中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (2): 165-178 DOI: 10.7536/PC201016   Next Articles

• Review •

Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6

Xiang Xu1, Kun Li1, Qingya Wei1, Jun Yuan1, Yingping Zou1,*()   

  1. 1 College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received: Revised: Online: Published:
  • Contact: Yingping Zou
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(21875286); National Key Research & Development Projects of China(2017YFA0206600)
Richhtml ( 97 ) PDF ( 2226 ) Cited
Export

EndNote

Ris

BibTeX

With the development of donor and acceptor materials, the power conversion efficiency(PCE) of organic solar cells(OSCs) has continuously made breakthrough in recent years. Particularly, the emergency of non-fullerene acceptor Y6 has enabled the device efficiency of OSCs over 15%. Y6 has been applied in many aspects and greatly improved its photovoltaic properties. This review focuses on the applications of Y6 in binary, ternary and quaternary, layer-by-layer, flexible, tandem and semitransparent organic solar cells, meanwhile, the future structure optimizations and device applications of Y6 have been outlooked.

Contents

1 Introduction

2 Binary organic solar cells based on Y6

2.1 Polymer donors matching with the Y6 acceptor

2.2 Small molecular donors matching with the Y6 acceptor

3 Ternary and quaternary organic solar cells based on Y6

4 LBL-processed OSCs based on Y6

5 Flexible OSCs based on Y6

6 Tandem OSCs based on Y6

7 Semi-transparent OSCs based on Y6

8 Research on OSCs based on Y6 triplet state

9 Conclusion and outlook

Fig. 1 The structures of polymer donors
Table 1 The photovoltaic performance of binary organic solar cells based on different polymer donors and Y6
Fig. 2 The structures of small molecular donors
Table 2 The photovoltaic performance of binary organic solar cells based on different small molecular donors and Y6
Fig. 3 The chemical structures of the third or fourth components in organic solar cells
Table 3 The photovoltaic performance of ternary and quaternary organic solar cells based on Y6 acceptor
Fig. 4 Photovoltaic characteristics of folding-flexible OSCs.(A) Device structure of the flexible OSC.(B) J-V characteristics of flexible OSCs fabricated on ITO/PET and PEDOT:PSS/PET with three eco-friendly acid treatments.(C) Optimal J-V characteristics of flexible OSCs fabricated on m-PEDOT:PSS/PET with citric acid treatments(insert is corresponding histogram distribution of PCE counts for 20 individual devices).(D) Recent scatterplot report for PCE values of flexible OSCs. Reproduced with permission[116]. Copyright 2020, Cell.
Fig. 5 Vividly colorful ST-OSCs.(a) Structure and layer thickness of colorful OSCs.(b) Chemical structures of PM6, Y6, and Bis-FIMG.(c) Transmittance spectra of double-layered TEs: glass/ITO/Ag(15 nm) and glass/ITO/Bis-FIMG/Ag(15 nm); green curve for photopic response of human eye.(d) Simulated color coordinates of colorful ST-OSCs with F-P electrodes on the CIE 1931. Reproduced with permission[146] Copyright 2020, American Chemical Society.
Fig. 6 Structure diagram of triplet non-fullerene acceptors
[1]
Liu Z Y, Wang N. Nanoscale, 2018, 10:19524.

doi: 10.1039/c8nr06448b pmid: 30320319
[2]
Ma X L, Gao W, Yu J S, An Q S, Zhang M, Hu Z H, Wang J X, Tang W H, Yang C L, Zhang F J. Energy Environ. Sci., 2018, 11:2134.

doi: 10.1039/C8EE01107A
[3]
Zhang H, Yao H F, Hou J X, Zhu J, Zhang J Q, Li W N, Yu R N, Gao B W, Zhang S Q, Hou J H. Adv. Mater., 2018, 30:1800613.
[4]
Huang G Y, Zhang J, Uranbileg N, Chen W C, Jiang H X, Tan H, Zhu W G, Yang R Q. Adv. Energy Mater., 2018, 8:1702489.
[5]
Hu Z H, Wang J, Wang Z, Gao W, An Q S, Zhang M, Ma X L, Wang J X, Miao J L, Yang C L, Zhang F J. Nano Energy, 2019, 55:424.
[6]
Xu X, Xiao J Y, Zhang G C, Wei L, Jiao X C, Yip H L, Cao Y. Sci. Bull., 2020, 65:208.
[7]
Xu X, Li D X, Yuan J, Zhou Y H, Zou Y P. EnergyChem, 2021, 3:100046.
[8]
Tang C W. Appl. Phys. Lett., 1986, 48:183.
[9]
Wang J L, Peng J J, Liu X Y, Liang Z Q. ACS Appl. Mater. Interfaces, 2017, 9:20704.
[10]
Li Z J, Xu X F, Zhang W, Meng X Y, Genene Z, Ma W, Mammo W, Yartsev A, Andersson M R, Janssen R A J, Wang E G. Energy Environ. Sci., 2017, 10:2212.
[11]
Kang Z J, Chen S C, Ma Y L, Wang J B, Zheng Q D. ACS Appl. Mater. Interfaces, 2017, 9:24771.
[12]
Cheng P, Wang R, Zhu J S, Huang W C, Chang S Y, Meng L, Sun P Y, Cheng H W, Qin M, Zhu C H, Zhan X W, Yang Y. Adv. Mater., 2018, 30:1705243.
[13]
Lee J, Ko S J, Seifrid M, Lee H, Luginbuhl B R, Karki A, Ford M, Rosenthal K, Cho K, Nguyen T Q, Bazan G C. Adv. Energy Mater., 2018, 8:1801212.
[14]
Li S S, Ye L, Zhao W C, Zhang S Q, Mukherjee S, Ade H, Hou J H. Adv. Mater., 2016, 28:9423.

pmid: 27606970
[15]
Lin Y Z, He Q, Zhao F W, Huo L J, Mai J Q, Lu X H, Su C J, Li T F, Wang J Y, Zhu J S, Sun Y M, Wang C R, Zhan X W. J. Am. Chem. Soc., 2016, 138:2973.

doi: 10.1021/jacs.6b00853 pmid: 26909887
[16]
Zhu L, Zhong W K, Qiu C Q, Lyu B S, Zhou Z C, Zhang M, Song J N, Xu J Q, Wang J, Ali J, Feng W, Shi Z W, Gu X D, Ying L, Zhang Y M, Liu F. Adv. Mater., 2019, 31:1902899.
[17]
Yao H F, Cui Y, Yu R N, Gao B W, Zhang H, Hou J H. Angew. Chem. Int. Ed., 2017, 56:3045.
[18]
Yao H F, Chen Y, Qin Y P, Yu R N, Cui Y, Yang B, Li S S, Zhang K, Hou J H. Adv. Mater., 2016, 28:8283.

pmid: 27380468
[19]
Lin Y Z, Wang J Y, Zhang Z G, Bai H T, Li Y F, Zhu D B, Zhan X W. Adv. Mater., 2015, 27:1170.

doi: 10.1002/adma.201404317 pmid: 25580826
[20]
Mu C, Liu P, Ma W, Jiang K, Zhao J B, Zhang K, Chen Z H, Wei Z H, Yi Y, Wang J N, Yang S H, Huang F, Facchetti A, Ade H, Yan H. Adv. Mater., 2014, 26:7224.

doi: 10.1002/adma.201402473 pmid: 25238661
[21]
Un Kim Y, Eun Park G, Choi S, Hee Lee D, Ju Cho M, Choi D H. J. Mater. Chem. C, 2017, 5:7182.
[22]
Zhang Z Z, Feng L L, Xu S T, Liu Y, Peng H J, Zhang Z G, Li Y F, Zou Y P. Adv. Sci., 2017, 4:1700152.
[23]
Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P. Joule, 2019, 3:1140.
[24]
Zhao W C, Qian D P, Zhang S Q, Li S S, Inganäs O, Gao F, Hou J H. Adv. Mater., 2016, 28:4734.
[25]
Cheng P, Wang H C, Zhu Y, Zheng R, Li T F, Chen C H, Huang T Y, Zhao Y P, Wang R, Meng D, Li Y W, Zhu C H, Wei K H, Zhan X W, Yang Y. Adv. Mater., 2020, 32:2003891.
[26]
Han J H, Bao F, Huang D, Wang X C, Yang C M, Yang R Q, Jian X G, Wang J Y, Bao X C, Chu J H. Adv. Funct. Mater., 2020, 30:2003654.
[27]
Song J L, Ye L L, Li C, Xu J Q, Chandrabose S, Weng K K, Cai Y H, Xie Y P, O’Reilly P, Chen K, Zhou J J, Zhou Y, Hodgkiss J M, Liu F, Sun Y M. Adv. Sci., 2020, 7:2001986.
[28]
Xie Y P, Cai Y H, Zhu L, Xia R X, Ye L L, Feng X, Yip H L, Liu F, Lu G H, Tan S T, Sun Y M. Adv. Funct. Mater., 2020, 30:2002181.
[29]
Yang T, Ma R J, Cheng H, Xiao Y Q, Luo Z H, Chen Y Z, Luo S W, Liu T, Lu X H, Yan H. J. Mater. Chem. A, 2020, 8:17706.
[30]
Song W, Fanady B, Peng R X, Hong L, Wu L R, Zhang W X, Yan T T, Wu T, Chen S H, Ge Z Y. Adv. Energy Mater., 2020, 10:2000136.
[31]
Zhang W C, Huang J H, Xu J Q, Han M M, Su D, Wu N N, Zhang C F, Xu A J, Zhan C L. Adv. Energy Mater., 2020, 10:2001436.
[32]
Feng L L, Yuan J, Zhang Z Z, Peng H J, Zhang Z G, Xu S T, Liu Y, Li Y F, Zou Y P. ACS Appl. Mater. Interfaces, 2017, 9:31985.
[33]
Yuan J, Huang T Y, Cheng P, Zou Y P, Zhang H T, Yang J L, Chang S Y, Zhang Z Z, Huang W C, Wang R, Meng D, Gao F, Yang Y. Nat. Commun., 2019, 10:570.

doi: 10.1038/s41467-019-08386-9 pmid: 30718494
[34]
Sun C K, Pan F, Bin H J, Zhang J Q, Xue L W, Qiu B B, Wei Z X, Zhang Z G, Li Y F. Nat. Commun., 2018, 9:743.

pmid: 29467393
[35]
Wu Y, Zheng Y, Yang H, Sun C K, Dong Y Y, Cui C H, Yan H, Li Y F. Sci. China Chem., 2020, 63:265.
[36]
Ma R J, Liu T, Luo Z H, Guo Q, Xiao Y Q, Chen Y Z, Li X J, Luo S W, Lu X H, Zhang M J, Li Y F, Yan H. Sci. China Chem., 2020, 63:325.
[37]
Wu J N, Li G W, Fang J, Guo X, Zhu L, Guo B, Wang Y L, Zhang G Y, Arunagiri L, Liu F, Yan H, Zhang M J, Li Y F. Nat. Commun., 2020, 11:4612.
[38]
Fan B B, Zhang D F, Li M J, Zhong W K, Zeng Z, Ying L, Huang F, Cao Y. Sci. China Chem., 2019, 62:746.
[39]
Fan B B, Zeng Z, Zhong W K, Ying L, Zhang D F, Li M J, Peng F, Li N, Huang F, Cao Y. ACS Energy Lett., 2019, 4:2466.
[40]
Fan B B, Li M J, Zhang D F, Zhong W K, Ying L, Zeng Z, An K, Huang Z Q, Shi L R, Bazan G C, Huang F, Cao Y. ACS Energy Lett., 2020, 5:2087.
[41]
Chen Y, Geng Y F, Tang A L, Wang X C, Sun Y M, Zhou E J. Chem. Commun., 2019, 55:6708.
[42]
Tang A L, Zhang Q Q, Du M Z, Li G Q, Geng Y F, Zhang J Q, Wei Z X, Sun X N, Zhou E J. Macromolecules, 2019, 52:6227.
[43]
Xu X P, Feng K, Bi Z Z, Ma W, Zhang G J, Peng Q. Adv. Mater., 2019, 31:1901872.
[44]
Xiong J, Jin K, Jiang Y F, Qin J Q, Wang T, Liu J F, Liu Q S, Peng H L, Li X F, Sun A X, Meng X Y, Zhang L X, Liu L, Li W T, Fang Z M, Jia X, Xiao Z, Feng Y Q, Zhang X T, Sun K, Yang S F, Shi S W, Ding L M. Sci. Bull., 2019, 64:1573.
[45]
Liu Q S, Jiang Y F, Jin K, Qin J Q, Xu J G, Li W T, Xiong J, Liu J F, Xiao Z, Sun K, Yang S F, Zhang X T, Ding L M. Sci. Bull., 2020, 65:272.
[46]
Bin H J, Yang Y K, Zhang Z G, Ye L, Ghasemi M, Chen S S, Zhang Y D, Zhang C F, Sun C K, Xue L W, Yang C, Ade H, Li Y F. J. Am. Chem. Soc., 2017, 139:5085.
[47]
Ilmi R, Haque A, Khan M S. Org. Electron., 2018, 58:53.
[48]
Qiu B B, Xue L W, Yang Y K, Bin H J, Zhang Y D, Zhang C F, Xiao M, Park K, Morrison W, Zhang Z G, Li Y F. Chem. Mater., 2017, 29:7543.
[49]
Yang L Y, Zhang S Q, He C, Zhang J Q, Yao H F, Yang Y, Zhang Y, Zhao W C, Hou J H. J. Am. Chem. Soc., 2017, 139:1958.

doi: 10.1021/jacs.6b11612
[50]
Zhang Q, Kan B, Liu F, Long G K, Wan X J, Chen X Q, Zuo Y, Ni W, Zhang H J, Li M M, Hu Z C, Huang F, Cao Y, Liang Z Q, Zhang M T, Russell T P, Chen Y S. Nat. Photonics, 2015, 9:35.
[51]
Nian L, Kan Y Y, Gao K, Zhang M, Li N, Zhou G Q, Jo S B, Shi X L, Lin F, Rong Q K, Liu F, Zhou G F, Jen A K Y. Joule, 2020, 4:2223.
[52]
Ge J F, Xie L C, Peng R X, Fanady B, Huang J M, Song W, Yan T T, Zhang W X, Ge Z Y. Angew. Chem. Int. Ed., 2020, 59:2808.
[53]
Chen H Y, Hu D Q, Yang Q G, Gao J, Fu J H, Yang K, He H, Chen S S, Kan Z P, Duan T N, Yang C, Ouyang J, Xiao Z Y, Sun K, Lu S R. Joule, 2019, 3:3034.
[54]
Hu D Q, Yang Q G, Chen H Y, Wobben F, Le Corre V M, Singh R, Liu T, Ma R J, Tang H, Koster L J A, Duan T N, Yan H, Kan Z P, Xiao Z Y, Lu S R. Energy Environ. Sci., 2020, 13:2134.
[55]
Zhou R M, Jiang Z Y, Yang C, Yu J W, Feng J R, Adil M A, Deng D, Zou W J, Zhang J Q, Lu K, Ma W, Gao F, Wei Z X. Nat. Commun., 2019, 10:5393.
[56]
Qiu B B, Chen Z, Qin S C, Yao J, Huang W C, Meng L, Zhu H M, Yang Y M, Zhang Z G, Li Y F. Adv. Mater., 2020, 32:1908373.
[57]
Wang Y L, Wang Y, Zhu L, Liu H Q, Fang J, Guo X, Liu F, Tang Z, Zhang M J, Li Y F. Energy Environ. Sci., 2020, 13:1309.
[58]
An Q S, Zhang F J, Gao W, Sun Q Q, Zhang M, Yang C L, Zhang J. Nano Energy, 2018, 45:177.
[59]
Bi P Q, Xiao T, Yang X Y, Niu M S, Wen Z C, Zhang K N, Qin W, So S K, Lu G H, Hao X T, Liu H. Nano Energy, 2018, 46:81.
[60]
Cao F Y, Huang P K, Su Y C, Huang W C, Chang S L, Hung K E, Cheng Y J. J. Mater. Chem. A, 2019, 7:17947.
[61]
Cao F Y, Huang W C, Chang S L, Cheng Y J. Chem. Mater., 2018, 30:4968.
[62]
Fu H T, Li C, Bi P Q, Hao X T, Liu F, Li Y, Wang Z H, Sun Y M. Adv. Funct. Mater., 2019, 29:1807006.
[63]
Sun R, Guo J, Sun C K, Wang T, Luo Z H, Zhang Z H, Jiao X C, Tang W H, Yang C L, Li Y F, Min J. Energy Environ. Sci., 2019, 12:384.
[64]
Jiang H X, Li X M, Liang Z Z, Huang G Y, Chen W C, Zheng N, Yang R Q. J. Mater. Chem. A, 2019, 7:7760.
[65]
Jiang H X, Li X M, Wang J N, Qiao S L, Zhang Y, Zheng N, Chen W C, Li Y H, Yang R Q. Adv. Funct. Mater., 2019, 29:1903596.
[66]
Kim G U, Lee Y W, Ma B S, Kim J, Park J S, Lee S, Nguyen T L, Song M, Kim T S, Woo H Y, Kim B J. J. Mater. Chem. A, 2020, 8:13522.
[67]
Lee J, Kim J W, Park S A, Son S Y, Choi K, Lee W, Kim M, Kim J Y, Park T. Adv. Energy Mater., 2019, 9:1901829.
[68]
Li F, Tang A L, Zhang B, Zhou E J. ACS Macro Lett., 2019, 8:1599.
[69]
Zhang K, Liu Z Y, Wang N. J. Power Sources, 2019, 413:391.
[70]
An M W, Xie F Y, Geng X J, Zhang J Q, Jiang J X, Lei Z L, He D, Xiao Z, Ding L M. Adv. Energy Mater., 2017, 7:1602509.
[71]
Chen Y S, Ye P, Zhu Z G, Wang X L, Yang L, Xu X Z, Wu X X, Dong T, Zhang H, Hou J H, Liu F, Huang H. Adv. Mater., 2017, 29:1603154.
[72]
Gao H H, Sun Y N, Wan X J, Ke X, Feng H R, Kan B, Wang Y B, Zhang Y M, Li C X, Chen Y S. Adv. Sci., 2018, 5:1800307.
[73]
Liu Q, Toudert J, Ciammaruchi L, Martínez-Denegri G, Martorell J. J. Mater. Chem. A, 2017, 5:25476.
[74]
Liu T, Xue X N, Huo L J, Sun X B, An Q S, Zhang F J, Russell T P, Liu F, Sun Y M. Chem. Mater., 2017, 29:2914.
[75]
Park K H, An Y J, Jung S, Park H, Yang C. Energy Environ. Sci., 2016, 9:3464.
[76]
Xiong Y, Ye L, Gadisa A, Zhang Q Q, Rech J J, You W, Ade H. Adv. Funct. Mater., 2019, 29:1806262.
[77]
Zhong L, Bin H J, Li Y X, Zhang M, Xu J Q, Li X J, Huang H, Hu Q, Jiang Z Q, Wang J, Zhang C F, Liu F, Russell T P, Zhang Z J, Li Y F. J. Mater. Chem. A, 2018, 6:24814.
[78]
Zhang C E, Feng S Y, Liu Y H, Ming S L, Lu H, Ma D Y, Xu X J, Wu Y Z, Bo Z S. J. Mater. Chem. A, 2018, 6:6854.
[79]
Lu L Y, Xu T, Chen W, Landry E S, Yu L P. Nat. Photonics, 2014, 8:716.
[80]
Liu T, Guo Y, Yi Y P, Huo L J, Xue X N, Sun X B, Fu H T, Xiong W T, Meng D, Wang Z H, Liu F, Russell T P, Sun Y M. Adv. Mater., 2016, 28:10008.
[81]
Baran D, Ashraf R S, Hanifi D A, Abdelsamie M, Gasparini N, Röhr J A, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott C J M, Nelson J, Brabec C J, Amassian A, Salleo A, Kirchartz T, Durrant J R, McCulloch I. Nat. Mater., 2017, 16:363.
[82]
Chen Y S, Ye P, Jia X L, Gu W X, Xu X Z, Wu X X, Wu J F, Liu F, Zhu Z G, Huang H. J. Mater. Chem. A, 2017, 5:19697.
[83]
Chang Y, Lau T K, Chow P C Y, Wu N N, Su D, Zhang W C, Meng H F, Ma C, Liu T, Li K, Zou X H, Wong K S, Lu X H, Yan H, Zhan C L. J. Mater. Chem. A, 2020, 8:3676.
[84]
Bai Y M, Zhao C Y, Chen X H, Zhang S, Zhang S Q, Hayat T, Alsaedi A, Tan Z A, Hou J H, Li Y F. J. Mater. Chem. A, 2019, 7:15887.
[85]
Li K, Wu Y S, Tang Y B, Pan M A, Ma W, Fu H B, Zhan C L, Yao J N. Adv. Energy Mater., 2019, 9:1901728.
[86]
Pan M A, Lau T K, Tang Y B, Wu Y C, Liu T, Li K, Chen M C, Lu X H, Ma W, Zhan C L. J. Mater. Chem. A, 2019, 7:20713.
[87]
Yu R N, Yao H F, Cui Y, Hong L, He C, Hou J H. Adv. Mater., 2019, 31:1902302.
[88]
Song J L, Li C, Zhu L, Guo J, Xu J Q, Zhang X N, Weng K K, Zhang K N, Min J, Hao X T, Zhang Y, Liu F, Sun Y M. Adv. Mater., 2019, 31:1905645.
[89]
Li D Q, Zhu L, Liu X J, Xiao W, Yang J M, Ma R R, Ding L M, Liu F, Duan C G, Fahlman M, Bao Q Y. Adv. Mater., 2020, 32:2002344.
[90]
Nam M, Noh H Y, Cho J, Park Y, Shin S C, Kim J A, Kim J, Lee H H, Shim J W, Ko D H. Adv. Funct. Mater., 2019, 29:1900154.
[91]
Ma X L, Wang J, An Q S, Gao J H, Hu Z H, Xu C Y, Zhang X L, Liu Z T, Zhang F J. Nano Energy, 2020, 70:104496.
[92]
Bi Z Z, Zhu Q L, Xu X B, Naveed H B, Sui X Y, Xin J M, Zhang L, Li T F, Zhou K, Liu X F, Zhan X W, Ma W. Adv. Funct. Mater., 2019, 29:1806804.
[93]
Vincent P, Shim J W, Jang J, Kang I M, Lang P, Bae J H, Kim H. Energies, 2019, 12:1838.
[94]
Bi Z Z, Naveed H B, Sui X Y, Zhu Q L, Xu X B, Gou L, Liu Y F, Zhou K, Zhang L, Zhang F L, Liu X F, Ma W. Nano Energy, 2019, 66:104176.
[95]
Luo M, Zhao C Y, Yuan J, Hai J F, Cai F F, Hu Y B, Peng H J, Bai Y M, Tan Z A, Zou Y P. Mater. Chem. Front., 2019, 3:2483.
[96]
Li K, Wu Y S, Li X M, Fu H B, Zhan C L. Sci. China Chem., 2020, 63:490.
[97]
Zhang M, Zhu L, Zhou G Q, Hao T, Qiu C Q, Zhao Z, Hu Q, Larson B W, Zhu H M, Ma Z F, Tang Z, Feng W, Zhang Y M, Russell T P, Liu F. Nat. Commun., 2021, 12:309.
[98]
Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270:1789.
[99]
Wang Y F, Zhao X G, Zhan X W. J. Mater. Chem. C, 2015, 3:447.
[100]
Ren M R, Zhang G C, Chen Z, Xiao J Y, Jiao X C, Zou Y P, Yip H L, Cao Y. ACS Appl. Mater. Interfaces, 2020, 12:13077.

doi: 10.1021/acsami.9b23011 pmid: 32079401
[101]
Sun R, Guo J, Wu Q, Zhang Z H, Yang W Y, Guo J, Shi M M, Zhang Y H, Kahmann S, Ye L, Jiao X C, Loi M A, Shen Q, Ade H, Tang W H, Brabec C J, Min J. Energy Environ. Sci., 2020, 13:317.
[102]
Cui Y, Zhang S Q, Liang N N, Kong J Y, Yang C Y, Yao H F, Ma L J, Hou J H. Adv. Mater., 2018, 30:1802499.
[103]
Dong S, Zhang K, Xie B M, Xiao J Y, Yip H L, Yan H, Huang F, Cao Y. Adv. Energy Mater., 2019, 9:1802832.
[104]
Weng K K, Ye L L, Zhu L, Xu J Q, Zhou J J, Feng X, Lu G H, Tan S T, Liu F, Sun Y M. Nat. Commun., 2020, 11:2855.

doi: 10.1038/s41467-020-16621-x pmid: 32503994
[105]
Sun R, Wu Q, Guo J, Wang T, Wu Y, Qiu B B, Luo Z H, Yang W Y, Hu Z C, Guo J, Shi M M, Yang C L, Huang F, Li Y F, Min J. Joule, 2020, 4:407.
[106]
Zhao G Q, Song M, Chung H S, Kim S M, Lee S G, Bae J S, Bae T S, Kim D, Lee G H, Han S Z, Lee H S, Choi E A, Yun J. ACS Appl. Mater. Interfaces, 2017, 9:38695.

pmid: 29039201
[107]
Søndergaard R, Hösel M, Angmo D C, Larsen-Olsen T T, Krebs F C. Mater. Today, 2012, 15:36.
[108]
Boehme M, Charton C. Surf. Coat. Technol., 2005, 200:932.
[109]
Kang H, Jung S, Jeong S, Kim G, Lee K. Nat. Commun., 2015, 6:6503.
[110]
Li Y W, Xu G Y, Cui C H, Li Y F. Adv. Energy Mater., 2018, 8:1701791.
[111]
Ling H F, Liu S H, Zheng Z J, Yan F. Small Methods, 2018, 2:1800070.
[112]
Park S, Heo S W, Lee W, Inoue D, Jiang Z, Yu K, Jinno H, Hashizume D, Sekino M, Yokota T, Fukuda K, Tajima K, Someya T. Nature, 2018, 561:516.

doi: 10.1038/s41586-018-0536-x pmid: 30258137
[113]
Zhang J W, Xu G Y, Tao F, Zeng G, Zhang M Y, Yang Y M, Li Y W, Li Y F. Adv. Mater., 2019, 31:1807159.
[114]
Zhang J W, Xue R M, Xu G Y, Chen W J, Bian G Q, Wei C G, Li Y W, Li Y F. Adv. Funct. Mater., 2018, 28:1870085.
[115]
Chen X B, Xu G Y, Zeng G, Gu H W, Chen H Y, Xu H T, Yao H F, Li Y W, Hou J H, Li Y F. Adv. Mater., 2020, 32:1908478.
[116]
Song W, Peng R X, Huang L K, Liu C, Fanady B, Lei T, Hong L, Ge J F, Facchetti A, Ge Z Y. iScience, 2020, 23:100981.
[117]
Liu J F, Liu L, Zuo C T, Xiao Z, Zou Y P, Jin Z W, Ding L M. Sci. Bull., 2019, 64:1655.
[118]
Kang Z J, Ma Y L, Zheng Q D. Dye. Pigment., 2019, 170:107555.
[119]
Deng P, Wu B, Lei Y L, Cao H Y, Ong B S. Macromolecules, 2016, 49:2541.
[120]
Yu J E, Jeon S J, Choi J Y, Han Y W, Ko E J, Moon D K. Small, 2019, 15:1902241.
[121]
Lin Y B, Adilbekova B, Firdaus Y, Yengel E, Faber H, Sajjad M, Zheng X P, Yarali E, Seitkhan A, Bakr O M, El-Labban A, Schwingenschlögl U, Tung V, McCulloch I, Laquai F, Anthopoulos T D. Adv. Mater., 2019, 31:1902965.
[122]
Cai F F, Zhu C, Yuan J, Li Z, Meng L, Liu W, Peng H J, Jiang L H, Li Y F, Zou Y P. Chem. Commun., 2020, 56:4340.
[123]
Wang J, Gao Y X, Xiao Z, Meng X Y, Zhang L X, Liu L, Zuo C T, Yang S F, Zou Y P, Yang J L, Shi S W, Ding L M. Mater. Chem. Front., 2019, 3:2686.
[124]
Pan F L, Zhang L J, Jiang H Y, Yuan D, Nian Y W, Cao Y, Chen J W. J. Mater. Chem. A, 2019, 7:9798.
[125]
Yu R N, Yao H F, Hong L, Xu Y, Gao B W, Zhu J, Zu Y F, Hou J H. Adv. Energy Mater., 2018, 8:1802131.
[126]
Choudhury B D, Ibarra B, Cesano F, Mao Y B, Huda M N, Chowdhury A R, Olivares C, Jasim Uddin M. Sol. Energy, 2020, 201:28.
[127]
Ameri T, Dennler G, Lungenschmied C, Brabec C J. Energy Environ. Sci., 2009, 2:347.
[128]
Andersen T R, Dam H F, Hösel M, Helgesen M, CarlÉ J E, Larsen-Olsen T T, Gevorgyan S A, Andreasen J W, Adams J, Li N, Machui F, Spyropoulos G D, Ameri T, Lemaître N, Legros M, Scheel A, Gaiser D, Kreul K, Berny S, Lozman O R, Nordman S, Välimäki M, Vilkman M, S?ndergaard R R, J?rgensen M, Brabec C J, Krebs F C. Energy Environ. Sci., 2014, 7:2925.
[129]
Dam H F, Andersen T R, Pedersen E B L, ThydÉn K T S, Helgesen M, CarlÉ J E, J?rgensen P S, Reinhardt J, S?ndergaard R R, J?rgensen M, Bundgaard E, Krebs F C, Andreasen J W. Adv. Energy Mater., 2015, 5:1400736.
[130]
Xu X P, Li Y, Peng Q. Small Struct., 2020, 1:2000016.
[131]
Hadipour A, De? Boer B, Wildeman J, Kooistra F ?, Hummelen J ?, Turbiez M ? ?, Wienk M ?, Janssen R ? ?, Blom P ? ?. Adv. Funct. Mater., 2006, 16:1897.

doi: 10.1002/(ISSN)1616-3028
[132]
Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S. Science, 2018, 361:1094.

doi: 10.1126/science.aat2612 pmid: 30093603
[133]
Liu Q S, Jin K, Li W T, Xiao Z, Cheng M, Yuan Y B, Shi S W, Jin Z W, Hao F, Yang S F, Ding L M. J. Mater. Chem. A, 2020, 8:8857.

doi: 10.1039/D0TA02427A
[134]
Jia Z R, Qin S C, Meng L, Ma Q, Angunawela I, Zhang J Y, Li X J, He Y K, Lai W B, Li N, Ade H, Brabec C J, Li Y F. Nat. Commun., 2021, 12:178.

pmid: 33420010
[135]
Jiang B H, Lee H E, Lu J H, Tsai T H, Shieh T S, Jeng R J, Chen C P. ACS Appl. Mater. Interfaces, 2020, 12:39496.
[136]
Su W Y, Fan Q P, Guo X, Wu J N, Zhang M J, Li Y F. Phys. Chem. Chem. Phys., 2019, 21:10660.

doi: 10.1039/c9cp01101c pmid: 31080967
[137]
Xue Q F, Xia R X, Brabec C J, Yip H L. Energy Environ. Sci., 2018, 11:1688.
[138]
Xiong Y, Booth R E, Kim T, Ye L, Liu Y X, Dong Q, Zhang M J, So F, Zhu Y, Amassian A, O’Connor B T, Ade H. Sol. RRL, 2020, 4:2000328.
[139]
Liu Y Q, Cheng P, Li T F, Wang R, Li Y W, Chang S Y, Zhu Y, Cheng H W, Wei K H, Zhan X W, Sun B Q, Yang Y. ACS Nano, 2019, 13:1071.
[140]
Xie Y P, Xia R X, Li T F, Ye L L, Zhan X W, Yip H L, Sun Y M. Small Methods, 2019, 3:1900424.
[141]
Sun C, Xia R X, Shi H, Yao H F, Liu X, Hou J H, Huang F, Yip H L, Cao Y. Joule, 2018, 2:1816.
[142]
Shi H, Xia R X, Zhang G C, Yip H L, Cao Y. Adv. Energy Mater., 2019, 9:1970016.
[143]
Li Y X, Lin J D, Che X Z, Qu Y, Liu F, Liao L S, Forrest S R. J. Am. Chem. Soc., 2017, 139:17114.

doi: 10.1021/jacs.7b11278 pmid: 29144745
[144]
Sun G J, Shahid M, Fei Z P, Xu S D, Eisner F D, Anthopolous T D, McLachlan M A, Heeney M. Mater. Chem. Front., 2019, 3:450.
[145]
Dai S X, Zhan X W. Adv. Energy Mater., 2018, 8:1800002.
[146]
Li X, Xia R X, Yan K R, Ren J, Yip H L, Li C Z, Chen H Z. ACS Energy Lett., 2020, 5:3115.
[147]
Chen X K, Wang T H, BrÉdas J L. Adv. Energy Mater., 2017, 7:1602713.

doi: 10.1002/aenm.201602713
[148]
Zhan X W, Li Y F. Sci. China Chem., 2018, 61:637.
[149]
Jin Y Z, Zhang Y X, Liu Y F, Xue J, Li W W, Qiao J, Zhang F L. Adv. Mater., 2019, 31:1900690.
[150]
Bian Q Z, Ma F, Chen S L, Wei Q, Su X J, Buyanova I A, Chen W M, Ponseca C S Jr, Linares M, Karki K J, Yartsev A, Inganäs O. Nat. Commun., 2020, 11:617.
[151]
Han G C, Hu T P, Yi Y P. Adv. Mater., 2020, 32:2000975.
[152]
Qin L Q, Liu X Z, Zhang X, Yu J W, Yang L, Zhao F G, Huang M F, Wang K W, Wu X X, Li Y H, Chen H, Wang K, Xia J L, Lu X H, Gao F, Yi Y P, Huang H. Angew. Chem. Int. Ed., 2020, 59:15043.
[153]
Wei Q Y, Liu W, Leclerc M, Yuan J, Chen H G, Zou Y P. Sci. China Chem., 2020, 63:1352.
[154]
Xie B M, Xie R H, Zhang K, Yin Q W, Hu Z C, Yu G, Huang F, Cao Y. Nat. Commun., 2020, 11:2871.

doi: 10.1038/s41467-020-16675-x pmid: 32514001
[1] Wang Long, Zhou Qingping, Wu Zhaofeng, Zhang Yanming, Ye Xiaowo, Chen Changxin. Photovoltaic Cells Based on Carbon Nanotubes [J]. Progress in Chemistry, 2023, 35(3): 421-432.
[2] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[3] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[4] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[5] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[6] Jinhui Zhang, Jinhua Zhang, Jiwei Liang, Kaili Gu, Wenjing Yao, Jinxiang Li. Progress in Zerovalent Iron Technology for Water Treatment of Metal(loid) (oxyan) Ions: A Golden Decade from 2011 to 2021 [J]. Progress in Chemistry, 2022, 34(5): 1218-1228.
[7] Meirong Li, Chenliu Tang, Weixian Zhang, Lan Ling. Performance and Mechanism of Aqueous Arsenic Removal with Nanoscale Zero-Valent Iron [J]. Progress in Chemistry, 2022, 34(4): 846-856.
[8] Cheng Peng, Leyun Wu, Zhijian Xu, Weiliang Zhu. Replica Exchange Molecular Dynamics [J]. Progress in Chemistry, 2022, 34(2): 384-396.
[9] Chi Guo, Wang Zhang, Ji Tu, Shengrui Chen, Jiyuan Liang, Xiangke Guo. Construction of 3D Copper-Based Collector and Its Application in Lithium Metal Batteries [J]. Progress in Chemistry, 2022, 34(2): 370-383.
[10] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[11] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[12] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[13] Meng Mu, Xuewen Ning, Xinjie Luo, Yujun Feng. Fabrications, Properties, and Applications of Stimuli-Responsive Polymer Microspheres [J]. Progress in Chemistry, 2020, 32(7): 882-894.
[14] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[15] Lijun Guo, Rui Li, Jianxin Liu, Qing Xi, Caimei Fan. Study on Hydrogen Evolution Efficiency of Semiconductor Photocatalysts for Solar Water Splitting [J]. Progress in Chemistry, 2020, 32(1): 46-54.