm 83
Mg-MOF-74@PS ① DMF, Ethanol, H2O 125 ℃ 15 h ②soaked in PS 250 ℃ 24 h Flower-like - 84
Au@MOF NPs DMF, Ethanol, PVP 120 ℃ 3 h Core-shell 50.53 nm 85
MOSx/Co-MOF-74 ①DMF, Ethanol, H2O 100 ℃ 24 h ②Teflon-lined autoclave 200 ℃ 10 h Stick - 86
High temperature
calcination method
CoNi2S4@C ① DMF, Ethanol, H2O 120 ℃ 24 h ②Nitrogen atmosphere 400 ℃ 2 h Nanoparticles 8 nm 87
MnCoNiOx ① DMF, Ethanol, H2O 250 ℃ 4h ②muffle furnace 400 ℃ 3 h Triangular pyramid 250 nm 45
Co-C ① DMF, Ethanol, H2O 120 ℃ 20 h ②vacuum oven 100 ℃ 5 h Flower-like 16 nm 88
Solution dipping MnNiDH ① DMF, Ethanol, H2O 130 ℃ 24 h ②Soak in 2 M KOH for 10 min and transferred into a Teflon-lined autoclave 100 ℃ 2 h Spear shape 0.8 μm 89
Thermal decomposition Ni NPS@MOF ① DMF, Ethanol, H2O 120 ℃ 120 h ②vacuum
25 ℃ 24 h
- 5.3 nm 90
Fig.9 Synthesis of mmen-Mg2(dobpdc) material[26]
Fig.10 (a) CO2 adsorption/desorption rate of Mg-MOF- 74 and TEPA-Mg-MOF-74 at 25 ℃, 0~760 torr; (b) Static volume CO2 adsorption method comparing functionalized TEPA-MOF with CO2 adsorption isotherms of S-TEPA-MOF activated at different temperatures at 25 ℃; (c) Adsorption/desorption equilibrium of Mg-MOF-74 and TEPA- MOF at 25 ℃ and CO2/H2O 2∶1 (P0 = 23 torr)[94]
Fig.11 CO2 adsorption isotherms of Mg-MOF-74 (square) and Mg-MOF-74@PS (circular) in humid environment[84]
Table 4 Binding energy of gas molecules in M-MOF-74 structure (kJ/mol)[100]
Fig.12 (a) Excess H2 adsorption isotherm of M2(dhtp) at 77 K, 0~1 bar; (b) Empirical radius of transition metal ions in M2(dhtp), calculated M-H2 distance, experimental Qst value (With error bars), and the relationship between the calculated EB (GGA)[98]
Fig.13 Comparison of hydrogen absorption of CPO-27-M series at 77 K[99]
Table 5 Comparison of low load H2 equal heat resistance (Qst, kJ/mol) in M2(dobdc) and M2 (m-dobdc)[100]
Fig.14 H2 isotopic thermal adsorption curve of M2 (m-dobdc) series frame[100]
Table 6 ALMO energy decomposition analysis of H2 combined with dobdc4- and m-dobdc4- complexes[100]
Fig.15 Ni-IRMOF-74, Crw@Ni-IRMOF-74 and LiCrw@Ni-IRMOF-74 at 298 K for H2 adsorption (a) total weight; (b) total volume
Fig.16 (a) H2 adsorption isotherms of MOF-5 and Co-MOF-74 materials at 0~1.0 bar and -196 ℃; (b) In Zn1-xCoxMOF-74, the adsorption isotherm of hydrogen, Qst and Comparison of band gap energy with 1.5% H2 coverage and Co content (x)[102]
Fig.17 (a) Excess CH4 adsorption isotherm of M2(dhtp) at 298 K; (b) Experimental Qst value of Ni2(dhtp) and Zn2(dhtp) (error bar is ~±5%), The Qst of Mg2(dhtp)、Mn2(dhtp) and Co2(dhtp) are located between the two curves[105]
Table 7 Various MOF-74 materials used in the separation of mixed gases
Compound name Material
characteristics
Separated
substance
Selectivity Separation condition Surface area Functional properties of
materials
ref
Ni-MOF-74/SBS-15 membrane structure CH4/N2 2.3a CH4/N2=1∶1(v∶v)
25 ℃/1 atm
- MOF-based mixed matrix membrane has the advantages of high efficiency and low cost 73
PI@Mg2(dobdc) CO2/N2 14-23b CO2/N2=1∶1(v∶v)
25 ℃/2 bar
- 110
Mg-MOF-74 membrane (ethylenediamine
modified)
H2/CO2 28a H2/CO2=1∶1(v∶v)
25 ℃/1 bar
- in addition to the high performance of the membrane, the modification of MOF materials by ethylenediamine promotes its efficient capture of CO2 111
Co-MOF-74 membrane H2/CO2 85a H2/CO2=1∶1(v∶v)
25 ℃/1 bar
- the substrate Ni is modified with Ni2S3 nanomaterials, which not only reduces the defects on the surface of the porous substrate, but also increases the roughness of the substrate and provides sites for crystal growth 112
Fe2(dobdc) Unsaturated metal sites CO2/CH4 20.23a CO2/CH4=1∶1(v∶v)
25 ℃/1 bar
934 m2/gd the Lewis acidic sites of the exposed unsaturated metal sites greatly improve the capture of CO2 113
CO/N2 27a CO/N2=1∶1(v∶v)
25 ℃/1 bar
1047 m2/gd the impregnation of the MOF material by Cu+ greatly increases the active sites of the metal 114
4-Cu@Ni-MOF-74
UTSA-74
Unsaturated metal sites C2H2/CO2 20.1c C2H2/CO2=1∶1(v∶v)
25 ℃/1 bar
830 m2/gd by constructing isomers of MOF-74, the active site of the material can be modified; UTSA-74 has two metal sites that can be combined, and the metal density is as high as 8.25 mmol/cm3, which is higher than the 7.50 mmol/cm3of MOF-74. 39
Co0.3Mg0.7-MOF-74 1-hexene/n-hexane 9.74a 1-hexene/n-hexane=1∶1
25 ℃/1 bar
1055 m2/gd by constructing bimetal materials, not only the increase of metal active sites is realized, but the synergy between the bimetals further increases the separation performance of the material 115
Fe2(dobdc) O2/N2 11.4c O2/N2=0.21∶0.79(v∶v)
25 ℃/0.4 bar
1360 m2/gd Fe2(dobdc) has high adsorption heat for O2 116
Mg-MOF-74 Post-structural modification CO2/N2 223c CO2/N2=1∶1(v∶v)
0 ℃/1 bar
627 m2/gd PVP post-modified the MOF material, which changed the performance of the material to a certain extent 49
Mg2(dondc)
(PPZ)1.1(H2O)0.9
CO2/N2 6516a CO2/N2=
0.15∶0.75(v∶v)
25 ℃/0.
15 bar CO2,
0.75 barN2
47 m2/gd the change of the ligand and the free amine group on the strong basic PPZ greatly enhance the material’s adsorption of CO2 and improve the material’s gas separation performance 117
KH570@Mg-MOF-74 C2H2/C2H6 3.05a C2H2/C2H6=1∶1(v∶v)
25 ℃/1 bar
1170 m2/gd KH570 modifies the surface of the MOF material, which not only makes the material waterproof, but also increases the coupling performance of the material 118
Ni-MOF-74-Pd CO2/N2 14.6a CO2/N2=0.2∶0.8(v∶v)
25 ℃/1 atm
1115 m2/gd the material is modified with activated carbon AC loaded with Pd, which greatly increases the activity of the material 91
Zeo-5A@MOF-74 CO2/H2 997c CO2/H2=15∶85(v∶v)
25 ℃/1 bar
10.6 mmol/gme the constructed core-shell structure greatly increases the porosity and surface area of the structure, and greatly increases the amount of material adsorption 119
Fig.18 Production of H2 under catalysis of Co-MOF-74, CoxFe1-x-MOF-74 and Fe-MOF-74 over time[122]
Fig.19 Ni-MOF-74/CdS/Co3O4 photocatalytic reaction mechanism[123]
Fig.20 Schematic diagram of the preparation process of MOF-74 precursor and its transformation into porous nanostructured ZnCo2O4[148]
[70]
Lin R J, Villacorta Hernandez B, Ge L, Zhu Z H. J. Mater. Chem. A, 2018, 6(2): 293.
[71]
Sabetghadam A, Liu X L, Benzaqui M, Gkaniatsou E, Orsi A, Lozinska M M, Sicard C, Johnson T, Steunou N, Wright P A, Serre C, Gascon J, Kapteijn F. Chem. Eur. J., 2018, 24(31): 7949.
[72]
Wang S F, Li X Q, Wu H, Tian Z Z, Xin Q P, He G W, Peng D D, Chen S L, Yin Y, Jiang Z Y, Guiver M D. Energy Environ. Sci., 2016, 9(6): 1863.
[73]
Wang S M, Guo Q P, Liang S J, Li P, Luo J J. Sep. Purif. Technol., 2018, 199: 206.
[74]
Srabani M, Begum T, Violeta M G, James C, Roberto C M, Mohd Z A, Vlastimil F. Sep Purif Technol, 2020, 238: 116411.
[75]
Lim J, Lee E J, Choi J S, Jeong N C. ACS Appl. Mater. Interfaces, 2018, 10(4): 3793.
[76]
Adatoz E, Avci A K, Keskin S. Sep. Purif. Technol., 2015, 152: 207.
[77]
Wang J H, Fan Y D, Lee H W, Yi C Q, Cheng C M, Zhao X, Yang M. ACS Appl. Nano Mater., 2018, 1(7): 3747.
[78]
He S Q, He S Y, Bo X, Wang Q X, Zhan F P, Wang Q H, Zhao C. Mater. Lett., 2018, 231: 94.
[79]
Liu W, Yan Z J, Ma X L, Geng T, Wu H H, Li Z Y. Materials, 2018, 11(3): 396.
[80]
Wang Y Y, Zhu X X, Liu D, Tang H L, Luo G R, Tu K K, Xie Z Z, Lei J H, Li J S, Li X, Qu D Y. J. Appl. Electrochem., 2019, 49(11): 1103.
[81]
Huang B, Kobayashi H, Kitagawa H. Chem. Lett., 2014, 43(9): 1459.
[82]
Jiang R, Qu X P, Zeng F N, Li Q, Zheng X, Xu Z M, Peng J. Int. J. Hydrog. Energy, 2019, 44(13): 6383.
[83]
Li W, Chuah C Y, Yang Y Q, Bae T H. Microporous Mesoporous Mater., 2018, 265: 35.
[84]
Moon H S, Moon J H, Chun D H, Park Y C, Yun Y N, Sohail M, Baek K, Kim H. Microporous Mesoporous Mater., 2016, 232: 161.
[85]
Zhang Y S, Hu Y F, Li G, Zhang R K. Microchim Acta, 2019, 186: 477.
[86]
Do H H, Le Q V, Tekalgne M A, Tran A V, Lee T H, Hong S H, Han S M, Ahn S H, Kim Y J, Jang H W, Kim S Y. J. Alloys Compd., 2021, 852: 156952.
[87]
Xu T T, Zhao J C, Li L J, Mao J F, Xu J L, Zhao H B. New J. Chem., 2020, 44(30): 13141.
[88]
Wang K F, Chen Y J, Tian R, Li H, Zhou Y, Duan H N, Liu H Z. ACS Appl. Mater. Interfaces, 2018, 10(13): 11333.
[89]
Liu H, Guo H, Yao W Q, Zhang L W, Wang M Y, Fan T, Yang W H, Yang W. Colloids Surf. A: Physicochem. Eng. Aspects, 2020, 601: 125011.
[90]
Mukoyoshi M, Kobayashi H, Kusada K, Hayashi M, Yamada T, Maesato M, Taylor J M, Kubota Y, Kato K, Takata M, Yamamoto T, Matsumura S, Kitagawa H. Chem. Commun., 2015, 51(62): 12463.
[91]
Adhikari A K, Lin K S. J. Nanosci. Nanotechnol., 2014, 14(4): 2709.
[92]
Park J, Kim H, Han S S, Jung Y. J. Phys. Chem. Lett., 2012, 3(7): 826.
[93]
Han S S, Choi S H, van Duin A C T. Chem. Commun., 2010, 46(31): 5713.
[94]
Su X, Bromberg L, Martis V, Simeon F, Huq A, Hatton T A. ACS Appl. Mater. Interfaces, 2017, 9(12): 11299.
[95]
Cao Y, Song F J, Zhao Y X, Zhong Q. J. Environ. Sci., 2013, 25(10): 2081.
[96]
Tien-Binh N, Vinh-Thang H, Chen X Y, Rodrigue D, Kaliaguine S. J. Membr. Sci., 2016, 520: 941.
[97]
Queen W L, Bloch E D, Brown C M, Hudson M R, Mason J A, Murray L J, Ramirez-Cuesta A J, Peterson V K, Long J R. Dalton Trans., 2012, 41(14): 4180.
[98]
Zhou W, Wu H, Yildirim T. J. Am. Chem. Soc., 2008, 130(46): 15268.
[99]
Rosnes M H, Opitz M, Frontzek M, Lohstroh W, Embs J P, Georgiev P A, Dietzel P D C. J. Mater. Chem. A, 2015, 3(9): 4827.
[100]
Kapelewski M T, Geier S J, Hudson M R, Stück D, Mason J A, Nelson J N, Xiao D J, Hulvey Z, Gilmour E, FitzGerald S A, Head-Gordon M, Brown C M, Long J R. J. Am. Chem. Soc., 2014, 136(34): 12119.
[101]
Montes-AndrÉs H, Orcajo G, Mellot-Draznieks C, Martos C, Botas J A, Calleja G. J. Phys. Chem. C, 2018, 122(49): 28123.
[102]
Broom D P, Webb C J, Hurst K E, Parilla P A, Gennett T, Brown C M, Zacharia R, Tylianakis E, Klontzas E, Froudakis G E, Steriotis T A, Trikalitis P N, Anton D L, Hardy B, Tamburello D, Corgnale C, Hassel B A, Cossement D, Chahine R, Hirscher M. Appl. Phys. A, 2016, 122(3): 1.
[103]
JosÉ A V, Gisela O, Carmen M, Botas J A, Villacanas J, Calleja G. Int J hydrog enenergy, 2015, 40: 5346.
[104]
Ma S Q, Sun D F, Simmons J M, Collier C D, Yuan D Q, Zhou H C. J. Am. Chem. Soc., 2008, 130(3): 1012.
[105]
Wu H, Zhou W, Yildirim T. J. Am. Chem. Soc., 2009, 131(13): 4995.
[106]
Lee Y R, Cho S M, Ahn W S. Korean J. Chem. Eng., 2018, 35(7): 1542.
[107]
Grant Glover T, Peterson G W, Schindler B J, Britt D, Yaghi O. Chem. Eng. Sci., 2011, 66(2): 163.
[108]
Perry J J IV, Teich-McGoldrick S L, Meek S T, Greathouse J A, Haranczyk M, Allendorf M D. J. Phys. Chem. C, 2014, 118(22): 11685.
[109]
Liao Y J, Zhang L, Weston M H, Morris W, Hupp J T, Farha O K. Chem. Commun., 2017, 53(67): 9376.
[1]
Zhou J J, Liu H, Lin Y C, Zhou C, Huang A S. Microporous Mesoporous Mater., 2020, 302: 110224.
[2]
Xu T T, Jiang Z Z, Liu P X, Chen H N, Lan X S, Chen D L, Li L B, He Y B. ACS Appl. Nano Mater., 2020, 3(3): 2911.
[3]
Wang H, Bai J Q, Yin Y, Wang S F. J. Mol. Graph. Model., 2020, 96: 107533.
[4]
Tang Y N, Wang X, Wen Y J, Zhou X, Li Z. Ind. Eng. Chem. Res., 2020, 59(13): 6219.
[5]
Agarwal R A, De D. Polyhedron, 2020, 185: 114584.
[6]
Wei P P, Yang Y, Li W Z, Li G M. Fuel, 2020, 274: 117834.
[7]
Xu T T, Fan L H, Zhou P, Jiang Z Z, Chen H N, Lu H Y, He Y B. CrystEngComm, 2020, 22(36): 5961.
[8]
Qiao J Y, Liu X, Liu X, Liu X Y, Zhang L R, Liu Y L. Inorg. Chem. Front., 2020, 7(18): 3500.
[9]
Zhang J W, Qu P, Hu M C, Li S N, Jiang Y C, Zhai Q G. Cryst. Growth Des., 2020, 20(9): 5657.
[10]
Song J F, Jia Y Y, Zhou R S, Li S Z, Qiu X M, Liu J. RSC Adv., 2017, 7(12): 7217.
[11]
Zhou R S, Zhang W, Xin L D, Wen H F, Zhang X Y, Su L J, Song J F. Inorg. Chem. Commun., 2018, 98: 154.
[12]
Song J F, Luo J J, Jia Y Y, Xin L D, Lin Z Z, Zhou R S. RSC Adv., 2017, 7: 36575.
[13]
Song J F, Li Y, Zhou R S, Hu T P, Wen Y L, Shao J, Cui X B. Dalton Trans., 2016, 45(2): 545.
[14]
Zhou R S, Lin Z Z, Xin L D, Song J F, Liu H, Guo Z H. Adv. Compos. Hybrid Mater., 2018, 1(4): 785.
[15]
Zhang X Y, Wen H F, Yang Q F, Zhou R S, Song J F. Inorganica Chimica Acta, 2020, 507: 119600.
[16]
Nie M, Sun H, Lei D, Kang S, Liao J M, Guo P T, Xue Z H, Xue F J. Mater. Chem. Phys., 2020, 254: 123481.
[17]
Xu H Z, Ye K, Zhu K, Yin J L, Yan J, Wang G L, Cao D X. Inorg. Chem. Front., 2020, 7(14): 2602.
[18]
Rosi N L, Kim J, Eddaoudi M, Chen B L, O’Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2005, 127(5): 1504.
[19]
Millward A R, Yaghi O M. J. Am. Chem. Soc., 2005, 127(51): 17998.
[20]
Rowsell J L C, Yaghi O M. J. Am. Chem. Soc., 2006, 128(4): 1304.
[110]
Bae T Y, Jeffrey R L. Energy Environ. Sci, 2013, 6: 3565.
[111]
Wang N Y, Mundstock A, Liu Y, Huang A S, Caro J. Chem. Eng. Sci., 2015, 124: 27.
[112]
Qin X, Sun Y X, Wang N X, Wei Q, Xie L H, Xie Y B, Li J R. RSC Adv., 2016, 6(96): 94177.
[113]
Lou W L, Yang J F, Li L B, Li J P. J. Solid State Chem., 2014, 213: 224.
[114]
Arwyn E, Matthew C, Donato D, Gianolio D, Shahid S, Law G, Attfield M, Lawd D, Petit C. RSC Adv, 2020, 10: 5152.
[115]
Sun H, Ren D N, Kong R Q, Wang D, Jiang H, Tan J L, Wu D, Chen S W, Shen B X. Microporous Mesoporous Mater., 2019, 284: 151.
[116]
Bloch E D, Murray L J, Queen W L, Chavan S, Maximoff S N, Bigi J P, Krishna R, Peterson V K, Grandjean F, Long G J, Smit B, Bordiga S, Brown C M, Long J R. J. Am. Chem. Soc., 2011, 133(37): 14814.
[117]
Yeon J S, Lee W R, Kim N W, Jo H, Lee H, Song J H, Lim K S, Kang D W, Seo J G, Moon D, Wiers B, Hong C S. J. Mater. Chem. A, 2015, 3(37): 19177.
[118]
Pu S Y, Wang J W, Li L Y, Zhang Z G, Bao Z B, Yang Q W, Yang Y W, Xing H B, Ren Q L. Ind. Eng. Chem. Res., 2018, 57(5): 1645.
[119]
Al-Naddaf Q, Rownaghi A A, Rezaei F. Chem. Eng. J., 2020, 384: 123251.
[120]
Zhao H, Wang X S, Feng J F, Chen Y N, Yang X, Gao S Y, Cao R. Catal. Sci. Technol., 2018, 8(5): 1288.
[121]
Han Y Q, Xu H T, Su Y Q, Xu Z L, Wang K F, Wang W Z. J. Catal., 2019, 370: 70.
[122]
Zhou Y X, Hu W H, Yang S Z, Zhang Y B, Nyakuchena J, Duisenova K, Lee S, Fan D H, Huang J E. J. Phys. Chem. C, 2020, 124(2): 1405.
[123]
Zhang Y K, Wang G R, Ma W, Ma B Z, Jin Z L. Dalton Trans., 2018, 47(32): 11176.
[124]
Li M, Li J K, Jin Z L. Dalton Trans., 2020, 49(16): 5143.
[125]
Mian Z H, Govinder S P, Zheng H, Tahir A A, Fischer R A, Zhu Y Q, Xia Y D. Carbon, 2019, 146: 348.
[126]
Ding Z, Wang S, Chang X, Wang D H, Zhang T H. RSC Adv., 2020, 10(44): 26246.
[127]
Chu M, Wang L, Li X, Hou M J, Li N, Dong Y Z, Li X Z, Xie Z Z, Lin Y W, Cai W Q, Zhang C C. Electrochimica Acta, 2018, 264: 284.
[128]
Mandegarzad S, Raoof J B, Hosseini S R, Ojani R. Electrochimica Acta, 2016, 190: 729.
[21]
Tranchemontagne D J, Hunt J R, Yaghi O M. Tetrahedron, 2008, 64(36): 8553.
[22]
Gallo M, Glossman-Mitnik D. J. Phys. Chem. C, 2009, 113(16): 6634.
[23]
Samiran B, Jung-Sik C, Seung-Tae Y, Sang B C, Jaheon K, Wha-Seung A. J. Nanosci. Nanotechno, 2010, 10: 135.
[24]
Valenzano L, Civalleri B, Chavan S, Palomino G T, Areán C O, Bordiga S. J. Phys. Chem. C, 2010, 114(25): 11185.
[25]
Botas J A, Calleja G, Sánchez-Sánchez M, Orcajo M G. Int. J. Hydrog. Energy, 2011, 36(17): 10834.
[26]
McDonald T M, Lee W R, Mason J A, Wiers B M, Hong C S, Long J R. J. Am. Chem. Soc., 2012, 134(16): 7056.
[27]
Deng H, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O’Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Science, 2012, 336(6084): 1018.
[28]
Lee D J, Li Q M, Kim H, Lee K. Microporous Mesoporous Mater., 2012, 163: 169.
[29]
Liu G L, Qin Y J, Jing L, Wei G Y, Li H. Chem. Commun., 2013, 49(17): 1699.
[30]
Bae T H, Long J R. Energy Environ. Sci., 2013, 6(12): 3565.
[31]
Wang Z Q, Li X, Yang Y, Cui Y J, Pan H G, Wang Z Y, Chen B L, Qian G D. J. Mater. Chem. A, 2014, 2(21): 7912.
[32]
Wang L J, Deng H X, Furukawa H, Gándara F, Cordova K E, Peri D, Yaghi O M. Inorg. Chem., 2014, 53(12): 5881.
[33]
Wu C H, Chou L Y, Long L L, Si X M, Lo W S, Tsung C K, Li T. Acs. Appl. Mater, 2019, 39(11): 35820.
[34]
Albuquerque G H, Fitzmorris R C, Ahmadi M, Wannenmacher N, Thallapally P K, McGrail B P, Herman G S. CrystEngComm, 2015, 17(29): 5502.
[35]
Jia Y, Sun C H, Peng Y, Fang W Q, Yan X C, Yang D J, Zou J, Mao S S, Yao X D. J. Mater. Chem. A, 2015, 3(16): 8294.
[36]
Sun L, Hendon C H, Minier M A, Walsh A, Dinc M. J. Am. Chem. Soc., 2015, 137(19): 6164.
[37]
Chen S R, Xue M, Li Y Q, Pan Y, Zhu L K, Qiu S L. J. Mater. Chem. A, 2015, 3(40): 20145.
[38]
Nguyen B T, Nguyen H L, Nguyen T C, Cordova K E, Furukawa H. Chem. Mater., 2016, 28(17): 6243.
[39]
Luo F, Yan C S, Dang L L, Krishna R, Zhou W, Wu H, Dong X L, Han Y, Hu T L, O’Keeffe M, Wang L L, Luo M B, Lin R B, Chen B L. J. Am. Chem. Soc., 2016, 138(17): 5678.
[40]
Guo C Y, Guo J, Zhang Y H, Wang D, Zhang L, Guo Y, Ma W L, Wang J D. CrystEngComm, 2018, 20(47): 7659.
[129]
Li Y P, Liu J D, Chen C, Zhang X H, Chen J H. ACS Appl. Mater. Interfaces, 2017, 9(7): 5982.
[130]
Wang Q, Liu Z Q, Zhao H Y, Huang H, Jiao H, Du Y P. J. Mater. Chem. A, 2018, 6(38): 18720.
[131]
Yan L T, Jiang H M, Xing Y L, Wang Y, Liu D D, Gu X, Dai P C, Li L J, Zhao X B. J. Mater. Chem. A, 2018, 6(4): 1682.
[132]
Gao Z, Yu Z W, Liu F Q, Yu Y, Su X M, Wang L, Xu Z Z, Yang Y L, Wu G R, Feng X F, Luo F. Inorg. Chem., 2019, 58(17): 11500.
[133]
Zhao X H, Pattengale B, Fan D H, Zou Z H, Zhao Y Q, Du J, Huang J E, Xu C L. ACS Energy Lett., 2018, 3(10): 2520.
[134]
Gong Y N, Jiao L, Qian Y Y, Pan C Y, Zheng L R, Cai X C, Liu B, Yu S H, Jiang H L. Angew. Chem. Int. Ed., 2020, 59(7): 2705.
[135]
Oleksii P, Olena P,Urška L Š Nataša Z L. Catal Commun., 2018, 110: 88.
[136]
Huang C, Liu R, Yang W, Li Y P, Huang J S, Zhu H J. Inorg. Chem. Front., 2018, 5(8): 1923.
[137]
Yao H F, Yang Y, Liu H, Xi F G, Gao E Q. J. Mol. Catal. A: Chem., 2014, 394: 57.
[138]
Yuan K, Song T Q, Wang D W, Zou Y, Li J F, Zhang X T, Tang Z Y, Hu W P. Nanoscale, 2018, 10(4): 1591.
[139]
Suh B L, Kim J. J. Phys. Chem. C, 2018, 122(40): 23078.
[140]
Leo P, Orcajo G, Briones D, Martínez F, Calleja G. Catal. Today, 2020, 345: 251.
[141]
Yasutaka K, Yukihiro Y, Hiromi Y. Dalton T., 2017, 46: 8415.
[142]
Nguyen H T H, Nguyen O T K, Truong T, Phan N T S. RSC Adv., 2016, 6(42): 36039.
[143]
Ning X, Sun Y H, Fu H Y, Qu X L, Xu Z Y, Zheng S R. Chemosphere, 2020, 241: 124978.
[144]
Nguyen N B, Dang G H, Le D T, Truong T, Phan N T S. ChemPlusChem, 2016, 81(4): 361.
[145]
Alinede O, Jessyca S A, Guilherme F L, Heitor A D A. Polyhedron., 2018, 154: 98.
[146]
Calleja G, Sanz R, Orcajo G, Briones D, Leo P, Martínez F. Catal. Today, 2014, 227: 130.
[147]
Chen J X, Mu X X, Du M J, Lou Y B. Inorg. Chem. Commun., 2017, 84: 241.
[41]
Al-Naddaf Q, Thakkar H, Rezaei F. ACS Appl. Mater. Interfaces, 2018, 10(35): 29656.
[42]
Zhao X, Shimazu M S, Chen X T, Bu X H, Feng P Y. Angew. Chem. Int. Ed., 2018, 57(21): 6208.
[43]
Kim M K, Kim H J, Lim H, Kwon Y, Jeong H M. Electrochimica Acta, 2019, 306: 28.
[44]
Ren C T, Jia X, Zhang W, Hou D, Xia Z Q, Huang D S, Hu J, Chen S P, Gao S L. Adv. Funct. Mater., 2020, 30(45): 2004519.
[45]
Feng X B, Chen C W, He C, Chai S N, Yu Y K, Cheng J. J. Hazard. Mater., 2020, 383: 121143.
[46]
Suyetin M, Heine T. J. Mater. Chem. C, 2020, 8(5): 1567.
[47]
Li J, Ma M X, Zhang C H, Lu R, Zhang L Y, Zhang W B. Anal. Bioanal. Chem., 2020, 412(26): 7227.
[48]
Maserati L, Meckler S M, Li C Y, Helms B A. Chem. Mater., 2016, 28(5): 1581.
[49]
Yao Z Y, Guo J H, Wang P, Liu Y, Guo F, Sun W Y. Mater. Lett., 2018, 223: 174.
[50]
Rosnes M H, Nesse F S, Opitz M, Dietzel P D C. Microporous Mesoporous Mater., 2019, 275: 207.
[51]
Wang Z H, Li Z Z, Ng M, Milner P J. Dalton Trans., 2020, 49(45): 16238.
[52]
Yue Y F, Qiao Z A, Fulvio P F, Binder A J, Tian C C, Chen J H, Nelson K M, Zhu X, Dai S. J. Am. Chem. Soc., 2013, 135(26): 9572.
[53]
GarzÓn-Tovar L, CarnÉ-Sánchez A, Carbonell C, Imaz I, Maspoch D. J. Mater. Chem. A, 2015, 3(41): 20819.
[54]
Chen C W, Feng X B, Zhu Q, Dong R, Yang R, Cheng Y, He C. Inorg. Chem., 2019, 58(4): 2717.
[55]
Thomas-Hillman I, Laybourn A, Dodds C, Kingman S W. J. Mater. Chem. A, 2018, 6(25): 11564.
[56]
Yang N, Yue M B, Wang Y M. Progress in Chemistry., 2012, 24(2): 253.
( 杨娜, 岳明波, 王一萌. 化学进展, 2012, 24(2): 253.)
[57]
Atanu K D, Rama S V, Igor K Y, Peter M G, Radha K M. Sci Rep, 2016, 6: 28050.
[58]
Andreea G, Inhar I, Jarl I V, Maspoch D, Tanase S. Dalton T, 2019, 48: 10043.
[59]
Scheurle P I, Mähringer A, Jakowetz A C, Hosseini P, Richter A F, Wittstock G, Medina D D, Bein T. Nanoscale, 2019, 11(43): 20949.
[60]
Bueken B, Reinsch H, Heidenreich N, Vandekerkhove A, Vermoortele F, Kirschhock C E A, Stock N, de Vos D, Ameloot R. CrystEngComm, 2017, 19(29): 4152.
[61]
Henkelis S E, Vornholt S M, Cordes D B, Slawin A M Z, Wheatley P S, Morris R E. CrystEngComm, 2019, 21(12): 1857.
[62]
Yang H J, Le J, Dinh A, Zhao X, Chen X T, Peng F, Feng P Y, Bu X H. Chem. Eur. J., 2019, 25(45): 10590.
[63]
Yang H J, Peng F, Dang C, Wang Y, Hu D D, Zhao X, Feng P Y, Bu X H. J. Am. Chem. Soc., 2019, 141(25): 9808.
[64]
Zheng J, Vemuri R S, Estevez L, Koech P K, Varga T, Camaioni D M, Blake T A, McGrail B P, Motkuri R K. J. Am. Chem. Soc., 2017, 139(31): 10601.
[65]
Anindita C, Tapas K M. APL Mater, 2014, 2: 124107.
[66]
Deng X, Yang L L, Huang H L, Yang Y Y, Feng S Q, Zeng M, Li Q, Xu D S. Small, 2019,.
[67]
Sun D R, Ye L, Sun F X, García H, Li Z H. Inorg. Chem., 2017, 56(9): 5203.
[68]
Bhadra B N, Jhung S H. Nanoscale, 2018, 10(31): 15035.
[69]
Kang M S, Lee D H, Lee K J, Kim H S, Ahn J, Sung Y E, Yoo W C. New J. Chem., 2018, 42(23): 18678.
[148]
Du M J, He D, Lou Y B, Chen J X. J. Energy Chem., 2017, 26(4): 673.
[149]
Park H, Siegel D J. Chem. Mater., 2017, 29(11): 4932.
[150]
Wu D F, Guo Z Y, Yin X B, Pang Q Q, Tu B B, Zhang L J, Wang Y G, Li Q W. Adv. Mater., 2014, 26(20): 3258.
[151]
Guo S Q, Xu X L, Liu J B, Zhang Q Q, Wang H. J. Electrochem. Soc., 2020, 167(2): 020539.
[152]
Wang L J, Tang P H, Liu J, Geng A B, Song C, Zhong Q, Xu L J, Gan L. J. Colloid Interface Sci., 2019, 554: 260.
[153]
Henkelis S E, Rademacher D, Vogel D J, Valdez N R, Rodriguez M A, Rohwer L E S, Nenoff T M. ACS Appl. Mater. Interfaces, 2020, 12(20): 22845.
[154]
Zhang X L, Li S M, Chen S, Feng F, Bai J Q, Li J R. Ecotoxicol. Environ. Saf., 2020, 187: 109821.
[155]
Zheng T T, Zhao J, Fang Z W, Li M T, Sun C Y, Li X, Wang X L, Su Z M. Dalton Trans., 2017, 46(8): 2456.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[3] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[4] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[5] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[6] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[7] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[8] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[9] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[10] Lizhong Chen, Qiaobin Gong, Zhe Chen. Preparation and Application of Ultra-Thin Two Dimensional MOF Nanomaterials [J]. Progress in Chemistry, 2021, 33(8): 1280-1292.
[11] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[12] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[13] Zixuan Wang, Xin Li, Zeper Abliz. Chemical Derivatization for Mass Spectrometric Analysis of Metabolite Isomers [J]. Progress in Chemistry, 2021, 33(3): 406-416.
[14] Tianyong Zhang, Wei Wu, Jian Zhu, Bin Li, Shuang Jiang. Stretchable Conductive Polymer Composites Prepared with Nano-Carbon Fillers [J]. Progress in Chemistry, 2021, 33(3): 417-425.
[15] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.