中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (10): 1823-1840 DOI: 10.7536/PC201019 Previous Articles   Next Articles

• Review •

Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy

Qixiao Guan, Heze Guo, Hongjing Dou*   

  1. State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University,Shanghai 200240, China
  • Received: Revised: Online: Published:
Richhtml ( 69 ) PDF ( 407 ) Cited
Export

EndNote

Ris

BibTeX

Due to the unique biological functionality resulting from the nano scale, nanocarriers can deliver various kinds of anti-tumor drugs in vivo through specific design, showing an important application prospect. Since the advent of tumor immunotherapy, a brand-new anti-tumor method, the combination of various nanocarriers and tumor immunotherapy has gradually become one of the important means to improve the effect of tumor immunotherapy. Among them, as a new kind of biomimetic drug carrier platform, the nanocarrier modified by cell membrane can make the nanocarrier achieve the camouflage modification of natural cell membrane. Meanwhile, such a decoration is able to transfer the specific functions and biological characteristics of cell membrane to the nanocarrier, so that it is equipped with stronger ability of anti-immune clearance, long blood circulation and tumor targeting, and thus reduces the immunogenicity and cytotoxicity of nano delivery system. Therefore, the membrane modified nanocarriers can play a greater role in biomedical applications, especially in tumor immunotherapy. In this article, combined with the mechanism of immunotherapy, the preparation methods, anti-tumor mechanism and application research in tumor immunotherapy of nanocarrier systems modified by numerous kinds of cell membrane in recent years are reviewed, and on this basis, the related exploration in the future is prospected.

Contents

1 Introduction

2 Nanocarriers and tumor immunotherapy

3 Nanocarriers modified by cell membrane and their functionary mechanism

4 Application of cell membrane modified nanocarriers in tumor immunotherapy

4.1 Erythrocyte membrane modified nanocarriers

4.2 Platelet membrane modified nanocarriers

4.3 Immune cell membrane modified nanocarriers

4.4 Tumor cell membrane modified nanocarriers

4.5 Bacterial membrane modified nanocarriers

4.6 Other cell membrane modified nanocarriers

5 Conclusion and outlook

Fig. 1 Schematic illustration of the preparation of Man-RBC membrane-coated PLGA-SS-hgp100 nanoparticles(Man-RBC-NPhgp) and induction of antitumor immunity[28]. Copyright 2015, American Chemical Society
Fig. 2 Schematic illustration of NM-NPs loaded with Carfilzomib(NM-NP-CFZ) that selectively deplete CTCs and their site of colonization[42]. Copyright 2017, American Chemical Society
Fig. 3 (a) Schematic illustration of the preparation of cancer cell plasma membrane fraction-coated PLGA NPs(CCMF-PLGA NPs);(b) The purpose was to determine the ability of these cancer cell-mimicking NPs to disrupt cancer cell-stromal cell interactions, reduce metastasis, and prime the immune system for cancer immunotherapy[64]. Copyright 2019, American Chemical Society
Fig. 4 Schematic illustration of antitumor immune response and enhanced anti-PD-1 immunotherapy induced by CMSN-GOx[78]. Copyright 2019, American Chemical Society
Fig. 5 Schematic diagram of the in situ vaccine effect elicited by combined RT and BNP. (A) A schematic of how a BNP interacts with the TME to enhance APC uptake and activation. (B) Schematic diagram of the in situ vaccine effect elicited by combined RT and BNP. (C) Composition of the BNP and the function of each BNP component.[89]. Copyright 2019, John Wiley and Sons
Fig. 6 Schematic illustration of MOF@FM for tumor prevention.(a) Preparation of MOF@FM; (b) Vaccination of MOF@FM for tumor prevention;(c) Mechanisms of MOF@FM inducing immune responses[101]. Copyright 2019, Springer Nature
[1]
Couzin-Frankel J. Science, 2013, 342(6165): 1432.

doi: 10.1126/science.342.6165.1432 pmid: 24357284
[2]
Chen D S, Mellman I. Immunity, 2013, 39(1): 1.

doi: 10.1016/j.immuni.2013.07.012
[3]
Fontana F, Liu D F, Hirvonen J, Santos H A. Wires Nanomed. Nanobiotechnology, 2017, 9(1): 1421.
[4]
Van Parijs L, Abbas A K. Science, 1998, 280: 243.

pmid: 9535647
[5]
Wu J, Chen J, Feng Y, Zhang S, Lin L, Guo Z, Sun P, Xu C, Tian H, Chen X. Sci. Adv., 2020, 6: eabc7828.

doi: 10.1126/sciadv.abc7828
[6]
Li W, Zhang L, Zhang G, Wei H F, Zhao M X, Li H F, Guo S J, Gao J, Kou G, Li B H, Dai J X, Wang H, Guo Y J. Mini Rev. Med. Chem., 2013, 13(5): 643.

pmid: 23469780
[7]
Karmali P P, Simberg D. Expert. Opin. Drug Deliv., 2011, 8(3): 343.

doi: 10.1517/17425247.2011.554818
[8]
Xuan M J, Shao J X, Li J B. Natl. Sci. Rev., 2019, 6(3): 551.
[9]
Gulati N M, Stewart P L, Steinmetz N F. Mol. Pharmaceutics, 2018, 15(8): 2900.

doi: 10.1021/acs.molpharmaceut.8b00292
[10]
Kroll A V, Fang R H, Zhang L F. Bioconjugate Chem., 2017, 28(1): 23.

doi: 10.1021/acs.bioconjchem.6b00569
[11]
Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. J. Control. Release, 2015, 200: 138.

doi: 10.1016/j.jconrel.2014.12.030
[12]
Yang Q, Lai S K. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnology, 2015, 7(5): 655.
[13]
Hu C M J, Zhang L, Aryal S, Cheung C, Fang R H, Zhang L,. PNAS, 2011, 108(27): 10980.

doi: 10.1073/pnas.1106634108 pmid: 21690347
[14]
Fang R H, Kroll A V, Gao W W, Zhang L F. Adv. Mater., 2018, 30(23): 1706759.

doi: 10.1002/adma.v30.23
[15]
Fan Z Y, Zhou H, Li P Y, Speer J E, Cheng H. J. Mater. Chem. B, 2014, 2(46): 8231.

doi: 10.1039/C4TB00980K
[16]
Luk B T, Jack Hu C M, Fang R H, Dehaini D, Carpenter C, Gao W W, Zhang L F. Nanoscale, 2013, 6(5): 2730.
[17]
Zhai Y H, Su J H, Ran W, Zhang P C, Yin Q, Zhang Z W, Yu H J, Li Y P. Theranostics, 2017, 7(10): 2575.

doi: 10.7150/thno.20118
[18]
Hu C M J, Fang R H, Wang K C, Luk B T, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen C H, Kroll A V, Carpenter C, Ramesh M, Qu V, Patel S H, Zhu J, Shi W, Hofman F M, Chen T C, Gao W W, Zhang K, Shu C E, Zhang L F. Nature, 2015, 526(7571): 118.

doi: 10.1038/nature15373
[19]
Hu Q Y, Qian C G, Sun W J, Wang J Q, Chen Z W, Bomba H N, Xin H L, Shen Q D, Gu Z. Adv. Mater., 2016, 28(43): 9573.

doi: 10.1002/adma.201603463
[20]
Liu W, Ruan M L, Wang Y M, Song R G, Ji X, Xu J K, Dai J, Xue W. Small, 2018, 14(38): 1801754.

doi: 10.1002/smll.v14.38
[21]
Qin M, Du G S, Sun X. Biomater. Sci., 2020, 8(2): 530.

doi: 10.1039/C9BM01444F
[22]
Rao L, Wang W B, Meng Q F, Tian M F, Cai B, Wang Y C, Li A X, Zan M H, Xiao F, Bu L L, Li G, Li A, Liu Y L, Guo S S, Zhao X Z, Wang T H, Liu W, Wu J G. Nano Lett., 2019, 19(4): 2215.

doi: 10.1021/acs.nanolett.8b03913
[23]
Rao L, Xu J H, Cai B, Liu H Q, Li M, Jia Y, Xiao L, Guo S S, Liu W, Zhao X Z. Nanotechnology, 2016, 27(8): 085106.

doi: 10.1088/0957-4484/27/8/085106
[24]
Pierigè F, Serafini S, Rossi L, Magnani M. Adv. Drug Deliv. Rev., 2008, 60(2): 286.
[25]
Zhao Y Z, Jia J, Li Y B, Guo C X, Zhou X Q, Sun Z W. J. Toxicol. Sci., 2014, 39(5): 701.

doi: 10.2131/jts.39.701
[26]
Han X, Wang C, Liu Z. Bioconjugate Chem., 2018, 29(4): 852.

doi: 10.1021/acs.bioconjchem.7b00758
[27]
Kolesnikova T A, Skirtach A G, Möhwald H. Expert. Opin. Drug Deliv., 2013, 10(1): 47.

doi: 10.1517/17425247.2013.730516 pmid: 23078091
[28]
Guo Y Y, Wang D, Song Q L, Wu T T, Zhuang X T, Bao Y L, Kong M, Qi Y, Tan S W, Zhang Z P. ACS Nano, 2015, 9(7): 6918.

doi: 10.1021/acsnano.5b01042
[29]
Matozaki T, Murata Y, Okazawa H, Ohnishi H. Trends Cell Biol., 2009, 19(2): 72.

doi: 10.1016/j.tcb.2008.12.001 pmid: 19144521
[30]
Liang X, Ye X Y, Wang C, Xing C Y, Miao Q W, Xie Z J, Chen X L, Zhang X D, Zhang H, Mei L. J. Control. Release, 2019, 296: 150.
[31]
Song Q L, Yin Y J, Shang L H, Wu T T, Zhang D, Kong M, Zhao Y D, He Y Z, Tan S W, Guo Y Y, Zhang Z P. Nano Lett., 2017, 17(10): 6366.

doi: 10.1021/acs.nanolett.7b03186
[32]
Ou W Q, Byeon J H, Soe Z C, Kim B K, Thapa R K, Gupta B, Poudel B K, Ku S K, Yong C S, Kim J O. Theranostics, 2019, 9(23): 6780.

doi: 10.7150/thno.37123
[33]
Rao L, Cai B, Bu L L, Liao Q Q, Guo S S, Zhao X Z, Dong W F, Liu W. ACS Nano, 2017, 11(4): 3496.

doi: 10.1021/acsnano.7b00133
[34]
Anselmo A C, Modery-Pawlowski C L, Menegatti S, Kumar S, Vogus D R, Tian L L, Chen M, Squires T M, Sen Gupta A, Mitragotri S. ACS Nano, 2014, 8(11): 11243.

doi: 10.1021/nn503732m pmid: 25318048
[35]
Labelle M, Begum S, Hynes R O. Proc. Natl. Acad. Sci. U. S. A., 2014, 111: E3053.
[36]
Dehaini D, Wei X L, Fang R H, Masson S, Angsantikul P, Luk B T, Zhang Y, Ying M, Jiang Y, Kroll A V, Gao W W, Zhang L F. Adv. Mater., 2017, 29(16): 6209.
[37]
Farokhzad O C. Nature, 2015, 526(7571): 47.

doi: 10.1038/nature15218
[38]
Mehlen P, Puisieux A. Nat. Rev. Cancer, 2006, 6(6): 449.
[39]
Li J H, Sharkey C C, Huang D T, King M R. Cell. Mol. Bioeng., 2015, 8(1): 137.
[40]
Li J H, Ai Y W, Wang L H, Bu P C, Sharkey C C, Wu Q H, Wun B, Roy S, Shen X L, King M R. Biomaterials, 2016, 76: 52.

doi: 10.1016/j.biomaterials.2015.10.046
[41]
Mitchell M J, Wayne E, Rana K, Schaffer C B, King M R. PNAS, 2014, 111(3): 930.

doi: 10.1073/pnas.1316312111 pmid: 24395803
[42]
Kang T, Zhu Q Q, Wei D, Feng J X, Yao J H, Jiang T Z, Song Q X, Wei X B, Chen H Z, Gao X L, Chen J. ACS Nano, 2017, 11(2): 1397.

doi: 10.1021/acsnano.6b06477
[43]
Spicer J D, McDonald B, Cools-Lartigue J J, Chow S C, Giannias B, Kubes P, Ferri L E. Cancer Res., 2012, 72(16): 3919.

doi: 10.1158/0008-5472.CAN-11-2393
[44]
Watanabe M A E, Oda J M M, Amarante M K, Cesar Voltarelli J. Cancer Metastasis Rev., 2010, 29(4): 569.

doi: 10.1007/s10555-010-9247-y
[45]
Murdoch C, Giannoudis A, Lewis C E. Blood, 2004, 104(8): 2224.

pmid: 15231578
[46]
Chen H L. J. Gastroenterol. Hepatol., 2013, 28(3): 389.

doi: 10.1111/jgh.12114
[47]
Candido J, Hagemann T. J. Clin. Immunol., 2013, 33(1): 79.
[48]
Christie C, Madsen S J, Peng Q, Hirschberg H. Ther. Deliv., 2015, 6(3): 371.
[49]
Qian B Z, Pollard J W. Cell, 2010, 141(1): 39.

doi: 10.1016/j.cell.2010.03.014
[50]
Liu R, An Y, Jia W F, Wang Y S, Wu Y, Zhen Y H, Cao J, Gao H L. J. Control. Release, 2020, 321: 589.

doi: 10.1016/j.jconrel.2020.02.043
[51]
Chu D F, Dong X Y, Shi X T, Zhang C Y, Wang Z J. Adv. Mater., 2018, 30(22): 1706245.

doi: 10.1002/adma.v30.22
[52]
Anderson J M, Rodriguez A, Chang D T. Semin. Immunol., 2008, 20(2): 86.

pmid: 18162407
[53]
Kolaczkowska E, Kubes P. Nat. Rev. Immunol., 2013, 13(3): 159.

doi: 10.1038/nri3399 pmid: 23435331
[54]
Sridharan R, Cameron A R, Kelly D J, Kearney C J, O'Brien F J. Mater. Today, 2015, 18(6): 313.

doi: 10.1016/j.mattod.2015.01.019
[55]
Wculek S K, Malanchi I. Nature, 2015, 528(7582): 413.
[56]
Han Y T, Pan H, Li W J, Chen Z, Ma A Q, Yin T, Liang R J, Chen F M, Ma Y F, Jin Y, Zheng M B, Li B H, Cai L T. Adv. Sci., 2019, 6(15): 1900251.

doi: 10.1002/advs.v6.15
[57]
Ma W J, Zhu D M, Li J H, Chen X, Xie W, Jiang X, Wu L, Wang G G, Xiao Y S, Liu Z S, Wang F B, Li A, Shao D, Dong W F, Liu W, Yuan Y F. Theranostics, 2020, 10(3): 1281.

doi: 10.7150/thno.40291
[58]
Yu G T, Rao L, Wu H, Yang L L, Bu L L, Deng W W, Wu L, Nan X L, Zhang W F, Zhao X Z, Liu W, Sun Z J. Adv. Funct. Mater., 2018, 28(37): 1870265.

doi: 10.1002/adfm.v28.37
[59]
Rao L, Bu L L, Cai B, Xu J H, Li A, Zhang W F, Sun Z J, Guo S S, Liu W, Wang T H, Zhao X Z. Adv. Mater., 2016, 28(18): 3460.

doi: 10.1002/adma.201506086
[60]
Rao L, Yu G T, Meng Q F, Bu L L, Tian R, Lin L S, Deng H Z, Yang W J, Zan M H, Ding J X, Li A, Xiao H H, Sun Z J, Liu W, Chen X Y. Adv. Funct. Mater., 2019, 29(51): 1905671.

doi: 10.1002/adfm.v29.51
[61]
Chen Z, Zhao P F, Luo Z Y, Zheng M B, Tian H, Gong P, Gao G H, Pan H, Liu L L, Ma A Q, Cui H D, Ma Y F, Cai L T. ACS Nano, 2016, 10(11): 10049.

pmid: 27934074
[62]
Fang R H, Hu C M J, Luk B T, Gao W W, Copp J A, Tai Y Y, O'Connor D E, Zhang L F. Nano Lett., 2014, 14(4): 2181.

doi: 10.1021/nl500618u
[64]
Jin J F, Krishnamachary B, Barnett J D, Chatterjee S, Chang D, Mironchik Y, Wildes F, Jaffee E M, Nimmagadda S, Bhujwalla Z M. ACS Appl. Mater. Interfaces, 2019, 11(8): 7850.

doi: 10.1021/acsami.8b22309
[65]
Johnson D T, Kroll A V, Fang R H, Kline J, Zhang L F, Zhang D E. Blood, 2018, 132(Supplement 1): 4062.

doi: 10.1182/blood-2018-99-117841
[66]
Kim H Y, Kang M, Choo Y W, Go S H, Kwon S P, Song S Y, Sohn H S, Hong J, Kim B S. Nano Lett., 2019, 19(8): 5185.

doi: 10.1021/acs.nanolett.9b01571
[67]
Yang R, Xu J, Xu L G, Sun X Q, Chen Q, Zhao Y H, Peng R, Liu Z. ACS Nano, 2018, 12(6): 5121.

doi: 10.1021/acsnano.7b09041
[68]
Fontana F, Shahbazi M A, Liu D, Zhang H, Makila E, Salonen J, Hirvonen J T, Santos H A. Adv. Mater., 2017, 29: 3239.
[69]
Ni J, Song J F, Wang B, Hua H Y, Zhu H H, Guo X Q, Xiong S M, Zhao Y Q. Biomed. Pharmacother., 2020, 126: 110046.

doi: 10.1016/j.biopha.2020.110046
[70]
Harris J C, Scully M A, Day E S. Cancers, 2019, 11(12): 1836.

doi: 10.3390/cancers11121836
[71]
Kroll A V, Fang R H, Jiang Y, Zhou J R, Wei X L, Yu C L, Gao J, Luk B T, Dehaini D, Gao W W, Zhang L F. Adv. Mater., 2017, 29(47): 1703969.

doi: 10.1002/adma.v29.47
[72]
Li S X, Feng X R, Wang J X, Xu W G, Islam M A, Sun T M, Xie Z G, Wang C X, Ding J X, Chen X S. Adv. Funct. Mater., 2019, 29(49): 1970336.

doi: 10.1002/adfm.v29.49
[73]
Ye X Y, Mei L. Acta Pharm. Sin., 2019, 54: 1297.
[74]
Ye X Y, Liang X, Chen Q, Miao Q W, Chen X L, Zhang X D, Mei L. ACS Nano, 2019, 13(3): 2956.

doi: 10.1021/acsnano.8b07371
[75]
Ochyl L J, Bazzill J D, Park C, Xu Y, Kuai R, Moon J J. Biomaterials, 2018, 182: 157.

doi: 10.1016/j.biomaterials.2018.08.016
[76]
Wang Z, Zhang F, Shao D, Chang Z M, Wang L, Hu H Z, Zheng X, Li X Z, Chen F M, Tu Z X, Li M Q, Sun W, Chen L, Dong W F. Adv. Sci., 2019, 6(22): 1970136.

doi: 10.1002/advs.v6.22
[77]
Wang H J, Wang K, He L H, Liu Y, Dong H Q, Li Y Y. Biomaterials, 2020, 244: 119964.

doi: 10.1016/j.biomaterials.2020.119964
[78]
Xie W, Deng W W, Zan M H, Rao L, Yu G T, Zhu D M, Wu W T, Chen B, Ji L W, Chen L B, Liu K, Guo S S, Huang H M, Zhang W F, Zhao X Z, Yuan Y F, Dong W F, Sun Z J, Liu W. ACS Nano, 2019, 13(3): 2849.

doi: 10.1021/acsnano.8b03788
[79]
Chen M S, Chen M, He J T. Artif. Cells Nanomed. Biotechnol., 2019, 47(1): 1635.

doi: 10.1080/21691401.2019.1608219
[80]
Hosseinidoust Z, Mostaghaci B, Yasa O, Park B W, Singh A V, Sitti M. Adv. Drug Deliv. Rev., 2016, 106: 27.
[81]
Lim J, Koh V H Q, Cho S S L, Periaswamy B, Choi D P S, Vacca M, de Sessions P F, Kudela P, Lubitz W, Pastorin G, Alonso S. Front. Immunol., 2019, 10: 2737.
[82]
Michalek J, Hezova R, Turanek-Knötigova P, Gabkova J, Strioga M, Lubitz W, Kudela P. Cancer Immunol. Immunother., 2017, 66(2): 149.

doi: 10.1007/s00262-016-1932-4
[83]
Paukner S, Stiedl T, Kudela P, Bizik J, Al Laham F, Lubitz W. Expert. Opin. Drug Deliv., 2006, 3(1): 11.

doi: 10.1517/17425247.3.1.11
[84]
Bowie A G, Unterholzner L. Nat. Rev. Immunol., 2008, 8(12): 911.
[85]
Chakraborty P, Bhaduri A N, Das P K. Biochem. Biophys. Res. Commun., 1990, 166(1): 404.

doi: 10.1016/0006-291X(90)91959-V
[86]
Higashi N, Morikawa A, Fujioka K, Fujita Y, Sano Y, Miyata-Takeuchi M, Suzuki N, Irimura T. Int. Immunol., 2002, 14(6): 545.

doi: 10.1093/intimm/dxf021
[87]
Iwasaki A, Medzhitov R. Nat. Immunol., 2004, 5(10): 987.

pmid: 15454922
[88]
Roche A C, Midoux P, Pimpaneau V, Nègre E, Mayer R, Monsigny M. Res. Virol., 1990, 141(2): 243.

pmid: 2189173
[89]
Patel R B, Ye M Z, Carlson P M, Jaquish A, Zangl L, Ma B, Wang Y Y, Arthur I, Xie R S, Brown R J, Wang X, Sriramaneni R, Kim K, Gong S Q, Morris Z S. Adv. Mater., 2019, 31(43): 1902626.
[90]
Stuckey D W, Shah K. Nat. Rev. Cancer, 2014, 14(10): 683.

doi: 10.1038/nrc3798 pmid: 25176333
[91]
Aboody K S, Brown A, Rainov N G, Bower K A, Liu S, Yang W, Small J E, Herrlinger U, Ourednik V, Black P M, Breakefield X O, Snyder E Y. PNAS, 2000, 97(23): 12846.

pmid: 11070094
[92]
Ho I A W, Chan K Y W, Ng W H, Guo C M, Hui K M, Cheang P, Lam P Y P. Stem Cells, 2009, 27(6): 1366.

doi: 10.1002/stem.v27:6
[93]
Vallabhaneni K C, Tkachuk S, Kiyan Y, Shushakova N, Haller H, Dumler I, Eden G. Cardiovasc. Res., 2011, 90(1): 113.

doi: 10.1093/cvr/cvq362 pmid: 21088115
[94]
Dembinski J L, Wilson S M, Spaeth E L, Studeny M, Zompetta C, Samudio I, Roby K, Andreeff M, Marini F C. Cytotherapy, 2013, 15(1): 20.

doi: 10.1016/j.jcyt.2012.10.003 pmid: 23260083
[95]
Hu Y L, Huang B, Zhang T Y, Miao P H, Tang G P, Tabata Y, Gao J Q. Mol. Pharmaceutics, 2012, 9(9): 2698.

doi: 10.1021/mp300254s
[96]
Ryu C H, Park S H, Park S A, Kim S M, Lim J Y, Jeong C H, Yoon W S, Oh W I, Sung Y C, Jeun S S. Hum. Gene Ther., 2011, 22(6): 733.

doi: 10.1089/hum.2010.187
[97]
Toledano Furman N E, Lupu-Haber Y, Bronshtein T, Kaneti L, Letko N, Weinstein E, Baruch L, Machluf M. Nano Lett., 2013, 13(7): 3248.

doi: 10.1021/nl401376w pmid: 23786263
[98]
Hu Y L, Fu Y H, Tabata Y, Gao J Q. J. Control. Release, 2010, 147(2): 154.

doi: 10.1016/j.jconrel.2010.05.015
[99]
Shah K. Adv. Drug Deliv. Rev., 2012, 64(8): 739.
[100]
Gao C Y, Lin Z H, Jurado-Sánchez B, Lin X K, Wu Z G, He Q. Small, 2016, 12(30): 4056.

doi: 10.1002/smll.v12.30
[101]
Liu W L, Zou M Z, Liu T, Zeng J Y, Li X, Yu W Y, Li C X, Ye J J, Song W, Feng J, Zhang X Z. Nat. Commun., 2019, 10(1): 1.

doi: 10.1038/s41467-018-07882-8
[102]
Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Immunol. Rev., 2008, 222(1): 162.

doi: 10.1111/j.1600-065X.2008.00602.x
[103]
Veglia F, Perego M, Gabrilovich D. Nat. Immunol., 2018, 19(2): 108.

doi: 10.1038/s41590-017-0022-x
[104]
Wu M, Liu X G, Bai H Z, Lai L H, Chen Q, Huang G J, Liu B, Tang G P. ACS Appl. Mater. Interfaces, 2019, 11(10): 9850.

doi: 10.1021/acsami.9b00294
[105]
Wang Y C, Luan Z Y, Zhao C Y, Bai C H, Yang K J. Eur. J. Pharm. Sci., 2020, 142: 105136.

doi: 10.1016/j.ejps.2019.105136
[1] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[2] Qiangqiang Yang, Chuan Li, Shuxian Yu, Shuhua Fan, Yuexia Wang, Min Hong. Application of Nanocarriers in Co-Loading siRNA and Chemotherapeutic Drugs to Reverse Multidrug Resistance of Tumor [J]. Progress in Chemistry, 2021, 33(10): 1900-1916.
[3] Jiangbo Liu, Lihua Wang, Xiaolei Zuo. Cell Membranes Functionalization Based on DNA [J]. Progress in Chemistry, 2019, 31(8): 1067-1074.
[4] Zhirui Dong, Weijun Tong*. Shear-Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(2/3): 190-197.
[5] Yuewen Sun, Suxing Jin, Xiaoyong Wang, Zijian Guo. Application Prospect of Metal Complexes in Chemoimmunotherapy of Tumors [J]. Progress in Chemistry, 2018, 30(10): 1573-1583.
[6] Xubo Yuan, Jin Zhao, Lixia Long, Xin Hou, Xubo Yuan*. Biological Carrier for Tumor Immunotherapy [J]. Progress in Chemistry, 2017, 29(10): 1195-1205.
[7] Gong Zhaocui, Yin Chao, Zhao Hui, Lu Xiaomei, Fan Quli, Huang Wei. Light-Controlled Nanocarriers for Drug Release [J]. Progress in Chemistry, 2016, 28(9): 1387-1396.
[8] Ci Jiliang, Kang Hongliang, Liu Chenguang, He Aihua, Liu Ruigang. Protein Resistance Adsorption Mechanism and Applications of Zwitterionic Polymers [J]. Progress in Chemistry, 2015, 27(9): 1198-1212.
[9] Gu Xiaoxiao, Du Baoji, Li Yunhui, Gao Ying, Li Dan, Wang Erkang. Vectors Based on Nanomaterials for Gene Delivery [J]. Progress in Chemistry, 2015, 27(8): 1093-1101.
[10] Zhang Qian, Zhu Yanhong, Xu Huibi, Yang Xiangliang. Multifunctional Nanoparticle-Based Adjuvants Used in Cancer Vaccines [J]. Progress in Chemistry, 2015, 27(2/3): 275-285.
[11] Chen Jibing, Yuan Yuanying, Xu Kecheng. Research Progress of Anti-Cancer Vaccine [J]. Progress in Chemistry, 2013, 25(09): 1588-1593.
[12] Ren Tianbin, Xia Wenjuan, Wu Wei, Li Yongyong*. Stimuli-Responsive and Polymeric Prodrugs [J]. Progress in Chemistry, 2013, 25(05): 775-784.
[13] Gong Ming|Yang Shan|Zhang Shiping|Gong Yongkuan**.

Surface Modification of Biomedical Materials with Cell Membrane Mimetic Structures

[J]. Progress in Chemistry, 2008, 20(10): 1628-1634.
[14] Huang Lei,Zhao Fuqun,Huang Xin,Zhang Fushi**. Study of Photoimmunoconjugates [J]. Progress in Chemistry, 2007, 19(04): 527-534.