中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 998-1009 DOI: 10.7536/PC200731 Previous Articles   Next Articles

• Review •

Removing Heavy Metals from Sludge

Guanyi Chen1,2,3, Kexuan Han1, Caixia Liu1,4,*(), Zeng Dan2, Duo Bu2   

  1. 1 School of Environmental Science and Engineering, Tianjin University,Tianjin 300350, China
    2 School of Sciences, Tibet University, Lasa 850012, China
    3 School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
    4 Tianjin Engineering Research Center for Organic Solid Waste Treatment and Energy Utilization, Tianjin University, Tianjin 300350, China
  • Received: Revised: Online: Published:
  • Contact: Caixia Liu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Key Research and Development Program of China(2018YFC1900105)
Richhtml ( 30 ) PDF ( 978 ) Cited
Export

EndNote

Ris

BibTeX

The heavy metals in sludge, especially flue gas desulphurization wastewater sludge, exceed the standard seriously, which belongs to hazardous solid waste. The annual production of sewage sludge in China has exceeded 50 million tons. It is calculated that only the annual production of flue gas desulphurization wastewater sludge in coal-fired power plants reaches 90 million tons. The heavy metals in sludge, if not disposed of properly, will cause very serious secondary pollution to the ecological environment. This paper introduces the present situation of sludge treatment at home and abroad and the determination and estimation methods of heavy metals in sludge. The advantages and disadvantages of chemical process, electrokinetic treatment, bioleaching process, thermal treatment and stabilization are summarized in detail from the aspects of principle, reaction device, research progress, and hot spot. Furthermore, the authors shed light on the existing problems and development prospects of each method. In the end, the paper puts forward the prospect of economical and efficient implementation device and technical scheme with strong application.

Contents

1 Introduction

2 Determination and Estimation methods

2.1 Determination methods

2.2 Estimation methods

3 Advanced technology for disposal of heavy metal in sludge

3.1 Chemical process

3.2 Electrokinetic treatment

3.3 Bioleaching process

3.4 Thermal treatment

3.5 Stabilization

4 Conclusion and outlook

Table 1 Basic physical and chemical characteristics of sludge[3⇓⇓⇓~7]
Table 2 Heavy metal content of sludge[4,5,7,8]
Table 3 Criteria of Geoaccumlation Index
Table 4 Grouping criteria of potential ecological risk index
Table 5 Comparison of chemical process with different medicaments[15⇓⇓⇓⇓⇓⇓~22]
Fig.1 The reactor of electrokinetic treatment[27,29]:(a)cuboid;(b)cylindrical
Table 6 Comparison of electrokinetic treatment with different experimental condition[26⇓~28,30]
Pretreatment The source of
sludge
Mechanism Experimental condition Remove Rate Power Consumption
(kW·h·kg-1)
Deionized Water Sewage Sludge + Soil Electromigration,electrodialysis and electrophoresis. 2 V·cm-1, 150 h Cu 1%
Pb 2%
0.40
Polyepoxysuccinic Acid(PESA) Application of PASP as anode working fluid can slow down corrosion of uninduced steel electrodes 2 V·cm-1, 150 h Cu 46%
Pb 33%
0.83
Citric Acid Citric acid transformed residual fraction heavy metal into unstable fraction. 2 V·cm-1, 150 h Cu 16%
Pb 22%
0.82
Polyepoxysuccinic Acid(PESA) + Citric Acid PASP and citric acid enhanced chelation effect. 2 V·cm-1, 150 h Cu 18%
Pb 29%
1.35
Deionized Water Sewage Sludge Electromigration,electrodialysis and electrophoresis. 1.5 V·cm-1, pH=6, 5 d Pb 28%
Ammonia Sewage Sludge Ammonia increased the proportion of acid soluble fraction heavy metals. Vammonia:Vwater:Vsludge= 0.4∶1∶4 Cu 66%
Pb 41%
Zn 81%
1.1
Ethylenediamine Addition of ethylenediamine does not affect sludge acidification and current density. Vammonia:Vwater:Vsludge=0.2∶1∶4 Cu 65%
Pb 53%
Zn 82%
1.2
Magnetization Sewage Sludge The applied magnetic field produces a greater current density 2 V·cm-1, 9.5 mT,
15 g·L-1, 6 h
Cd 97%
Pb 28%
Zn 89%
0.07
Rhamnolipid Sewage Sludge Rhamnolipid has strong functional groups to form mobile heavy metal complexes and it can reduce the surface tension and increase heavy metals solubility 2 V·cm-1, 192 h,
2 g·L-1
Cu 56%
Pb 52%
Zn 74%
Cr 64%
0.06
Sodium nitrate(NaNO3) Municipal Sludge Addition of NaNO3 effect the current density and pH. 2.0 mA/cm2, 132 h Cu 83%
Ni 75%
2.39
Table 7 Comparison of bioleaching process with different kinds of bacteria[39⇓⇓⇓⇓⇓⇓~46]
Fig. 2 A typical thermal treatment reactor[51]
Table 8 Comparison of thermal treatment with different reaction temperature[49,50,52⇓⇓⇓ ~56]
Table 9 Comparison of recruitment of stable heavy metals by stabilization with different drugs[62⇓~64,67⇓ ~69]
Table 10 Comparison of different heavy metal processes of sludge
[1]
Li L P. China Urban-Rural Construction Statistical Yearbook. Beijing: China Statistics Press. 2017.288.
(李礼平. 中国城乡建设统计年鉴. 北京: 中国统计出版社. 2017.288.).
[2]
Raheem A, Sikarwar V S, He J, Dastyar W, Dionysiou D D, Wang W, Zhao M. Chem. Eng. J., 2018, 337:616.

doi: 10.1016/j.cej.2017.12.149
[3]
Xue H Y, Zhan Y, Zhang J Y, Wu P. Res. Explor. Lab., 2014, 33:28.
(薛红艳, 战友, 张劲勇, 吴鹏. 实验室研究与探索, 2014, 33:28.).
[4]
Zhao M. Sci. Technol. Inform., 2017, 15(29):113.
(赵宇明. 科技资讯, 2017, 15(29): 113.)
[5]
Liu X. Master Dissertation of South China University of Technology, 2010.
(刘欣. 华南理工大学硕士论文, 2010.).
[6]
Chen J B. Master Dissertation of Dalian University of Technology, 2016.
(陈建标. 大连理工大学硕士论文, 2016.).
[7]
Li L. Master Dissertation of Jiangnan University, 2014.
(李磊. 江南大学硕士论文, 2014.).
[8]
Guo G H, Chen T B, Yang J, Zheng G D, Gao D. Acta Sci. Circumst., 2014, 34(10):2455.
(郭广慧, 陈同斌, 杨军, 郑国砥, 高定. 环境科学学报, 2014, 34(10): 2455.)
[9]
Hudcová H, Vymazal J, Rozkošný M. Soil & Water Res., 2019, 14:104.
[10]
Camargo F P, Sérgio Tonello P, dos Santos A C A, Duarte I C S,. Water Air Soil Pollut., 2016, 227:433.

doi: 10.1007/s11270-016-3141-3
[11]
Koralegedara N H, Pinto P X, Dionysiou D D, Al-Abed S R. J. Environ. Manag., 2019, 251:109572.

doi: 10.1016/j.jenvman.2019.109572
[12]
Salih H, Patterson C, Li J X, Mock J, Dastgheib S A. Energy Fuels, 2018, 32:6627.

doi: 10.1021/acs.energyfuels.8b00823
[13]
Cieślik B M, Namieśnik J, Konieczka P.. J. Clean. Prod., 2015, 90:1.

doi: 10.1016/j.jclepro.2014.11.031
[14]
Ebbers B, Ottosen L M, Jensen P E. Electrochimica Acta, 2015, 181:90.

doi: 10.1016/j.electacta.2015.04.097
[15]
Kou Y Y, Zhao Q, Cheng Y, Wu Y, Dou W N, Ren X H. Sci. Total. Environ., 2020, 707:135866.

doi: 10.1016/j.scitotenv.2019.135866
[16]
Chen X, Wang Y J. Envir. Sci. Manag., 2009, 34(6):61.
(陈曦, 王玉军. 环境科学与管理, 2009, 34(6): 61.)
[17]
Ren X H, Yan R, Wang H C, Kou Y Y, Chae K J, Kim I S, Park Y J, Wang A J. Waste Manag., 2015, 46:440.

doi: 10.1016/j.wasman.2015.07.021
[18]
Wu Q, Cui Y R, Tang X X, Yang H J, Sun J H. Envir. Sci., 2015, 36(05):1733.
(吴青, 崔延瑞, 汤晓晓, 杨慧娟, 孙剑辉. 环境科学, 2015, 36(05): 1733.)
[19]
Lu J P, Pang J, Zhang L Y, Tan F W, Ming C H. Envir. Sci. Technol., 2013, 36(08):120.
(陆建平, 庞洁, 张立颖, 谭芳维, 明春华. 环境科学与技术, 2013, 36(08): 120.)
[20]
Zhang L Y, Pan N, Lu J P, Yin Z H, Tan G W, Pan Q, Tang Y K. Envir. Pollut. Contr., 2012, 34(6):8.
(张立颖, 潘宁, 陆建平, 尹沾合, 谭芳维, 潘乾, 唐燕葵. 环境污染与防治, 2012, 34(6): 8.)
[21]
Zhang H, Zhu Z L, Zhang L H, Qiu Y L, Zhao J F. Envir. sci., 2008, 29(3):733.
(张华, 朱志良, 张丽华, 仇雁翎, 赵建夫. 环境科学, 2008, 29(3): 733.)
[22]
Su X F, Zhang L L, Wang H L. J. Zhejiang Sci-Technol. Univ., 2011, 28(05):674.
(宿霞菲, 张玲玲, 王海龙. 浙江理工大学学报, 2011, 28(05): 674.)
[23]
Wu Q, Cui Y R, Li Q L, Sun J H. J. Hazard. Mater., 2015, 283:748.

doi: 10.1016/j.jhazmat.2014.10.027
[24]
Suanon F, Sun Q, Dimon B, Mama D, Yu C P. J. Environ. Manag., 2016, 166:341.

doi: 10.1016/j.jenvman.2015.10.035
[25]
Fu R B, Wen D D, Xia X Q, Zhang W, Gu Y Y. Chem. Eng. J., 2017, 316:601.

doi: 10.1016/j.cej.2017.01.092
[26]
Wen D D. Master Dissertation of East China University of Science and Technology, 2017.
(温东东. 华东理工大学硕士论文, 2017.).
[27]
Xiao C X. Master Dissertation of Zhejiang University, 2015.
(萧晨霞. 浙江大学硕士论文, 2015.).
[28]
Li W R. Master Dissertation of Dalian Maritime University, 2017.
(李婉然. 大连海事大学硕士论文, 2017.).
[29]
Wu J N, Xiao C Z, Wu H L. Sep. Purif. Technol., 2018, 197:54.

doi: 10.1016/j.seppur.2017.12.047
[30]
Lin X Y.. Chin. J. Envir. Eng., 2009, 3(4):748.
(林小英. 环境工程学报, 2009, 3(4): 748.)
[31]
Wu Q, Duan G Q, Cui Y R, Sun J H. Environ. Sci. Pollut. Res., 2015, 22:1144.

doi: 10.1007/s11356-014-3365-y
[32]
Song Y, Ammami M T, Benamar A, Mezazigh S, Wang H Q. Environ. Sci. Pollut. Res., 2016, 23:10577.

doi: 10.1007/s11356-015-5966-5
[33]
Liu G. Master Dissertation of Beijing University Of Chemical Technology, 2015.
(刘刚. 北京化工大学硕士论文, 2015.).
[34]
Xue J, Wang W, Wang Q H, Liu S, Yang J, Wui T. J. Chem. Technol. Biotechnol., 2010, 85:1268.
[35]
Meers E, Tack F M G, Verloo M G. Chemosphere, 2008, 70:358.

pmid: 17870142
[36]
Sreekrishnan T R, Tyagi R D, Blais J F, Campbell P G C. Water Res., 1993, 27:1641.

doi: 10.1016/0043-1354(93)90128-5
[37]
Yang W, Song W, Li J, Zhang X L. Chemosphere, 2020, 249:126134.

doi: S0045-6535(20)30327-1 pmid: 32058136
[38]
Zhang L J, Zhou W B, Liu Y D, Jia H H, Zhou J, Wei P, Zhou H B. Hydrometallurgy, 2020, 191:105227.

doi: 10.1016/j.hydromet.2019.105227
[39]
Chen S Y, Cheng Y K. Chemosphere, 2019, 234:346.

doi: 10.1016/j.chemosphere.2019.06.084
[40]
Gao H Z, G W Z. Anhui Agri. Sci. Bull., 2010, 16(20):67.
(高红真, 郭伟珍. 安徽农学通报, 2010, 16(20): 67.)
[41]
Yan J. Master Dissertation of Taiyuan University Of Technology, 2010.
(闫瑾. 太原理工大学硕士论文, 2010.).
[42]
Li S G, Zhang K F, Zhou S Q, Zhang C S, Zhang L Q. Ecol. Environ. Sci., 2009, 18:111.
(李淑更, 张可方, 周少奇, 张朝升, 张立秋. 生态环境学报, 2009, 18:111.).
[43]
Liu F W, Zhou L X, Zhou J, Song X W, Wang D Z. J. Hazard. Mater., 2012, 221/222:170.

doi: 10.1016/j.jhazmat.2012.04.028
[44]
Zhang J, Xu J Y, Wang D Q, Yang H P, Wu X H. Envir. Eng., 2015, 33(4):39.
(张军, 徐浚洋, 王敦球, 杨慧萍, 吴小卉. 环境工程, 2015, 33(4): 39.)
[45]
Gan L, Liu H Q, Wang Q P, Chen Z L. Chin. Envir. Sci., 2014, 10:2617.
(甘莉, 刘贺琴, 王清萍, 陈祖亮. 中国环境科学, 2014, 10:2617.).
[46]
He Z B, Liao T, Liu Y G, Xiao Y, Li T T, Wang H. J. Cent. South Univ., 2012, 19(12):3540.

doi: 10.1007/s11771-012-1440-4
[47]
Pathak A, Dastidar M G, Sreekrishnan T R. J. Environ. Manag., 2009, 90(8):2343.

doi: 10.1016/j.jenvman.2008.11.005
[48]
Cárdenas J P, Quatrini R, Holmes D S. Res. Microbiol., 2016, 167(7):529.

doi: 10.1016/j.resmic.2016.06.007 pmid: 27394987
[49]
Liu T T, Liu Z G, Zheng Q F, Lang Q Q, Xia Y, Peng N N, Gai C. Bioresour. Technol., 2018, 247:282.

doi: 10.1016/j.biortech.2017.09.090
[50]
Xu C. Master Dissertation of Southeast University, 2017.
(许超. 东南大学硕士论文, 2017.).
[51]
Zhao P T, Shen Y F, Ge S F, Yoshikawa K. Energy Convers. Manag., 2014, 78:815.

doi: 10.1016/j.enconman.2013.11.026
[52]
Men Z Y. Master Dissertation of Beijing Jiaotong University, 2017.
(门正宇. 北京交通大学硕士论文, 2017.).
[53]
Sun X P, Wang A T, Li X H, He Z H. China Water Wastewater, 2010, 26(17):66.
(孙雪萍, 王安亭, 李新豪, 何占航. 中国给水排水, 2010, 26(17): 66.)
[54]
Xie S Y, Yu G W, Li J, You F T, Wang G, Wang Y, Ma J L, Shang X F. Chin. J. Envir. Eng., 2018, 12(07):2114.
(谢胜禹, 余广炜, 李杰, 尤甫天, 汪刚, 汪印, 马建立, 商晓甫. 环境工程学报, 2018, 12(07):2114.)
[55]
Shi W S. Master Dissertation of China University of Geosciences,Beijing, 2015.
(施万胜. 中国地质大学(北京)硕士论文, 2015.)
[56]
Shi W S, Liu C G, Ding D H, Lei Z F, Yang Y N, Feng C P, Zhang Z Y. Bioresour. Technol., 2013, 137:18.

doi: 10.1016/j.biortech.2013.03.106
[57]
Wang Y X, Chen M L. Ind. Saf. Environ. Prot., 2012, 38(12):66.
(王月香, 陈茂林. 工业安全与环保, 2012, 38(12): 66.)
[58]
Zhao P T, Chen H F, Ge S F, Yoshikawa K. Appl. Energy, 2013, 111:199.

doi: 10.1016/j.apenergy.2013.05.029
[59]
He C, Giannis A, Wang J Y. Appl. Energy, 2013, 111:257.

doi: 10.1016/j.apenergy.2013.04.084
[60]
Huang H J, Yuan X Z. Bioresour. Technol., 2016, 200:991.

doi: 10.1016/j.biortech.2015.10.099
[61]
Kumpiene J, Lagerkvist A, Maurice C. Waste Manag., 2008, 28(1):215.

doi: 10.1016/j.wasman.2006.12.012
[63]
Wei Y, Liu Y S. Chin. J. Envir. Eng., 2017, 11(3):1878.
(魏赢, 刘阳生. 环境工程学报, 2017, 11(3):1878.)
[64]
Li B G, Miao Y, Zhang C. Petrol. Proc. Petrochem., 2018, 49(5):80.
(李本高, 苗远, 张超. 石油炼制与化工, 2018, 49(5): 80.)
[65]
Huang C Y, Guo D, Xue C H, Xue H Q. Technol. Dev. Chem. Ind., 2017, 46(08):46.
(黄晨悦, 郭盾, 薛崇灏, 薛红琴. 化工技术与开发, 2017, 46(08): 46.)
[66]
Yu Y X, Wang H, Li Q, Wang B, Yan Z H, Ding A Z. Sci. Total. Environ., 2016, 548/549:402.

doi: 10.1016/j.scitotenv.2015.11.107
[67]
Wang S, Fu R B, Luo Q S, Zhang C B, Xu Y Y. Envir. Sci., 2010, 31(04):1036.
(王旌, 付融冰, 罗启仕, 张长波, 许延营. 环境科学, 2010, 31(04): 1036.)
[68]
Chen S L. Master Dissertation of Anhui Agricultural University, 2016.
(陈三理. 安徽农业大学硕士论文, 2016.).
[69]
Sun Y, Xu R, Qian G R. Acta Sci. Nat. Univ. Sunyatseni, 2007, 46(1):41.
(孙颖, 许冉, 钱光人. 中山大学学报(自然科学版), 2007, 46(1): 41.)
[70]
Peng C, Feng Q G, Li H X, Wang D B, Wei X, Yang H B. Bull. Chin. Ceram. Soci., 2014, 33(09):2205.
(彭川, 冯庆革, 李浩璇, 王东波, 韦旭, 杨宏斌. 硅酸盐通报, 2014, 33(09):2205.)
[71]
Zhang Y, Tao M N, Shen D Q, Zheng S D, He Y, Ying G Q, Ying J W, Shi Y. Chin. J. Envir. Eng., 2015, 9(04):1984.
(张瑜, 陶梦娜, 沈涤清, 郑书东, 何奕, 应国庆, 应健威, 施耀. 环境工程学报, 2015, 9(04): 1984.)
[72]
Mahar A, Wang P, Ali A, Guo Z Y, Awasthi M K, Lahori A H, Wang Q, Shen F, Li R H, Zhang Z Q. Ecotoxicol. Environ. Saf., 2016, 134:116.

doi: 10.1016/j.ecoenv.2016.08.025
[73]
Fei Y, Yan X L, Li Y H. Envir. Sci., 2018, 39(03):1430.
(费杨, 阎秀兰, 李永华. 环境科学, 2018, 39(03): 1430.)
[74]
Boveiri Shami R, Shojaei V, Khoshdast H. J. Environ. Manag., 2019, 231:1182.

doi: 10.1016/j.jenvman.2018.03.126
[75]
Tang J, He J G, Xin X D, Hu H Z, Liu T T. Chem. Eng. J., 2018, 334:2579.

doi: 10.1016/j.cej.2017.12.010
[76]
Hu S G, Hu J P, Sun Y F, Zhu Q, Wu L S, Liu B C, Xiao K K, Liang S, Yang J K, Hou H J. J. Hazard. Mater., 2021, 405:124072.

doi: 10.1016/j.jhazmat.2020.124072
[77]
Zhou J W, Liu S Y, Zhou N, Fan L L, Zhang Y N, Peng P, Anderson E, Ding K, Wang Y P, Liu Y H, Chen P, Ruan R. Bioresour. Technol., 2018, 256:295.

doi: 10.1016/j.biortech.2018.02.034
[78]
Černe M, Palčić I, Pasković I, Major N, Romić M, Filipović V, Igrc M D, Perčin A, Goreta Ban S, Zorko B, Vodenik B, Glavič Cindro D, Milačič R, Heath D J, Ban D A Waste Manag., 2019, 94:27.

doi: 10.1016/j.wasman.2019.05.032
[79]
Yoo J C, Beiyuan J Z, Wang L, Tsang D C W, Baek K, Bolan N S, Ok Y S, Li X D. Sci. Total. Environ., 2018,616-617: 572.
[80]
Tonanzi B, Gallipoli A, Annesini M C, La Penna C, Gianico A, Braguglia C M. J. Environ. Chem. Eng., 2021, 9(1):104649.

doi: 10.1016/j.jece.2020.104649
[81]
Fontmorin J M, Sillanpää M. Sep. Purif. Technol., 2015, 156:655.

doi: 10.1016/j.seppur.2015.10.061
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Yanan Han, Jiahui Hong, Anrui Zhang, Ruoxuan Guo, Kexin Lin, Yuejie Ai. A Review on MXene and Its Applications in Environmental Remediation [J]. Progress in Chemistry, 2022, 34(5): 1229-1244.
[6] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[7] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[8] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[9] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[10] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.
[11] Anen He, Jiaojiao Xie, Chungang Yuan. Heavy Metal Speciation Analysis and Distribution Characteristics in Atmospheric Particulate Matters [J]. Progress in Chemistry, 2021, 33(9): 1627-1647.
[12] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[13] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[14] Jing Zhang, Dingxiang Wang, Honglong Zhang. Oxidative Degradation of Emerging Organic Contaminants in Aqueous Solution by High Valent Manganese and Iron [J]. Progress in Chemistry, 2021, 33(7): 1201-1211.
[15] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
Viewed
Full text


Abstract

Removing Heavy Metals from Sludge