中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (11): 1972-1982 DOI: 10.7536/PC200874 Previous Articles   Next Articles

• Review •

Chemical and Physical Mechanism and Method of Preparation of Thermoplastic Starch

Wen Zhou1, Xin Zhang1, Hongpeng Ma1, Jie Xu2, Bin Guo1,3,4(), Panxin Li3,4   

  1. 1 College of Science, Nanjing Forestry University,Nanjing 210037, China
    2 College of Materials Science and Engineering, Wuhan Textile University,Wuhan 430200, China
    3 Agricultural and Forest Products Processing Academician Workstation of Henan Province,Luohe 462600, China
    4 Post-Doctoral Research Center of Nanjiecun Group,Luohe 462600, China
  • Received: Revised: Online: Published:
  • Contact: Bin Guo
  • Supported by:
    Jiangsu Government Scholarship for Overseas Studies; Nanjing Forestry University Yong Top Talent Program; PostGraduate Research & Practice Innovation Program of Jiangsu Province in 2019(SJKY19_0867); Higher school in Jiangsu Province College Students’ Practice Innovation Training Programs in 2018(201810298078Y); Natural Science Foundation of Jiangsu Province(BK20140967)
Richhtml ( 18 ) PDF ( 797 ) Cited
Export

EndNote

Ris

BibTeX

Starch, as a natural polymer, its attractiveness stems from the annual renewability, low cost and biodegradability in the areas of food, degradable plastics and packaging materials etc. However, the natural starch cannot be directly used in plastics application due to the strong intra- and inter-molecular hydrogen bonds, resulted in the lower thermal decomposition temperature than its melting point. It must be plasticized with low molecular weight compounds such as polyols to form thermoplastic starch(TPS) for processing on conventional processing equipment. Therefore, studying the mechanisms and methods in the processing of TPS is the key point to expand its application. Herein, based on the recent works reported, and considering different physical and chemical nature in mechanism, we summarized as 8 factors(hydrogen bond, chemical bond, stress, shear force, thermal conductivity, microwave, hot-air, γ-ray) in TPS formation, and discussed 8 preparation methods(melting, solution, compression molding, ball milling, spray drying, high hydrostatic pressure, chemical modification, high-energy radiation) of TPS, emphasizing on their relationship. This review is expected to be helpful in studying and developing various TPS products in future.

Contents

1 Introduction

2 Preparation methods

2.1 Melting method

2.2 Solution method

2.3 Compression molding

2.4 Ball milling

2.5 Spray drying

2.6 High hydrostatic pressure

3 Chemical modification

3.1 Oxidation

3.2 Esterification

3.3 Etherification

3.4 Cross-linking

3.5 Dual modification

4 High-energy radiation

5 Conclusion and outlook

Table 1 Preparation mechanism and method of thermoplastic starch
Fig. 1 Reaction between starch and maleic anhydride by reactive extrusion
Fig. 2 Proposed reaction between chitosan(CTS)and polyethylene(PE)-graft-maleic anhydride that occurred during melt-blending
Fig. 3 The preparation of the esterified starches by dry method
Fig. 4 A schematic representation of the reaction of starch with sodium monochloroacetate(SMCA)
Fig. 5 Reactions of starch with some commonly used cross-linking reagents
[1]
Zha D D, Chen C H, Yin P, Guo B, Huang Y N, Li P X. Plast. Sci. Technol., 2019, 47(4): 103.
(查东东, 陈春昊, 银鹏, 郭斌, 黄亚男, 李盘欣. 塑料科技, 2019, 47(4): 103.)
[2]
Zha D D, Guo B, Li B G, Yin P, Li P X. Progress in Chemistry, 2019, 31(1): 156.
(查东东, 郭斌, 李本刚, 银鹏, 李盘欣. 化学进展, 2019, 31(1): 156.)
[3]
Battegazzore D, Bocchini S, Nicola G, Martini E, Frache A. Carbohydr. Polym., 2015, 119: 78.

doi: 10.1016/j.carbpol.2014.11.030
[4]
Cerclé C, Sarazin P, Favis B D. Carbohydr. Polym., 2013, 92(1): 138.

doi: 10.1016/j.carbpol.2012.08.107
[5]
Salaberria A M, Labidi J, Fernandes S C M. Chem. Eng. J., 2014, 256: 356.

doi: 10.1016/j.cej.2014.07.009
[6]
Lendvai L, Apostolov A, Karger-Kocsis J. Carbohydr. Polym., 2017, 173: 566.

doi: 10.1016/j.carbpol.2017.05.100
[7]
Taghizadeh A, Sarazin P, Favis B D. J. Mater. Sci., 2013, 48(4): 1799.

doi: 10.1007/s10853-012-6943-8
[8]
Magalhães N F, Andrade C T. J. Braz. Chem. Soc., 2010, 21(2): 202.

doi: 10.1590/S0103-50532010000200003
[9]
Dogossy G, Czigany T. J. Reinf. Plast. Compos., 2011, 30(21): 1819.

doi: 10.1177/0731684411429728
[10]
Liu Z J, Zhao L, Chen M N, Yu J G. Carbohydr. Polym., 2011, 83(2): 447.

doi: 10.1016/j.carbpol.2010.08.007
[11]
Yang J H, Tang K K, Qin G Q, Chen Y X, Peng L, Wan X, Xiao H N, Xia Q Y. Carbohydr. Polym., 2017, 166: 256.

doi: 10.1016/j.carbpol.2017.03.001
[12]
Misman M A, Azura A R, Hamid Z A A. Ind. Crops Prod., 2015, 65: 397.

doi: 10.1016/j.indcrop.2014.11.009
[13]
Shahbazi M, Majzoobi M, Farahnaky A. J. Food Eng., 2018, 223: 10.

doi: 10.1016/j.jfoodeng.2017.11.033
[14]
Zou J, Xu M J, Tian J, Li B. Int. J. Biol. Macromol., 2019, 135: 379.

doi: 10.1016/j.ijbiomac.2019.05.147
[15]
Jun W, Yong Y. Int. J. Food Sci. Technol., 2009, 44(4): 674.

doi: 10.1111/ifs.2009.44.issue-4
[16]
Drakopoulos S X, Karger-Kocsis J, Kmetty Á, Lendvai L, Psarras G C. Carbohydr. Polym., 2017, 157: 711.

doi: 10.1016/j.carbpol.2016.10.036
[17]
Liu W C, Halley P J, Gilbert R G. Macromolecules, 2010, 43(6): 2855.

doi: 10.1021/ma100067x
[18]
Song D L, Thio Y S, Deng Y L. Carbohydr. Polym., 2011, 85(1): 208.

doi: 10.1016/j.carbpol.2011.02.016
[19]
Liu H S, Xie F W, Yu L, Chen L, Li L. Prog. Polym. Sci., 2009, 34(12): 1348.

doi: 10.1016/j.progpolymsci.2009.07.001
[20]
Zdybel E, Tomaszewska-Ciosk E, Gertchen M, Dro?d? W. Pol. J. Chem. Technol., 2017, 19(2): 51.

doi: 10.1515/pjct-2017-0027
[21]
Dang K M, Yoksan R. Carbohydr. Polym., 2015, 115: 575.

doi: 10.1016/j.carbpol.2014.09.005
[22]
Schmitt H, Guidez A, Prashantha K, Soulestin J, Lacrampe M F, Krawczak P. Carbohydr. Polym., 2015, 115: 364.

doi: 10.1016/j.carbpol.2014.09.004
[23]
Zhang Y C, Liu Q, Hrymak A, Han J H. J. Polym. Environ., 2013, 21(1): 122.

doi: 10.1007/s10924-012-0528-0
[24]
Cai C X, Wei B X, Tian Y Q, Ma R R, Chen L, Qiu L Z, Jin Z Y. Food Chem., 2019, 288: 354.

doi: 10.1016/j.foodchem.2019.03.017
[25]
Milotskyi R, Bliard C, Tusseau D, de Benoit C. Carbohydr. Polym., 2018, 194: 193.

doi: 10.1016/j.carbpol.2018.04.040
[26]
Moad G. Prog. Polym. Sci., 2011, 36(2): 218.

doi: 10.1016/j.progpolymsci.2010.11.002
[27]
Raquez J M, Narayan R, Dubois P. Macromol. Mater. Eng., 2008, 293(6): 447.

doi: 10.1002/(ISSN)1439-2054
[28]
Kalambur S B, Rizvi S S. Polym. Int., 2004, 53(10): 1413.

doi: 10.1002/(ISSN)1097-0126
[29]
Zuo Y F, Gu J Y, Yang L, Qiao Z B, Zhang Y H. J. Thermoplast. Compos. Mater., 2016, 29(3): 397.

doi: 10.1177/0892705713518809
[30]
Raquez J M, Nabar Y, Srinivasan M, Shin B Y, Narayan R, Dubois P. Carbohydr. Polym., 2008, 74(2): 159.

doi: 10.1016/j.carbpol.2008.01.027
[31]
Zhou Y, Zhou Y Z. Rubber Science and Technology, 2017, 15(3):38.
(周毅, 周英志. 橡胶科技, 2017, 15(3):38.)
[32]
Han B K, Zhang J. China Rubber/plastics Technol. Equip., 2018, 44(1): 45.
(韩帮阔, 张津. 橡塑技术与装备, 2018, 44(1): 45.)
[33]
Olivato J B, Marini J, Yamashita F, Pollet E, Grossmann M V E, Avérous L. Mater. Sci. Eng.: C, 2017, 70: 296.

doi: 10.1016/j.msec.2016.08.077
[34]
Jantanasakulwong K, Leksawasdi N, Seesuriyachan P, Wongsuriyasak S, Techapun C, Ougizawa T. Carbohydr. Polym., 2016, 153: 89.

doi: 10.1016/j.carbpol.2016.07.091
[35]
Sabetzadeh M, Bagheri R, Masoomi M. Carbohydr. Polym., 2015, 119: 126.

doi: 10.1016/j.carbpol.2014.11.038
[36]
Area M R, Rico M, Montero B, Barral L, Bouza R, LÓpez J, Ramírez C. Carbohydr. Polym., 2019, 206: 726.

doi: 10.1016/j.carbpol.2018.11.055
[37]
Ostafinska A, Mikesova J, Krejcikova S, Nevoralova M, Sturcova A, Zhigunov A, Michalkova D, Slouf M. Int. J. Biol. Macromol., 2017, 101:273.

doi: 10.1016/j.ijbiomac.2017.03.104
[38]
Gutiérrez T J, Alvarez V A. React. Funct. Polym., 2017, 112:33.

doi: 10.1016/j.reactfunctpolym.2017.01.002
[39]
Xu M M, Yang F W, Zhang Y X, Wang C G, Chen X M, Tian X M, Zhu J X. Synthetic Materials Aging and Application, 2019, 48(1):93.
(徐蒙蒙, 阳范文, 张雅欣, 王晨光, 陈晓明, 田秀梅, 朱继翔. 合成材料老化与应用, 2019, 48(1):93.)
[40]
González K, Retegi A, González A, Eceiza A, Gabilondo N. Carbohydr.Polym., 2015, 117:83.
[41]
Kaushik A, Kaur R. Compos. Interfaces, 2016, 23(7): 701.

doi: 10.1080/09276440.2016.1169487
[42]
Koch K, Gillgren T, Stading M, Andersson R. Int. J. Biol. Macromol., 2010, 46(1): 13.

doi: 10.1016/j.ijbiomac.2009.10.002
[43]
Liu H H, Adhikari R, Guo Q P, Adhikari B. J. Food Eng., 2013, 116(2): 588.

doi: 10.1016/j.jfoodeng.2012.12.037
[44]
Mohan C C, Harini K, Karthikeyan S, Sudharsan K, Sukumar M. Int. J. Biol. Macromol., 2018, 120: 2007.

doi: 10.1016/j.ijbiomac.2018.09.161
[45]
Zeng Q W, Yao Y, Zhang X, Xie W D, Luo Y B. Fiber Glass, 2016(4): 1.
(曾庆文, 姚远, 张玺, 谢卫东, 罗元彬. 玻璃纤维, 2016(4): 1.)
[46]
Liu J J, Luo S M, Liang G D, Liu H G, Fan J H. China Plast. Ind., 2015, 43(9): 15.
(刘军舰, 罗诗明, 梁贵东, 刘华官, 樊江河. 塑料工业, 2015, 43(9): 15.)
[47]
Perdomo J, Cova A, Sandoval A J, García L, Laredo E, Müller A J. Carbohydr. Polym., 2009, 76(2): 305.

doi: 10.1016/j.carbpol.2008.10.023
[48]
Zdanowicz M, Jędrzejewski R, Pilawka R. Int. J. Biol. Macromol., 2019, 129: 1040.

doi: 10.1016/j.ijbiomac.2019.02.103
[49]
Sanhawong W, Banhalee P, Boonsang S, Kaewpirom S. Ind. Crops Prod., 2017, 108: 756.

doi: 10.1016/j.indcrop.2017.07.046
[50]
Trongchuen K, Ounkaew A, Kasemsiri P, Hiziroglu S, Mongkolthanaruk W, Wannasutta R, Pongsa U, Chindaprasirt P. Starch Stärke, 2018, 70(7/8): 1700238.
[51]
Liu L. Sichuan Chem. Ind., 2019, 22(3): 14.
(刘露. 四川化工, 2019, 22(3): 14.)
[52]
Prabhakar M N, Rehman Shah A U, Song J I. Carbohydr. Polym., 2017, 168: 201.

doi: 10.1016/j.carbpol.2017.03.036
[53]
Prabhakar M N, Song J I. Int. J. Biol. Macromol., 2018, 119: 1335.

doi: S0141-8130(18)31024-9 pmid: 29981828
[54]
Lv Y, Zhang L M, Li M N, He X H, Hao L M, Dai Y J. Int. J. Biol. Macromol., 2019, 129: 207.

doi: 10.1016/j.ijbiomac.2019.02.028
[55]
Liu T Y, Ma Y, Yu S F, Shi J, Xue S. Innov. Food Sci. Emerg. Technol., 2011, 12(4): 586.

doi: 10.1016/j.ifset.2011.06.009
[56]
Ren G Y, Li D, Wang L J, Özkan N, Mao Z H. Carbohydr. Polym., 2010, 79(1): 101.

doi: 10.1016/j.carbpol.2009.07.031
[57]
Santos T P R, Franco C M L, Carmo E L, Jane J L, Leonel M. J. Food Sci. Technol., 2019, 56(1): 376.

doi: 10.1007/s13197-018-3498-y
[58]
Ahmed I, Niazi M B K, Hussain A, Jahan Z. Polym. Plast. Technol. Eng., 2018, 57(1): 17.

doi: 10.1080/03602559.2017.1298803
[59]
Khan B, Niazi M B K, Hussain A, Jahan Z. Fibers Polym., 2017, 18(1):64.

doi: 10.1007/s12221-017-6769-8
[60]
Fu Z Q, Wang L J, Li D, Adhikari B. Carbohydr. Polym., 2012, 88(4): 1319.

doi: 10.1016/j.carbpol.2012.02.010
[61]
Niazi M B K, Broekhuis A A. J. Appl. Polym. Sci., 2012, 126(S1): E143. DOI: 10.1002/app.36551.

doi: 10.1002/app.36551
[62]
Liu P L, Zhang F S, Bai Y F, Hu X S, Shen Q. Chinese Journal of High Pressure Physics, 2010, 24(6):472.
(刘培玲, 张甫生, 白云飞, 胡小松, 沈群. 高压物理学报, 2010, 24(6):472.)
[63]
Liu P L, Hu X S, S Q. Starch., 2010, 62: 615.

doi: 10.1002/star.v62.12
[64]
Li H Y, Xu X P, Chen H R, Tao X Q, Zhang F S. Food Sci., 2018, 39(13): 106.
(李红云, 徐晓萍, 陈厚荣, 陶晓奇, 张甫生. 食品科学, 2018, 39(13): 106.)
[65]
Mo F, Xu X P, Tao X Q, Chen H R, Zhang F S. Food Science, 2018, 39(17):109.
(莫芳, 徐晓萍, 陶晓奇, 陈厚荣, 张甫生. 食品科学, 2018, 39(17):109.)
[66]
King A, Kaletunç G. J. Therm. Anal. Calorim., 2009, 98(1): 83.

doi: 10.1007/s10973-009-0279-x
[67]
Li W H, Bai Y F, Mousaa S A S, Zhang Q, Shen Q. Food Bioprocess Technol., 2012, 5(6): 2233.

doi: 10.1007/s11947-011-0542-6
[68]
Kuakpetoon D, Wang Y J. Carbohydr. Res., 2006, 341(11): 1896.

doi: 10.1016/j.carres.2006.04.013
[69]
Takizawa F F, de Oliveira da Silva G, Konkel F E, Demiate I M. Braz. Arch. Biol. Technol., 2004, 47(6): 921.

doi: 10.1590/S1516-89132004000600012
[70]
Demiate I M, Dupuy N, Huvenne J P, Cereda M P, Wosiacki G. Carbohydr. Polym., 2000, 42(2): 149.

doi: 10.1016/S0144-8617(99)00152-6
[71]
Shah U, Naqash F, Gani A, Masoodi F A. Compr. Rev. Food Sci. Food Saf., 2016, 15(3): 568.

doi: 10.1111/crf3.2016.15.issue-3
[72]
Masina N, Choonara Y E, Kumar P, du Toit L C, Govender M, Indermun S, Pillay V. Carbohydr. Polym., 2017, 157: 1226.

doi: 10.1016/j.carbpol.2016.09.094
[73]
Oluwasina O O, Olaleye F K, Olusegun S J, Oluwasina O O, Mohallem N D S. Int. J. Biol. Macromol., 2019, 135: 282.

doi: 10.1016/j.ijbiomac.2019.05.150
[74]
Zhang Y R, Wang X L, Zhao G M, Wang Y Z. Carbohydr. Polym., 2013, 96(1): 358.

doi: 10.1016/j.carbpol.2013.03.093
[75]
Zhang C W, Li F Y, Li J F, Xie Q, Xu J, Guo A F, Wang C Z. Int. J. Precis. Eng. Manuf. Green Technol., 2018, 5(3): 435.

doi: 10.1007/s40684-018-0046-1
[76]
Otache M A, Ifeanyi E G, Amagbor S C, Agbajor G K, Imanah J E. J. Mater. Environ. Sci., 2021, 12(4):497.
[77]
Golachowski A, Zięba T, Kapelko-$\dot{Z}$eberska M, Dro$\dot{z}$d$\dot{z}$ W, Gryszkin A, Grzechac M. Food hem., 2015, 176: 350.
[78]
Bello-Pérez L A, Agama-Acevedo E, Zamudio-Flores P B, Mendez-Montealvo G, Rodriguez-Ambriz S L. LWT Food Sci. Technol., 2010, 43(9): 1434.

doi: 10.1016/j.lwt.2010.04.003
[79]
Hong J, Zeng X N, Buckow R, Han Z, Wang M S. Food Hydrocoll., 2016, 54: 139.

doi: 10.1016/j.foodhyd.2015.09.025
[80]
Mbougueng P D, Tenin D, Scher J, Tchiégang C. J. Food Eng., 2012, 108(2): 320.

doi: 10.1016/j.jfoodeng.2011.08.006
[81]
Alves R M L, Grossmann M V E, Silva R S S F. Food Chem., 1999, 67(2): 123.

doi: 10.1016/S0308-8146(99)00064-3
[82]
El Halal S L M, Colussi R, Biduski B, Evangelho J A D, Bruni G P, Antunes M D, Dias A R G, Zavareze E D R. J. Sci. Food Agric., 2017, 97(2): i.
[83]
Colussi R, Pinto V Z, El Halal S L M, Biduski B, Prietto L, Castilhos D D, Zavareze E D R, Dias A R G. Food Chem., 2017, 221: 1614.

doi: S0308-8146(16)31808-8 pmid: 27979137
[84]
Zuo Y F, Gu J Y, Yang L, Qiao Z B, Tan H Y, Zhang Y H. Int. J. Biol. Macromol., 2014, 64: 174.

doi: 10.1016/j.ijbiomac.2013.11.026
[85]
Zarski A, Ptak S, Siemion P, Kapusniak J. Carbohydr. Polym., 2016, 137: 657.

doi: 10.1016/j.carbpol.2015.11.029
[86]
Lin R H, Li H, Long H, Su J T, Huang W Q. Food Hydrocoll., 2015, 43: 352.

doi: 10.1016/j.foodhyd.2014.06.008
[87]
Zhang L, Yu L, Liu H S, Wang Y F, Simon G P, Ji Z L, Qian J Y. Food Hydrocoll., 2017, 70: 251.

doi: 10.1016/j.foodhyd.2017.03.019
[88]
Chen J, Chen F S, Long Z, Dai L, Wang S F, Zhang D. Polym. Compos., 2019, 40(S1): E856. DOI: 10.1002/pc.25048.

doi: 10.1002/pc.25048
[89]
Lawal O S, Ogundiran O O, Adesogan E K, Ogunsanwo B M, Sosanwo O A. Starch Stärke, 2008, 60(7): 340.

doi: 10.1002/star.v60:7
[90]
Lawal O S. LWT Food Sci. Technol., 2011, 44(3): 771.

doi: 10.1016/j.lwt.2010.05.025
[91]
Chun E H, Oh S M, Kim H Y, Kim B Y, Baik M Y. Carbohydr. Polym., 2016, 146: 328.

doi: 10.1016/j.carbpol.2016.03.067
[92]
Zhou M, Shi L, Cheng F, Lin Y, Zhu P X. Starch Stärke, 2018, 70(5/6): 1700250.
[93]
Spychaj T, Wilpiszewska K, Zdanowicz M. Starch Stärke, 2013, 651-2: 22.
[94]
Wilpiszewska K, Antosik A K, Spychaj T. Carbohydr. Polym., 2015, 128: 82.

doi: 10.1016/j.carbpol.2015.04.023
[95]
Wilpiszewska K. Pol. J. Chem. Technol., 2019, 21(2): 26.

doi: 10.2478/pjct-2019-0016
[96]
Xie W L, Zhang Y X, Liu Y W. Carbohydr. Polym., 2011, 85(4): 792.

doi: 10.1016/j.carbpol.2011.03.047
[97]
Acquarone V M, Rao M A. Carbohydr. Polym., 2003, 51(4): 451.

doi: 10.1016/S0144-8617(02)00217-5
[98]
Chai K G, Lu K, Xu Z J, Tong Z F, Ji H B. J. Hazard. Mater., 2018, 348: 20.

doi: 10.1016/j.jhazmat.2018.01.034
[99]
Heo H, Lee Y K, Chang Y H. Int. J. Food Prop., 2017, 20(S2):S2138.
[100]
Guo L, Liu R, Li X L, Sun Y, Du X F. Starch Stärke, 2015, 67(3/4): 237.

doi: 10.1002/star.201400200
[101]
Zhou L Y, Zhao G Y, Jiang W. J. Appl. Polym. Sci., 2016, 133(2): 42297. DOI: 10.1002/app.42297.

doi: 10.1002/app.42297
[102]
Jose J, Al-Harthi M A. Iran. Polym. J., 2017, 26(8): 579.

doi: 10.1007/s13726-017-0542-0
[103]
Haq F, Yu H J, Wang L, Teng L S, Haroon M, Khan R U, Mehmood S, Bilal-Ul-amin, Ullah R S, Khan A, Nazir A. Carbohydr. Res., 2019, 476: 12.

doi: 10.1016/j.carres.2019.02.007
[104]
Din Z U, Xiong H G, Fei P. Crit. Rev. Food. Sci., 2017, 57(12):2691.

doi: 10.1080/10408398.2015.1087379
[105]
Tanetrungroj Y, Prachayawarakorn J. Int. J. Biol. Macromol., 2018, 120: 1240.

doi: S0141-8130(18)32581-9 pmid: 30171956
[106]
González-Soto R A, Núñez-Santiago M C, Bello-Pérez L A. J. Sci. Food Agric., 2019, 99(6): 3134.

doi: 10.1002/jsfa.2019.99.issue-6
[107]
Hazarika B J, Sit N. Carbohydr. Polym., 2016, 140: 269.

doi: 10.1016/j.carbpol.2015.12.055
[108]
Huang G D. For. Environ. Sci., 2016, 32(2): 107.
(黄桂丹. 林业与环境科学, 2016, 32(2): 107.)
[109]
Song W Q, Guo Z C, Zhang L Q, Zheng H J, Zhao Z W. Radiat. Phys. Chem., 2013, 91: 114.

doi: 10.1016/j.radphyschem.2013.06.003
[110]
Wu Z W, Song X Y. J. Appl. Polym. Sci., 2006, 101(4): 2210.

doi: 10.1002/(ISSN)1097-4628
[111]
Polesi L F, Sarmento S B S, de Moraes J, Franco C M L, Canniatti-Brazaca S G. Food Chem., 2016, 191: 59.

doi: 10.1016/j.foodchem.2015.03.055
[112]
Bashir K, Aggarwal M. Int. J. Biol. Macromol., 2017, 97: 426.

doi: 10.1016/j.ijbiomac.2017.01.025
[113]
Li L, Chen H P, Wang M, Lv X, Zhao Y F, Xia L R. Carbohydr. Polym., 2018, 194: 395.

doi: 10.1016/j.carbpol.2018.04.060
[114]
Cieśla K, Sartowska B. Radiat. Phys. Chem., 2016, 118: 87.

doi: 10.1016/j.radphyschem.2015.04.027
[115]
Tang H, Guo B, Xue L, Li P X, Huang Y N, Zhang Q S. China Plast. Ind., 2012, 40(7): 64.
(唐皞, 郭斌, 薛岚, 李盘欣, 黄亚男, 张齐生. 塑料工业, 2012, 40(7): 64.)
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Yanqin Lai, Zhenda Xie, Manlin Fu, Xuan Chen, Qi Zhou, Jin-Feng Hu. Construction and Application of 1,8-Naphthalimide-Based Multi-Analyte Fluorescent Probes [J]. Progress in Chemistry, 2022, 34(9): 2024-2034.
[8] Zhihua Gong, Sha Hu, Xueping Jin, Lei Yu, Yuanyuan Zhu, Shuangxi Gu. Synthetic Methods and Application of Phosphoester Prodrugs [J]. Progress in Chemistry, 2022, 34(9): 1972-1981.
[9] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[10] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[11] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.
[12] Caiwei Wang, Dongjie Yang, Xueqing Qiu, Wenli Zhang. Applications of Lignin-Derived Porous Carbons for Electrochemical Energy Storage [J]. Progress in Chemistry, 2022, 34(2): 285-300.
[13] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[14] Zhen Zhang, Shuang Zhao, Guobing Chen, Kunfeng Li, Zhifang Fei, Zichun Yang. Preparation and Applications of Silicon Carbide Monolithic Aerogels [J]. Progress in Chemistry, 2021, 33(9): 1511-1524.
[15] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.