中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (4): 533-542 DOI: 10.7536/PC200537 Previous Articles   Next Articles

• Review •

Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration

Rui Zhao1, Xiao Yang1(), Xiangdong Zhu1, Xingdong Zhang1   

  1. 1 National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
  • Received: Revised: Online: Published:
  • Contact: Xiao Yang
  • Supported by:
    the National Natural Science Foundation of China(8197155)
Richhtml ( 23 ) PDF ( 1092 ) Cited
Export

EndNote

Ris

BibTeX

Clinical studies have confirmed that strontium ranelate can inhibit osteoporosis by improving bone formation and reducing bone resorption. These effects are partly mediated by the effect of strontium on bone metabolism. Trace element strontium can promote osteogenesis as well as angiogenesis. To date, the research on strontium-doped composites is increasing in orthopaedic related field. The current article mainly reviews the main action mechanisms of strontium on bone tissue, including the validated and potential mechanisms, as well as the detailed biological interaction between strontium and bone. This article also focuses on different strontium-doped biomaterials applied in the local bone tissue repair, especially for the osteoporotic bone regeneration. We hope that this review would shed light on the rationale for further application of strontium in bone repair.

Contents:

1 Introduction

2 Action mechanism of strontium

2.1 Effect of strontium on osteogenesis

2.2 Effects of strontium on osteoclastogenesis

2.3 Effects of strontium on angiogenesis

3 Strontium doped bone repair materials

3.1 Strontium-doped bone cement

3.2 Strontium-doped calcium phosphate bioceramic

3.3 Strontium-doped bioactive glass

3.4 Bioactive coating of strontium-doped composite

3.5 Other strontium-doped multiphase composites

4 Conclusion and outlook

Fig.1 Schematic diagram of the effect of strontium-doped materials on the process of bone remodeling[25???~29]
Fig.2 Schematic diagram of the mechanism of strontium promoting angiogenesis[38??~41]
Fig.3 Micro-CT rendered images and data of the bone formation.(A) Reconstructed micro-CT images of coronal sections from the femur at week 1, 8 and 12. Right: 3D reconstructed images of the newly formed bone inside the gap(100 μm) between the implants and host bone(scale bar = 2 mm).(B) Quantitative analysis of micro-CT data: Bone ingrowth rate(nBV/nTV), bone-implant osseointegration rate(cBV/cTV) and bone substitution rate(nBV/DV) were then obtained( *P<0.05,**P<0.01)[38]. Copyright 2020, Elsevier
Table 1 Summary of previous work on bone formation in the strontium-doped materials
Article material Strontium content Synthesis method In vitro results Animal model Bone formation
Ma et al.
(2019)[47]
Composite hydrogel 17.91 wt% Physical mixing Good cytocompatibility Rabbit joint Increased
Zhao et al.
(2020)[38]
Calcium phosphate bioceramic 10 mol% Chemical precipitation method Good cytocompatibility Rat femur Increased
Wang et al.
(2018)[61]
Compound PEEK 1.03%, 14.27% Hydrothermal method Promote the proliferation and differentiation of MC3T3-E1 - -
Liu et al.
(2019)[66]
Tricalcium silicate bone
cement.
0~2 mol% Sol-gel method Good cytocompatibility - -
Nguyen et al.
(2019)[67]
Strontium-doped calcium
phosphate coated
titanium film
Sr/Ca=0.129 Cyclic precalcification High expression of osteogenesis-related genes Rat calvarial defect Increased
Thormann et al.
(2013)[9]
Strontium calcium
phosphate cement
Sr/Ca=0.123 - High expression of osteogenesis-related genes Metaphyseal fracture of femur
in rats
Increased
Zhang et al.
(2015)[8]
Strontium borate
bone cement
- Physical mixing Promote the proliferation and osteogenic differentiation of human MSCs Rabbit femur Increased
Gao et al.
(2017)[55]
Si, Sr and F multi-
doped hydroxyapatite
- One pot
hydrothermal method
Promote the adhesion and
proliferation of MG63
- -
Zhao et al.
(2018)[55]
Strontium doped bioglass/
gelatin scaffold
- Freeze drying method Promote the polarization of macrophages from M1 to M2 Rat calvarial defect Increased
Boda et al.
(2017)[64]
Strontium hexaferrite
nanoparticles composite hydroxyapatite
- Plasma sintering Up-regulate the expression of osteogenesis-related genes - -
Makkar et al.
(2020)[68]
Strontium doped calcium phosphate coating on
magnesium alloy
Sr/(Ca+Sr)=0.1 Chemical impregnation method Promote MC3T3-E1 adhesion, proliferation and expression of osteogenic markers Rabbit femur Increased
Yuan et al.
(2018)[69]
SrHA/phosphoserine-tethered poly(epsilon-
lysine) dendrons
15 mol% Sol-gel method Down-regulate the expression of inflammatory factors and up-regulate the expression of osteogenesis-related genes Rat femur No change
Zhao et al.
(2018)[70]
Titanium dioxide
microporous coating doped with Zn/Sr
3.8 atom%, 4.9 atom% Micro-arc oxidation method Promote cell adhesion,
proliferation, differentiation and mineralization; bacteriostatic
Rabbit femur Promote osseointe-
gration
Wang et al.
(2019)[71]
SrHA/silk fibroin
composite nanospheres
0.1 mol%,
0.5 mol%,
1.0 mol%
Ultrasonic coprecipitation method Promote the adhesion, growth, proliferation and osteogenic differentiation of MSCs - -
Han et al.
(2019)[72]
Strontium-doped mineralized PLLA nanofibrous membranes 5%,10%,
15%
Electrodeposition method Promote the proliferation and osteogenic differentiation
of MSCs
Rat calvarial defect Increased
Shaltooki et al.
(2019) [73]
Polycaprolactone/strontium doped bioglass
composite scaffold
0~15 wt% Solvent method Promote MC3T3-E1 adhesion and osteogenic differentiation - -
Chen et al.
(2019)[74]
Strontium oxide
graphene nanocomposites
0.25 wt%,
0.5 wt%,
1.25 wt%
Covalent cross-linking Promote cell adhesion and
osteogenic differentiation;
secrete angiogenic factors
Rat calvarial defect Increased
Denry et al.
(2018)[75]
Strontium-doped fluorapatite glass-ceramics 0~24 mol% Foam impregnation - Rat calvarial defect Increased
Fig.4 Distribution of articles on Strontium-doped Biomaterials for Osteogenesis Research from 2010 to 2020(Data Source: google scholar, Key Words: strontium, doped, material, bone,Retrieval time: 2020.05)
[1]
Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Trends Biotechnol., 2013, 31(10): 594.

pmid: 24012308
[2]
Dahl S G, Allain P, Marie P J, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas P D, Christiansen C. Bone, 2001, 28(4): 446.

pmid: 11336927
[3]
Bonnelye E, Chabadel A, Saltel F, Jurdic P. Bone, 2008, 42(1): 129.

pmid: 17945546
[4]
Reginster J Y, Kaufman J M, Goemaere S, Devogelaer J P, Benhamou C L, Felsenberg D, Diaz-Curiel M, Brandi M L, Badurski J, Wark J, Balogh A, Bruyère O, Roux C. Osteoporos. Int., 2012, 23(3): 1115.

pmid: 22124575
[5]
Li Y F, Luo E, Feng G, Zhu S S, Li J H, Hu J. Osteoporos. Int., 2010, 21(11): 1889.

doi: 10.1007/s00198-009-1140-6 pmid: 19957162
[6]
Tenti S, Cheleschi S, Guidelli G M, Galeazzi M, Fioravanti A. Mod. Rheumatol., 2014, 24(6): 881.

pmid: 24645726
[7]
Kargozar S, Lotfibakhshaiesh N, Ai J, Mozafari M, Brouki Milan P, Hamzehlou S, Barati M, Baino F, Hill R G, Joghataei M T. Acta Biomater., 2017, 58: 502.

pmid: 28624656
[8]
Zhang Y D, Cui X, Zhao S C, Wang H, Rahaman M N, Liu Z T, Huang W H, Zhang C Q. ACS Appl. Mater. Interfaces, 2015, 7(4): 2393.

pmid: 25591177
[9]
Thormann U, Ray S, Sommer U, ElKhassawna T, Rehling T, Hundgeburth M, Henß A, Rohnke M, Janek J, Lips K S, Heiss C, Schlewitz G, Szalay G, Schumacher M, Gelinsky M, Schnettler R, Alt V. Biomaterials, 2013, 34(34): 8589.

doi: 10.1016/j.biomaterials.2013.07.036 pmid: 23906515
[10]
Li Y F, Luo E, Zhu S S, Li J H, Zhang L, Hu J. J. Appl. Biomater. Funct. Mater., 2015, 13(1): 28.

pmid: 24744229
[11]
Saidak Z, Marie P J. Pharmacol. Ther., 2012, 136(2): 216.

pmid: 22820094
[12]
Pilmane M, Salma-Ancane K, Loca D, Locs J, Berzina-Cimdina L. Mater. Sci. Eng.: C, 2017, 78: 1222.
[13]
Zhang S, Dong Y Q, Chen M K, Xu Y F, Ping J F, Chen W Z, Liang W Q. J. Artif. Organs, 2020, 23(3): 191.

pmid: 32100147
[14]
Marx D, Rahimnejad Yazdi A, Papini M, Towler M. Bone Rep., 2020, 12: 100273.

doi: 10.1016/j.bonr.2020.100273 pmid: 32395571
[15]
Goltzman D, Hendy G N. Nat. Rev. Endocrinol., 2015, 11(5): 298.

pmid: 25752283
[16]
Marie P J. Bone, 2010, 46(3): 571.

doi: 10.1016/j.bone.2009.07.082 pmid: 19660583
[17]
Bakker A D, Zandieh-Doulabi B, Klein-Nulend J. Bone, 2013, 53(1): 112.

pmid: 23234812
[18]
Brennan T C, Rybchyn M S, Green W, Atwa S, Conigrave A D, Mason R S. Br. J. Pharmacol., 2009, 157(7): 1291.

doi: 10.1111/j.1476-5381.2009.00305.x pmid: 19563530
[19]
Choudhary S, Halbout P, Alander C, Raisz L, Pilbeam C. J. Bone Miner. Res., 2007, 22(7): 1002.

pmid: 17371157
[20]
Song Y, Guo S, Lu M Z, Wang T, Zhao L W, Zhao C R. Chin. J. Aesthetic Plastic Surg., 2018, 029(8): 478.
宋跃, 郭澍, 吕梦竹, 王婷, 赵力挽, 赵崇如. 中国美容整形外科杂志, 2018, 029(8): 478.
[21]
Caverzasio J. Bone, 2008, 42(6): 1131.

pmid: 18378206
[22]
Peng S L, Zhou G Q, Luk K D K, Cheung K M C, Li Z Y, Lam W M, Zhou Z J, Lu W W. Cell. Physiol. Biochem., 2009,231-3: 165.

doi: 10.1159/000016286 pmid: 9792952
[23]
Huizhen L, Huang X, Jin S, Guo R, Wen W U, E. J. South. Med. Unvi., 2013, 33(3): 376.
[24]
Jia X S, Long Q Y, Miron R J, Yin C C, Wei Y, Zhang Y F, Wu M. Acta Biomater., 2017, 53: 495.

doi: 10.1016/j.actbio.2017.02.025 pmid: 28219807
[25]
Cheng H, Xiong W, Fang Z, Guan H, Li F. Acta Biomater., 2015, 31: 388.

pmid: 26612413
[26]
Hao Y Q, Yan H Q, Wang X P, Zhu B S, Ning C Q, Ge S F. J. Nanosci. Nanotech., 2012, 12(1): 207.
[27]
Zhang W, Huang D Q, Zhao F J, Gao W D, Sun L Y, Li X, Chen X F. Mater. Sci. Eng.: C, 2018, 89: 245.
[28]
Zhang J H, Zhao S C, Zhu Y F, Huang Y J, Zhu M, Tao C L, Zhang C Q. Acta Biomater., 2014, 10(5): 2269.

pmid: 24412143
[29]
Liu F, Zhang X, Yu X X, Xu Y T, Feng T, Ren D W. J. Mater. Sci.: Mater. Med., 2011, 22(3): 683.
[30]
Kyllönen L, D’Este M, Alini M, Eglin D. Acta Biomater., 2015, 11: 412.

pmid: 25218339
[31]
Coulombe J, Faure H, Robin B, Ruat M. Biochem. Biophys. Res. Commun., 2004, 323(4): 1184.

pmid: 15451421
[32]
Tat S K, Pelletier J P, Mineau F, Caron J, Martel-Pelletier J. Bone, 2011, 49(3): 559.
[33]
Liu X, Zhu S J, Cui J F, Shao H G, Zhang W, Yang H L, Xu Y Z, Geng D C, Yu L. Acta Biomater., 2014, 10(11): 4912.

doi: 10.1016/j.actbio.2014.07.025 pmid: 25078426
[34]
Zhang W, Zhao F J, Huang D Q, Fu X L, Li X, Chen X F. ACS Appl. Mater. Interfaces, 2016, 8(45): 30747.

pmid: 27779382
[35]
Schumacher M, Wagner A S, Kokesch-Himmelreich J, Bernhardt A, Rohnke M, Wenisch S, Gelinsky M. Acta Biomater., 2016, 37: 184.

doi: 10.1016/j.actbio.2016.04.016 pmid: 27084107
[36]
Lin K L, Xia L G, Li H Y, Jiang X Q, Pan H B, Xu Y J, Lu W W, Zhang Z Y, Chang J. Biomaterials, 2013, 34(38): 10028.

pmid: 24095251
[37]
Schumacher M, Gelinsky M. J. Mater. Chem. B, 2015, 3(23): 4626.

pmid: 32262477
[38]
Zhao R, Chen S Y, Zhao W L, Yang L, Yuan B, Ioan V S, Iulian A V, Yang X, Zhu X D, Zhang X D. Theranostics, 2020, 10(4): 1572.

doi: 10.7150/thno.40103 pmid: 32042323
[39]
Zhao F J, Lei B, Li X, Mo Y F, Wang R X, Chen D F, Chen X F. Biomaterials, 2018, 178: 36.

pmid: 29908343
[40]
Guo X J, Wei S L, Lu M M, Shao Z W, Lu J Y, Xia L G, Lin K L, Zou D R. Int. J. Biol. Sci., 2016, 12(12): 1511.

doi: 10.7150/ijbs.16499 pmid: 27994515
[41]
Wang X, Wang Y P, Li L, Gu Z P, Xie H X, Yu X X. Ceram. Int., 2014, 40(5): 6999.
[42]
Peng S L, Liu X S, Wang T, Li Z Y, Zhou G Q, Luk K D K, Guo X E, Lu W W. J. Orthop. Res., 2010, 28(9): 1208.

pmid: 20196084
[43]
Fournier C, Perrier A, Thomas M, Laroche N, Dumas V, Rattner A, Vico L, Guignandon A. Bone, 2012, 50(2): 499.
[44]
Yu D G, Ding H F, Mao Y Q, Liu M, Yu B, Zhao X, Wang X Q, Li Y, Liu G W, Nie S B, Liu S, Zhu Z A. Acta Pharmacol. Sin., 2013, 34(3): 393.

pmid: 23334238
[45]
Rodrigues T A, de Oliveira Freire A, Carvalho H C O, Silva G E B, Vasconcelos J W, Guerra R N M, de Sousa Cartágenes M D S, Garcia J B S. Front. Pharmacol., 2018, 9: 975.

pmid: 30283333
[46]
Deng C J, Zhu H Y, Li J Y, Feng C, Yao Q Q, Wang L M, Chang J, Wu C T. Theranostics, 2018, 8(7): 1940.

doi: 10.7150/thno.23674 pmid: 29556366
[47]
Ma F B, Ge Y M, Liu N, Pang X C, Shen X Y, Tang B. J. Mater. Chem. B, 2019, 7(15): 2463.

doi: 10.1039/c8tb01331d pmid: 32255123
[48]
Arcos D, Boccaccini A R, Bohner M, Díez-PÉrez A, Epple M, GÓmez-Barrena E, Herrera A, Planell J A, Rodríguez-Mañas L, Vallet-Regí M. Acta Biomater., 2014, 10(5): 1793.

doi: 10.1016/j.actbio.2014.01.004 pmid: 24418434
[49]
Ni G X, Lu W W, Chiu K Y, Li Z Y, Fong D Y T, Luk K D K. J. Biomed. Mater. Res., 2006, 77B(2): 409.
[50]
Ni G X, Chiu K Y, Lu W W, Wang Y, Zhang Y G, Hao L B, Li Z Y, Lam W M, Lu S B, Luk K D K. Biomaterials, 2006, 27(24): 4348.

doi: 10.1016/j.biomaterials.2006.03.048 pmid: 16647752
[51]
Baier M, Staudt P, Klein R, Sommer U, Wenz R, Grafe I, Meeder P, Nawroth P P, Kasperk C. J. Orthop. Surg. Res., 2013, 8(1): 16.
[52]
Tang Z R, Li X F, Tan Y F, Fan H S, Zhang X D. Regen. Biomater., 2018, 5(1): 43.

doi: 10.1093/rb/rbx024 pmid: 29423267
[53]
Vestermark M T, Hauge E M, Soballe K, Bechtold J E, Jakobsen T, Baas J. Acta Orthop., 2011, 82(5): 614.

pmid: 21895497
[54]
Henriques Lourenço A, Neves N, Ribeiro-Machado C, Sousa S R, Lamghari M, Barrias C C, Trigo Cabral A, Barbosa M A, Ribeiro C C. Sci. Rep., 2017, 7: 5098.

pmid: 28698571
[55]
Gao J Y, Wang M, Shi C, Wang L P, Zhu Y C, Wang D L. Mater. Lett., 2017, 196: 406.
[56]
Filho O P, La Torre G P, Hench L L. J. Biomed. Mater. Res., 1996, 30(4): 509.

pmid: 8847359
[57]
Zhang Y F, Wei L F, Chang J, Miron R J, Shi B, Yi S Q, Wu C T. J. Mater. Chem. B, 2013, 1(41): 5711.
[58]
Li Y F, Li Q, Zhu S S, Luo E, Li J H, Feng G, Liao Y M, Hu J. Biomaterials, 2010, 31(34): 9006.

doi: 10.1016/j.biomaterials.2010.07.112 pmid: 20800275
[59]
Fielding G A, Roy M, Bandyopadhyay A, Bose S. Acta Biomater., 2012, 8(8): 3144.

pmid: 22487928
[60]
Bianchi M, Degli Esposti L, Ballardini A, Liscio F, Berni M, Gambardella A, Leeuwenburgh S C G, Sprio S, Tampieri A, Iafisco M. Surf. Coat. Technol., 2017, 319: 191.
[61]
Wang S, Yang Y, Li Y, Shi J, Zhou J. Colloids Surfaces B: Biointerfaces, 2018, 176: 38.

doi: 10.1016/j.colsurfb.2018.12.056 pmid: 30592990
[62]
Müller W E G, Tolba E, Ackermann M, Neufurth M, Wang S F, Feng Q L, Schröder H C, Wang X H. Acta Biomater., 2017, 50: 89.

pmid: 28017868
[63]
Li X, Xu C P, Hou Y L, Song J Q, Cui Z, Wang S N, Huang L, Zhou C R, Yu B. Biomed. Mater., 2014, 9(4): 045010.

pmid: 25028797
[64]
Boda S K, Thrivikraman G, Panigrahy B, Sarma D D, Basu B. ACS Appl. Mater. Interfaces, 2017, 9(23): 19389.

doi: 10.1021/acsami.6b08694 pmid: 27617589
[65]
Wong K L, Wong C T, Liu W C, Pan H B, Fong M K, Lam W M, Cheung W L, Tang W M, Chiu K Y, Luk K D K, Lu W W. Biomaterials, 2009, 30(23/24): 3810.
[66]
Liu W C, Hu C C, Tseng Y Y, Sakthivel R, Fan K S, Wang A N, Wang Y M, Chung R J. Mater. Sci. Eng.: C, 2020, 108: 110431.
[67]
Nguyen T D T, Jang Y S, Kim Y K, Kim S Y, Lee M H, Bae T S. ACS Biomater. Sci. Eng., 2019, 5(12): 6715.

pmid: 33423489
[68]
Makkar P, Kang H J, Padalhin A R, Faruq O, Lee B. Appl. Surf. Sci., 2020, 510: 145333.
[69]
Yuan B, Raucci M G, Fan Y J, Zhu X D, Yang X, Zhang X D, Santin M, Ambrosio L. J. Mater. Chem. B, 2018, 6(47): 7974.

pmid: 32255042
[70]
Zhao Q M, Yi L, Jiang L B, Ma Y Q, Lin H, Dong J. Nanomed.: Nanotechnol. Biol. Med., 2019, 16: 149.
[71]
Wang L P, Pathak J L, Liang D L, Zhong N Y, Guan H B, Wan M J, Miao G H, Li Z M, Ge L H. Int. J. Biol. Macromol., 2020, 142: 366.

pmid: 31593715
[72]
Han X G, Zhou X J, Qiu K X, Feng W, Mo H M, Wang M Q, Wang J W, He C L. Colloids Surfaces B: Biointerfaces, 2019, 179: 363.

pmid: 30999115
[73]
Shaltooki M, Dini G, Mehdikhani M. Mater. Sci. Eng.: C, 2019, 105: 110138.
[74]
Chen Y H, Zheng Z W, Zhou R P, Zhang H Z, Chen C, Xiong Z Z, Liu K, Wang X S. ACS Appl. Mater. Interfaces, 2019, 11(17): 15986.

pmid: 30945836
[75]
Denry I, Goudouri O M, Fredericks D C, Akkouch A, Acevedo M R, Holloway J A. Acta Biomater., 2018, 75: 463.

pmid: 29859366
[76]
Luo X M, Barbieri D, Duan R Q, Yuan H P, Bruijn J D. Acta Biomater., 2015, 26: 331.

pmid: 26234489
[77]
Webster T J, Ergun C, Doremus R H, Siegel R W, Bizios R. Biomaterials., 2000, 21(17): 1803.

pmid: 10905463
[78]
Aina V, Lusvardi G, Annaz B, Gibson I R, Imrie F E, Malavasi G, Menabue L, Cerrato G, Martra G. J. Mater. Sci.: Mater. Med., 2012, 23(12): 2867.
[79]
Xu Y M, Geng Z, Gao Z H, Zhuo X L, Li B, Cui Z D, Zhu S L, Liang Y Q, Li Z Y, Yang X J. Int. J. Appl. Ceram. Technol., 2018, 15(1): 210.
[80]
Prekajski D-orđević M, Maletaškić J, Stanković N, Babić B, Yoshida K, Yano T, Matović B. Ceram. Int., 2018, 44(2): 1771.
[1] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[2] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[3] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[4] Liu Zongguang, Qu Shuxin, Weng Jie. Application of Polydopamine in Surface Modification of Biomaterials [J]. Progress in Chemistry, 2015, 27(2/3): 212-219.
[5] Cheng Xinfeng, Jin Yong, Qi Rui, Fan Baozhu, Li Hanping. Stimuli-Responsive Degradable Polymeric Hydrogels [J]. Progress in Chemistry, 2015, 27(12): 1784-1798.
[6] Liu Xiaobo, Kou Zongkui, Mu Shichun. Porous Graphene Materials [J]. Progress in Chemistry, 2015, 27(11): 1566-1577.
[7] Xu Lina, Ma Peipei, Chen Qiang, Lin Sicong, Shen Jian. Biological Application of Sulfobetaine Methacrylate Polymers [J]. Progress in Chemistry, 2014, 26(0203): 366-374.
[8] Li Chunge, Zhao Shuang, Li junjie, Yin Yuji*. Polymeric Biomaterials Containing Thiol/Disulfide Bonds [J]. Progress in Chemistry, 2013, 25(01): 122-134.
[9] Ma Mengjia, Chen Yuyun, Yan Zhiqiang, Ding Jian, He Dannong*, Zhong Jian*. Applications of Atomic Force Microscopy in Nanobiomaterials Research [J]. Progress in Chemistry, 2013, 25(01): 135-144.
[10] Tang Shiyang, Sun Xiaojun, Lin Li, Sun Yan, Liu Xianbin. Monodisperse Mesoporous Silica Nanoparticles: Synthesis and Application in Biomaterials [J]. Progress in Chemistry, 2011, 23(9): 1973-1984.
[11] Liu Wei, Zhan Hongbing. Organic/Inorganic Composites for Bone Regeneration [J]. Progress in Chemistry, 2011, 23(6): 1251-1258.
[12] Wang Wei, Li Bo, Gao Changyou. Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials [J]. Progress in Chemistry, 2011, 23(10): 2160-2168.
[13] . Biomaterials for Spheroidal Aggregate Culture of Hepatocytes [J]. Progress in Chemistry, 2010, 22(09): 1826-1835.
[14] . Anticoagulant Biomaterials [J]. Progress in Chemistry, 2010, 22(04): 760-772.
[15] Hu Xiaohong Zhu Yang Gao Changyou. Hydrogels for Cartilage Regeneration [J]. Progress in Chemistry, 2009, 21(10): 2164-2175.