中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (6): 958-974 DOI: 10.7536/PC200685 Previous Articles   Next Articles

• Review •

Fabrication and Application of Metal-Based Slippery Liquid-Infused Porous Surface

Jinkai Xu*(), Qianqian Cai, Zhanjiang Yu, Zhongxu Lian, Jiwen Tian, Huadong Yu   

  1. Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Contact: Jinkai Xu
  • About author:
    * Corresponding author e-mail:
  • Supported by:
    National Natural Science Foundation of China(U19A20103); China Postdoctoral Science Foundation(2019M661184); Jilin Province Scientific and Technological Development Program(Z20190101005JH)
Richhtml ( 51 ) PDF ( 956 ) Cited
Export

EndNote

Ris

BibTeX

Metal is an essential material foundation on which human society depends on survival and development. It is a supporting material that constitutes a modern civilized society. Increasing the unique properties of metal materials and expanding the scope of application of metal materials has become a hotspot in the cross-study of natural sciences. Inspired by nature, the researchers have investigated the ultra-slip behaviour of the pitcher plant of nepenthes, injecting low surface energy lubricating liquid into the micro/nano structure substrate, forming a solid-liquid composite structure, and prepared a slippery liquid-infused porous surface(SLIPS) with special wettability. SLIPS has excellent self-healing, anti-icing, anti-fouling, anti-corrosion, anti-bioadhesion and self-cleaning properties. The method designs and constructs a SLIPS on a metal substrate and realizes its surface versatility, thereby providing the possibility for it to achieve a wider range of applications in the fields of marine anti-fouling, biomedical, aerospace, refrigeration, and industrial production. This article is divided into four parts to review the research progress of metal-based SLIPS manufacturing and its application, and summarize the design principle, preparation process, application of metal-based SLIPS, and future development trends and challenges.

Contents

1 Introduction

2 Design principle of SLIPS

3 Preparation process of metal-based SLIPS

3.1 Hydrothermal method

3.2 Chemical vapor deposition

3.3 Electrochemical

3.4 Electrodeposition

3.5 Spraying

3.6 Chemical etching

4 Application of metal-based SLIPS

4.1 Self-healing

4.2 Anti-icing

4.3 Anti-corrosion

4.4 Anti-fouling

4.5 Anti-bioadhesion

4.6 Self-cleaning

5 Conclusion and outlook

Fig.1 Morphology of pitcher and its inner surface[95].(Copyright 2004 The National Academy of Sciences of the USA)
Fig.2 Schematic diagram of SLIPS production[71].(Copyright 2011 Macmillan Publishers Limited)
Fig.3 Liquid-infused surfaces.(a) Different wettable configurations for a four-phase system(air, liquid-1, liquid-2, solid). Red inset represents possible wetting states near the droplet-lubricant interface. Here, the droplet can completely wet the surface(top), partially wets the surface(middle), or has no interactions with the surface due to a completely lubricated structure(bottom). Similarly, the black inset represents the wetting of the lubricant on a surface in the presence of a gas layer. Here, the surface can lack any lubricant(top), be partially wetted(middle), or be fully impregnated(bottom) by the lubricant[100].(Copyright 2013 The Royal Society of Chemistry)(b) Sketch illustrating the derivation of the closed form expression for LIS[101].(Copyright 2016 The Royal Society of Chemistry)(c) Direct observations of liquid-infused surfaces with different droplet-lubricant configurations. Cloaking of the droplet with fluorocarbon lubricant(top) and uncloaked droplet with hydrocarbon(middle) or ionic(bottom) lubricants[102].(d) Observations of receding angles(top) and advancing angles(bottom) on FC70-impregnated micropillars[102].(Copyright 2015 The Royal Society of Chemistry)
Fig.4 Schematic diagram of various preparation methods of SLIPS[71]. (Copyright 2011 Macmillan Publishers Limited)
Table 1 Innovative techniques applied to surface processing of metal materials
Fig.5 Schematic showing the fabrication of anticorrosion system with self-repairable slippery surface and active corrosion inhibition on PEO modified Mg alloy[142].(Copyright 2019 Elsevier B.V)
Fig.6 (a) Schematic illustration of the process combining galvanic corrosion, chemical vapor deposition and oil infusion to realize SLIPS. The SEM images of bare CuZn(b) and the surface deposit morphology evolution with the elongation of reaction time(c~f), in which the reaction time is (c) 0.5 h, (d) 2 h, (e) 4 h and (f) 8 h, respectively.(g) is the partial magnification of the deposit obtained with 8 h[147].(Copyright 2017 Elsevier Science SA)
Fig.7 (a~c) SEM morphologies of the electrochemical etched surface under different resolutions. (d)The static contact angle(CA) of pristine, chemically etched, FAS modified and lubricant infused surface(sorted from left to right)[152].(Copyright 2018 Applied Surface Science)
Fig.8 (a) Schematic illustration of the process combining electrodeposition, oxidation, chemical vapor deposition and oil infusion to realize SLIPS.(b~d) The SEM images of the material in different preparation stages, including(b) bare CuZn,(c, d) as-deposited Cu,(e, f) Cu(OH)2 obtained by oxidizing Cu in a mixed solution containing 0.1 M(NH4)2S2O4 and 2.5 M NaOH, and(g) further modification of Cu(OH)2 in dodecane thiol vapor[158].(Copyright 2018 Applied Surface Science)
Fig.9 (a) Schematic illustration of the synthesis of SLIPS. SEM images of the wrinkled and porous hollow tubular SiO2 with(b) low magnification and(c) high magnification,(d) TEM image of wrinkled and porous hollow SiO2 tubes(Inset: HRTEM image of micro porous structure). SEM images of the samples(e) etched Al alloy substrate,(f) the surface after spraying glue,(g) the cross section of the glue.(h) low magnification,(i) high magnification of the porous hollow SiO2 nanotubes after spraying on the substrate.(j) the cross section of the coating[163].(Copyright 2019 Wiley-VCH Verlag GmbH & Co. KGaA)
Fig.10 (a) Schematic illustration of the process of preparation of Al@ZnO super-slippery surface.(b) SEM image of etched Al substrate.(c) SEM image of the first layer of ZnO grown on the Al sheet. SEM images of the second layer of ZnO with(d) high magnification and(e) low magnification.(f) The cross section of the coating.(g) Digital image of different liquids on the Al@ZnO SLIPs[171].(Copyright 2018 Elsevier B.V.)
Fig.11 Schematic diagram of special performances of SLIPS
Fig.12 (a) The camera photos of SLIPS damaged by knife and then self-healed after 2 h.(b) Bode-module plots and(c) Bode-phase plots of SLIPS, SHC, SSL and bare Fe.(d) Tafel plots of SLIPS and scratched SLIPS(SSL), self-healed coating(SHC) as well as bare Fe.(e) Corrosion current density of SLIPS, SSL, SHS and bare Fe calculated from Tafel plots.(f) The camera photos of SLIPS damaged by knife and immersed in 3.5 wt.% NaCl solution for 2 h recovery[185].(Copyright 2018 Chemical Engineering Journal)
Fig.13 Still images extracted from the movies simulating ice formation by deep freezing(-10 ℃) in high-humidity condition(60% RH) and subsequent deicing by heating. The morphology of accumulated ice on SLIPS-Al is significantly different from that on bare Al. Condensation/freezing cycle: from room temperature to -10 ℃ at 5 ℃/min. Melting(defrost) cycle: from -10 to 25 ℃ at ~10 ℃/min. Ice still forms mostly around the edges of SLIPS-Al by bridging from the surrounding aluminum substrate, while it forms uniformly all over the aluminum substrate. The samples are mounted with 75° tilt angle, and the widths of the substrates are approximately 3 cm[189].(Copyright 2012 American Chemical Society)
Fig.14 The corrosion inhibition evaluation of SS(stainless steel) with the different coverage.(a~c) Bode diagrams of bare SS, Co(OH)2/SS, SHP SS(superhydrophobic stainless steel) and LIS SS(lubricant-infused surface stainless steel).(d) The Tafel polarization curves of SS with different coverage[194].(Copyright 2019 Published by Elsevier)
Fig.15 Schematic diagram of anti-fouling material mechanism[81].(Copyright 2020 the authors)
Fig.16 Mass gain per unit area of scale after 2 h immersion in calcium carbonate(CaCO3) scaling brine[198].(Copyright 2014 Elsevier Inc.)
Fig.17 Adhesion of P. tricornutum observed by CLSM(-1) and biofilm thickness maps reconstructed by the COMSTAT program(-2) on activated stainless steel(a), SiO2 surfaces(b), fluorinated SiO2 surfaces(c) and liquid infused SiO2 surfaces(d).(e): Statistical analysis of P. tricornutum adhesion on the different surfaces compared to active stainless steel.(f) The Dupré work of adhesion ofP. tricornutum(Activated stainless steel as SSeOH, SiO2 surfaces as SSeSiO2, fluorinated SiO2 surfaces as SSeSiO2Fe, and liquid infused SiO2 surfaces as SS-SiO2-S)[202].(Copyright 2019 Elsevier B.V. )
Fig.18 Characterizations of bacteria(E. coli K-12) adhesion.(a~d) SEM and schematic(inset) images of the bacteria adhesion on electropolished Al(Flat), hydrophilic large pored(L-Po) AAO(anodic aluminum oxide), hydrophobic(i.e., with Teflon-coating) L-Po, and oil-impregnated L-Po, respectively. White scale bars in(a~d) indicate 5 μm.(e) Bacteria population(colony forming unit, CFU) measured with the four different surfaces. Asterisks in(e) indicate statistical significance( p<0.05) between indicated groups[204].(Copyright 2019 Elsevier Inc.)
Fig.19 Self-cleaning test of base steel(a) and slippery surface(b) at a tilt angle of 15° with Fe3O4 solid particles as contaminant[208].(Copyright 2019 Elsevier B.V. )
[1]
Su Y, Guo J B. News Forum, 2012, 6:63.
(苏娅, 郭建波. 新闻论坛, 2012, 6:63.).
[2]
Dong H. Acta Metall Sin., 2020, 56:381.
(董瀚. 金属学报, 2020, 56:381.).
[3]
Chen X. Shanxi Sci. Tech., 2015, 1:75.
(陈鑫. 山西科技, 2015, 1:75.).
[4]
Merati A. Int. J Fatigue, 2005, 27(1):33.

doi: 10.1016/j.ijfatigue.2004.06.010
[5]
Longtin R, Hack E, Neuenschwander J, Janczak-Rusch J. Adv. Mater., 2011, 23(48):5812.
[6]
Sun S L. Master Dissertation of Dalian University of Technology, 2015.
(孙诗淋. 大连理工大学硕士论文, 2015.).
[7]
Xie T F. Master Dissertation of Southwest Jiaotong University, 2019.
(谢腾飞. 西南交通大学硕士论文, 2019.).
[8]
Jin X J, Gong Y, Han X H, Du H, Ding W, Zhu B, Zhang Y S, Feng Y, Ma M T. Acta Metall Sin, 2020, 56:411.
(金学军, 龚煜, 韩先洪, 杜浩, 丁伟, 朱彬, 张宜生, 冯毅, 马鸣图, 梁宾. 金属学报, 2020, 56(4): 33.)
[9]
Li J X, Wang W, Zhou Y, Liu S G, Fu H, Wang Z, Kan B. Acta Metall. Sin., 2020, 56 (4):444.
(李金许, 王伟, 周耀, 刘神光, 付豪, 王正, 阚博. 金属学报, 2020, 56 (4): 66.)
[10]
Li J. Master Dissertation of Inner Mongolia University of Science & Technology, 2019.
(李剑. 内蒙古科技大学硕士论文, 2019.).
[11]
Zhang Z, Wu X, Tan J. Corros. Sci., 2019, 146:90.

doi: 10.1016/j.corsci.2018.10.022
[12]
Zhang Z, Zhang Z, Tan J, Wu X. Corros. Sci., 2019, 157:79.

doi: 10.1016/j.corsci.2019.05.030
[13]
Song X X, Huang S P, Wang C. Acta. Metall. Sini., 2020, 56 (10):1355.
(宋学鑫, 黄松鹏, 汪川. 金属学报, 2020, 56 (10): 1355.)
[14]
Liu Y W, Zhao H T, Wang Z Y. Acta. Metall. Sini., 2020, 56 (9):1247.
(刘雨薇, 赵洪涛, 王振尧. 金属学报, 2020, 56 (9): 1247.)
[15]
Sun S M. Master Dissertation Institute of Oceanology, Chinese Academy of Science, 2015.
(孙士美. 中国科学院研究生院硕士论文, 2015.).
[16]
Sharma A, Oh M C, Kim J T, Srivastava A K, Ahn B. J. Alloy. Compd., 2020, 830:154620.

doi: 10.1016/j.jallcom.2020.154620
[17]
Cheng Y. Master Dissertation of Donghua University, 2016.
(成瑜. 东华大学硕士论文, 2016.).
[18]
Zhang J. Master Dissertation of Southwest Jiaotong University, 2013.
(张娟. 西南交通大学硕士论文, 2013.).
[19]
Miao Z M. Master Dissertation of Wuhan University of Technology, 2018.
(苗志民. 武汉理工大学硕士论文, 2018.).
[20]
Shi C L. Master Dissertation of Anhui University of Science and Technology, 2016.
(石春璐. 安徽理工大学硕士论文, 2016.).
[21]
Liu Y T. Master Dissertation of Chongqing University, 2015.
(刘洋彤. 重庆大学硕士论文, 2015.).
[22]
Gopal V, Manivasagam G. J. Alloy. Compd., 2020, 830:154539.

doi: 10.1016/j.jallcom.2020.154539
[23]
Yang K, Shi X B, Yan W, Zeng Y P, Shan Y Y, Ren Y. Acta Metall. Sin., 2020, 56 (4):385.
(杨柯, 史显波, 严伟, 曾云鹏, 单以银, 任毅. 金属学报, 2020, 56 (4): 385.)
[24]
Zhang Z, Wu X Q, Tan J B. J. Electrochem. Soc., 2019, 166(12):C284.

doi: 10.1149/2.0761912jes
[25]
Cao L, Wan Y, Yang S Y, Pu J B. Coatings, 2018, 8(8):285.

doi: 10.3390/coatings8080285
[26]
Tang L L, Wang N, Han Z Y, Sun H H, Xiong D S. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 594:124655.

doi: 10.1016/j.colsurfa.2020.124655
[27]
Guo J, Qian H, Liu P F, Ma J Y. Appl. Clay Sci., 2019, 180:105182.

doi: 10.1016/j.clay.2019.105182
[28]
Peng H Q, Luo Z J, Li L, Xia Z X, Du J, Zheng B Z. Mater. Res. Express, 2019, 6(9):096586.

doi: 10.1088/2053-1591/ab3173
[29]
Barthwal S, Lim S H. Soft Matter, 2019, 15(39):7945.

doi: 10.1039/c9sm01256g pmid: 31544192
[30]
Ebrahimi A, Esfahani H, Imantalab O, Fattah-Alhosseini A. Trans. Nonferrous Met. Soc. China, 2020, 30(4):944.

doi: 10.1016/S1003-6326(20)65267-0
[31]
Lin X, Ge J, Wu S L, Liu B H, Yang H L, Yang L. Acta Metall. Sin., 2017, 53(10):1284.
(林潇, 葛隽, 吴水林, 刘宝华, 杨惠林, 杨磊. 金属学报, 2017, 53(10): 1284.)
[32]
Kang J, Li J C, Feng Z C, Zou G S, Wang G Q. Acta Metall. Sin., 2016, 52:60.
(康举, 李吉超, 冯志操, 邹贵生, 王国庆. 金属学报, 2016, 52:60.).
[33]
Chen R J. Master Dissertation of Zhejiang University, 2017.
(陈瑞姣. 浙江大学硕士论文, 2017.).
[34]
Sujkowska-Rybkowska M, Banasiewicz J, Rekosz-Burlaga H, Stępkowski T. Appl. Soil Ecol., 2020, 151:103539.

doi: 10.1016/j.apsoil.2020.103539
[35]
Zhang Y N, Sun Y, Cai L, Gao Y P, Cai Y. Measurement, 2020, 158:107742.

doi: 10.1016/j.measurement.2020.107742
[36]
Chen H Y. Doctoral Dissertation of Institute of Oceanography, Chinese Academy of Sciences, 2019.
(陈怀银. 中国科学院海洋研究所博士论文, 2019. ).
[37]
Shuai T. Master Dissertation of Nanchang Hangkong University, 2018.
(帅韬. 南昌航空大学硕士论文, 2018.).
[38]
Zhang L, Wang W, Shahzad M, Shan Y Y, Yang K. Acta. Metall. Sin., 2020, 56(3):351.
(张乐, 王威, Shahzad M, 单以银, 杨柯. 金属学报, 2020, 56(3): 351.)
[39]
Liu X J, Chen Y C, Lu Y, Han J J, Xu W W, Guo Y H, Yu J X, Wei Z B, Wang C P. Acta Metall. Sin., 2020, 56(1):1.
(刘兴军, 陈悦超, 卢勇, 韩佳甲, 许伟伟, 郭毅慧, 于金鑫, 魏振帮, 王翠萍. 金属学报, 2020, 56(1): 1.)
[40]
Zhai D J, Feng K Q. Trans. Nonferrous Met. Soc. China, 2019, 29(12):2546.

doi: 10.1016/S1003-6326(19)65162-9
[41]
Zhang C, Wu L, Huang G S, Liu K, Jiang B, Wang G G, Xia D B, Atrens A, Pan F S. J. Electrochem. Soc., 2019, 166(13):C445.

doi: 10.1149/2.1191913jes
[42]
Park T M, Kim H J, Um H Y, Goo N H, Han J. Mater. Charact., 2020, 165:110386.

doi: 10.1016/j.matchar.2020.110386
[43]
Zheng Q J, Zhang L L, Jiang H X, Zhao J Z, He J. J Mater. Sci. Technol., 2020, 47:142.

doi: 10.1016/j.jmst.2019.12.021
[44]
Luo S C, Su Y, Wang Z M. Sci. China Mater., 2020, 63(7):1279.

doi: 10.1007/s40843-020-1291-9
[45]
Wang C Y, Chang Y, Zhou F L, Cao W Q, Dong H, Weng Y Q. Acta Metall. Sin., 2020, 56(4):400.
(王存宇, 常颖, 周峰峦, 曹文全, 董瀚, 翁宇庆. 金属学报, 2020, 56(4): 400.)
[46]
Zhou Y W, Zheng X B, Xing F, Sui L L, Zheng Y W, Huang X X. Constr. Build. Mater., 2020, 255:119377.

doi: 10.1016/j.conbuildmat.2020.119377
[47]
Yang M K, Liu Y, Shi Z Y, Lv X, Liu B, Sun L Y. Corrosion, 2020, 76(4):366.

doi: 10.5006/3404
[48]
José S C, Luís C, Filipe R, Diogo F, Pier G B, Joaquim B, Eduardo P, Isabel V. Constr. Build. Mater., 2020,258.
[49]
Zheng X, Xie C C, Li W M, Aberle A G, Venkataraj S. Appl. Surf. Sci., 2020, 525:146368.

doi: 10.1016/j.apsusc.2020.146368
[50]
Zhang Y F, Blawert C, Tang S W, Hu J, Mohedano M, Zheludkevich M L, Kainer K U. Corros. Sci., 2016, 112:483.

doi: 10.1016/j.corsci.2016.08.013
[51]
Song Z W, Yu G, Xie Z H, Hu B N, He X M, Zhang X Y. Surf. Coat. Technol., 2014, 242:83.

doi: 10.1016/j.surfcoat.2014.01.022
[52]
Xu W J, Song J L, Sun J, Lu Y, Yu Z Y. ACS Appl. Mater. Interfaces, 2011, 3(11):4404.

doi: 10.1021/am2010527
[53]
She Z X, Li Q, Wang Z W, Tan C, Zhou J C, Li L Q. Surf. Coat. Technol., 2014, 251:7.

doi: 10.1016/j.surfcoat.2014.03.060
[54]
Peng C Y, Chen Z Y, Tiwari M K. Nat. Mater., 2018, 17(4):355.

doi: 10.1038/s41563-018-0044-2
[55]
Wu L, Wu J H, Zhang Z Y, Zhang C, Zhang Y X, Tang A T, Li L J, Zhang G, Zheng Z C, Atrens A, Pan F S. Appl. Surf. Sci., 2019, 487:569.

doi: 10.1016/j.apsusc.2019.05.121
[56]
Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Beilstein J. Nanotechnol., 2011, 2:152.

doi: 10.3762/bjnano.2.19
[57]
Yin K, Yang S, Dong X R, Chu D K, Duan J A, He J. Appl. Phys. Lett., 2018, 112(24):243701.

doi: 10.1063/1.5039789
[58]
Yin K, Du H F, Luo Z, Dong X R, Duan J A. Surf. Coat. Technol., 2018, 345:53.

doi: 10.1016/j.surfcoat.2018.04.010
[59]
Li C C, Liang T T, Ma R N, Du A, Fan Y Z, Zhao X, Cao X M. J. Alloy. Compd., 2020, 825:153921.

doi: 10.1016/j.jallcom.2020.153921
[60]
Manoj T P, Rasitha T P, Vanithakumari S C, Anandkumar B, George R P, Philip J. Appl. Surf. Sci., 2020, 512:145636.

doi: 10.1016/j.apsusc.2020.145636
[61]
Wang F J, Xie T, Ou J F, Xue M S, Li W. J. Alloy. Compd., 2020, 823:153702.

doi: 10.1016/j.jallcom.2020.153702
[62]
Atthi N, Sripumkhai W, Pattamang P, Thongsook O, Meananeatra R, Saengdee P, Ranron N, Srihapat A, Supadech J, Klunngien N, Jeamsaksiri W. Jpn. J. Appl. Phys., 2020,59(SI): SIIJ05.
[63]
Gong X, He S. ACS Omega, 2020, 5(8):4100.

doi: 10.1021/acsomega.9b03775
[64]
Selim M S, El-Safty S A, Shenashen M A, Higazy S A, Elmarakbi A. J. Mater. Chem. B, 2020, 8(17):3701.

doi: 10.1039/C9TB02119A
[65]
Zhu R F, Liu M M, Hou Y Y, Zhang L P, Li M, Wang D, Fu S H. ACS Appl. Mater. Interfaces, 2020, 12(14):17004.

doi: 10.1021/acsami.9b22268
[66]
Fan K N, Jin Z J, Bao Y, Wang Q L, Niu L, Sun J, Song J L. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 590:124495.

doi: 10.1016/j.colsurfa.2020.124495
[67]
Chen L, Ping H, Yang T, Hu T, Bennett P, Zheng Z, Yang Q B, Perrie W, Edwardson S P, Dearden G, Liu D. Mater. Res. Express, 2020, 6(12):1250e2.

doi: 10.1088/2053-1591/ab6542
[68]
Wang S H, Guo X W, Xie Y J, Liu L H, Yang H Y, Zhu R Y, Gong J, Peng L M, Ding W J. Surf. Coat. Technol., 2012, 213:192.

doi: 10.1016/j.surfcoat.2012.10.046
[69]
Jiang D, Zhou H, Wan S, Cai G Y, Dong Z H. Surf. Coat. Technol., 2018, 339:155.

doi: 10.1016/j.surfcoat.2018.02.001
[70]
Nhung Nguyen T P, Brunet P, Coffinier Y, Boukherroub R. Langmuir, 2010, 26(23):18369.

doi: 10.1021/la103097y
[71]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477(7365):443.

doi: 10.1038/nature10447
[72]
Wang Y J, Song X C, Chen Y F. J. Southeast Univ. Nat. Sci. Ed., 2017, 47:259.
[73]
Lou X D, Huang Y, Yang X, Zhu H, Heng L P, Xia F. Adv. Funct. Mater., 2020, 30(10):1901130.

doi: 10.1002/adfm.v30.10
[74]
Gulfam R, Zhang P. Renew. Energy, 2019, 143:922.

doi: 10.1016/j.renene.2019.05.055
[75]
Wang F, Luo S H, Xiao S B, Zhang W J, Zhuo Y Z, He J Y, Zhang Z L. J. Hazard. Mater., 2020, 390:122176.

doi: 10.1016/j.jhazmat.2020.122176
[76]
Bandyopadhyay S, Sriram S M, Parihar V, Das Gupta S, Mukherjee R, Chakraborty S. Soft Matter, 2019, 15(44):9031.

doi: 10.1039/c9sm01680e pmid: 31637378
[77]
Ban G H, Rungraeng N, Li Y, Jun S. Trans. ASABE, 2018, 61(3):1175.

doi: 10.13031/trans.12677
[78]
Wylie M P, Bell S E J, Nockemann P, Bell R, McCoy C P. ACS Omega, 2020, 5(14):7771.

doi: 10.1021/acsomega.9b03528
[79]
Yuan S C, Zhang X G, Lin D, Xu F, Li Y, Wang H Y. Prog. Org. Coat., 2020, 142:105563.
[80]
Wu D Q, Ma L W, Zhang F, Qian H C, Minhas B, Yang Y M, Han X, Zhang D W. Mater. Des., 2020, 185:108236.

doi: 10.1016/j.matdes.2019.108236
[81]
Wang Z H, Scheres L, Xia H S, Zuilhof H. Adv. Funct. Mater., 2020, 30(26):1908098.

doi: 10.1002/adfm.v30.26
[82]
Singh V, Sheng Y J, Tsao H K. J. Taiwan Inst. Chem. Eng., 2019, 97:96.

doi: 10.1016/j.jtice.2019.02.023
[83]
Hou X, Hu Y H, Grinthal A, Khan M, Aizenberg J. Nature, 2015, 519(7541):70.

doi: 10.1038/nature14253
[84]
Tesler A B, Kim P, Kolle S, Howell C, Ahanotu O, Aizenberg J. Nat. Commun., 2015, 6:8649.

doi: 10.1038/ncomms9649
[85]
Xiao L L, Li J S, Mieszkin Sdi Fino A, Clare A S, Callow M E, Callow J A, Grunze M, Rosenhahn A, Levkin P A. ACS Appl. Mater. Interfaces, 2013, 5(20):10074.

doi: 10.1021/am402635p
[86]
Wang P, Zhang D, Lu Z, Sun S M. ACS Appl. Mater. Interfaces, 2016, 8(2):1120.

doi: 10.1021/acsami.5b08452
[87]
Wang P, Lu Z, Zhang D. Corros. Sci., 2015, 93:159.

doi: 10.1016/j.corsci.2015.01.015
[88]
Liu G, Zhang P F, Liu Y, Zhang D Y, Chen H W. Micromachines, 2018, 9(11):591.

doi: 10.3390/mi9110591
[89]
Zhang M L, Sun G H, Guo H, Liu Q, Liu J Y, Yu J, Chen R R, Gao L T, Wang J. ACS Sustainable Chem. Eng., 2020, 8(8):3170.

doi: 10.1021/acssuschemeng.9b06459
[90]
Zhang J L, Gu C D, Tu J P. ACS Appl. Mater. Interfaces, 2017, 9(12):11247.

doi: 10.1021/acsami.7b00972
[91]
Sett S, Yan X, Barac G, Bolton L W, Miljkovic N. ACS Appl. Mater. Interfaces, 2017, 9(41):36400.

doi: 10.1021/acsami.7b10756
[92]
Huang Y, Stogin B B, Sun N, Wang J, Yang S K, Wong T S. Adv. Mater., 2017, 29(8):1604641.

doi: 10.1002/adma.v29.8
[93]
Bauer U, Federle W. Plant Signal. Behav., 2009, 4(11):1019.

doi: 10.4161/psb.4.11.9664
[94]
Federle W. Integr. Comp. Biol., 2002, 42(6):1100.

doi: 10.1093/icb/42.6.1100 pmid: 21680393
[95]
Bohn H F, Federle W. PNAS, 2004, 101(39):14138.

doi: 10.1073/pnas.0405885101
[96]
Gaume L, Gorb S, Rowe N. New Phytol., 2002, 156(3):479.

doi: 10.1046/j.1469-8137.2002.00530.x
[97]
Li J S, Ueda E, Paulssen D, Levkin P A. Adv. Funct. Mater., 2019, 29(4):1802317.

doi: 10.1002/adfm.v29.4
[98]
Wu D Q, Zhang D W, Liu B, Li X G. Surf. Technol., 2019, 48(1):90.
(吴德权, 张达威, 刘贝, 李晓刚. 表面技术, 2019, 48(1): 90.)
[99]
Song T T, Liu Q, Zhang M L, Chen R R, Takahashi K, Jing X Y, Liu L H, Wang J. RSC Adv., 2015, 5(86):70080.

doi: 10.1039/C5RA11263J
[100]
Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, McKinley G H, Varanasi K K. Soft Matter, 2013, 9(6):1772.

doi: 10.1039/C2SM27032C
[101]
Semprebon C, McHale G, Kusumaatmaja H. Soft Matter, 2017, 13(1):101.

doi: 10.1039/C6SM00920D
[102]
Schellenberger F, Xie J, Encinas N, Hardy A, Klapper M, Papadopoulos P, Butt H J, Vollmer D. Soft Matter, 2015, 11(38):7617.

doi: 10.1039/c5sm01809a pmid: 26291621
[103]
Badv M, Weitz J I, Didar T F. Small, 2019, 15(51):1905562.

doi: 10.1002/smll.v15.51
[104]
Niemelä-Anttonen H, Koivuluoto H, Tuominen M, Teisala H, Juuti P, Haapanen J, Harra J, Stenroos C, Lahti J, Kuusipalo J, Mäkelä J M, Vuoristo P. Adv. Mater. Interfaces, 2018, 5(20):1800828.

doi: 10.1002/admi.201800828
[105]
Liu Y B, Tian Y, Chen J, Gu H M, Liu J, Wang R M, Zhang B L, Zhang H P, Zhang Q Y. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 588:124384.

doi: 10.1016/j.colsurfa.2019.124384
[106]
An G M, Ling S Q, Wang Z W, Luan L, Wu T Z. Prog. Chem., 2015, 27:1705.
(安光明, 凌世全, 王智伟, 栾琳, 吴天准. 化学进展, 2015, 27 :1705.).

doi: 10.7536/PC150630
[107]
Hou N W. Master Dissertation of Harbin Institute of Technology, 2018.
(侯娜娃. 哈尔滨工业大学硕士论文, 2018.).
[108]
Wang C. Master Dissertation of Dalian University of Technology, 2019.
(王聪. 大连理工大学硕士论文论文, 2019.).
[109]
Zhang F, Yao Z J, Moliar O, Tao X W, Yang C. J. Alloy. Compd., 2020, 830:153785.

doi: 10.1016/j.jallcom.2020.153785
[110]
Guo F, Yu X T, Wang M Y. J. Electrochem. Soc., 2020, 167(6):063506.

doi: 10.1149/1945-7111/ab8648
[111]
Prado L H, Virtanen S. Coatings, 2020, 10(3):238.

doi: 10.3390/coatings10030238
[112]
Wang F, Zhou Y L, Yang W B, Ni M Q, Zhang X S, Liang C H. Appl. Therm. Eng., 2020, 169:114967.

doi: 10.1016/j.applthermaleng.2020.114967
[113]
Upadhyay R K, Waghmare P R. Environ. Chem. Lett., 2020, 18(2):505.

doi: 10.1007/s10311-019-00952-3
[114]
Yu Z Q, Zhou C, Liu R, Zhang Q X, Gong J W, Tao D H, Ji Z Y. Colloids Surfaces A: Physicochem. Eng. Aspects, 2020, 589:124475.

doi: 10.1016/j.colsurfa.2020.124475
[115]
Pan L, Wang F, Pang X F, Zhang L, Hao J X. J. Mater. Sci., 2019, 54(24):14728.

doi: 10.1007/s10853-019-03956-0
[116]
Jeong C, Ji H. Materials, 2019, 12(19):3231.

doi: 10.3390/ma12193231
[117]
Kikuchi T, Kunimoto K, Ikeda H, Nakajima D, Suzuki R O, Natsui S. J. Electroanal. Chem., 2019, 846:113152.

doi: 10.1016/j.jelechem.2019.05.034
[118]
Alamán J, María López-Villuendas A, López-Valdeolivas M, Arroyo M P, Andrés N, Sánchez-Somolinos C. Appl. Surf. Sci., 2020, 510:145422.

doi: 10.1016/j.apsusc.2020.145422
[119]
ŞCakalak H, Yılmaz K, Gürsoy M, Karaman M. Chem. Eng. Sci., 2020, 215:115466.

doi: 10.1016/j.ces.2019.115466
[120]
ŞCimşek B, Karaman M. J. Coat. Technol. Res., 2020, 17(2):381.

doi: 10.1007/s11998-019-00282-7
[121]
Miao X, Zhu C Q, Ren G N, Sun X H, Li Y C. Appl. Surf. Sci., 2020, 515:146099.

doi: 10.1016/j.apsusc.2020.146099
[122]
Qian H J, Zhu M L, Song H, Wang H Y, Liu Z J, Wang C J. Prog. Org. Coat., 2020, 142:105566.
[123]
Li M, Xu X, Zhang L. J Ind. Eng. Chem., 2020, 84:4936.
[124]
Li Y, Xie J Y, Guo C J, Wang J, Liu H, Hu W B. RSC Adv., 10.
[125]
Zhang A Y, Li Z H. MATEC Web Conf., 2017, 128:03005.

doi: 10.1051/matecconf/201712803005
[126]
Tuo Y J, Zhang H F, Chen W P, Liu X W. Appl. Surf. Sci., 2017, 423:365.

doi: 10.1016/j.apsusc.2017.06.170
[127]
Joo J, Kim D, Moon H S, Kim K, Lee J. Appl. Surf. Sci., 2020, 509:145361.

doi: 10.1016/j.apsusc.2020.145361
[128]
Li M X, Xu X, Zhang L. Appl. Surf. Sci., 2015, 328:491.

doi: 10.1016/j.apsusc.2014.12.067
[129]
Sousa M F B, Loureiro H C, Bertran C A. Surf. Coat. Technol., 2020, 382:125160.

doi: 10.1016/j.surfcoat.2019.125160
[130]
Xiang T F, Zheng S L, Zhang M, Sadig H R, Li C. ACS Sustainable Chem. Eng., 2018, 6(8):10960.

doi: 10.1021/acssuschemeng.8b02345
[131]
Wang N, Xiong D S, Pan S, Deng Y L, Shi Y. Appl. Surf. Sci., 2016, 387:1219.

doi: 10.1016/j.apsusc.2016.07.012
[132]
Gao X Y, Guo Z G. J. Colloid Interface Sci., 2018, 512:239.

doi: 10.1016/j.jcis.2017.10.061
[133]
Zhang P F, Chen H W, Liu G, Zhang L W, Zhang D Y. J. Vis. Exp., 2018(133):e55888.
[134]
Luo H, Lu Y, Yin S H, Huang S, Song J L, Chen F Z, Chen F J, Carmalt C J, Parkin I P. J. Mater. Chem. A, 2018, 6(14):5635.

doi: 10.1039/C8TA01096J
[135]
Sun S M, Wang P, Zhang D. Corros. Sci. Prot. Technol., 2016, 28(1):1.
(孙士美, 王鹏, 张盾. 腐蚀科学与防护技术, 2016, 28(1): 1.)
[136]
Xiao Y M, Sun C X, Liu J K, Xue G L, Dai J J. Plating and Finishing, 2020, 42:7.
(肖亚梅, 孙彩霞, 刘井坤, 薛桂连, 戴景杰. 电镀与精饰, 2020, 42:7.).
[137]
Song T T, Liu Q, Liu J Y, Yang W L, Chen R R, Jing X Y, Takahashi K, Wang J. Appl. Surf. Sci., 2015, 355:495.

doi: 10.1016/j.apsusc.2015.07.140
[138]
Zhou H, Zhang M X, Li C, Gao C L, Zheng Y M. Small, 2018, 14(27):1801335.

doi: 10.1002/smll.201801335 pmid: 29845753
[139]
Gao X Y, Wen G, Guo Z G. New J. Chem., 2019, 43(42):16656.

doi: 10.1039/C9NJ04429A
[140]
Xu C L, Song F, Wang X L, Wang Y Z. Chem. Eng. J., 2017, 313:1328.

doi: 10.1016/j.cej.2016.11.024
[141]
Song F, Wu C Q, Chen H L, Liu Q, Liu J Y, Chen R R, Li R M, Wang J. RSC Adv., 2017, 7(70):44239.

doi: 10.1039/C7RA04816E
[142]
Jiang D, Xia X C, Hou J, Cai G Y, Zhang X X, Dong Z H. Chem. Eng. J., 2019, 373:285.

doi: 10.1016/j.cej.2019.05.046
[143]
Su J Y. Master Dissertation of Northwest University, 2019.
(苏瑾瑜. 西北大学硕士论文, 2019.).
[144]
Zhang N. Master Dissertation of Chinese Academy of Sciences University, 2019.
中国科学院大学硕士论文 2019.)
[145]
Zhang J P, Yu B, Wei Q Y, Li B C, Li L X, Yang Y F. J. Colloid Interface Sci., 2019, 554:250.

doi: 10.1016/j.jcis.2019.06.106
[146]
Hosseini A, Villegas M, Yang J, Badv M, Weitz J I, Soleymani L, Didar T F. Adv. Mater. Interfaces, 2018, 5(18):1800617.

doi: 10.1002/admi.201800617
[147]
Shi Z Q, Xiao Y M, Qiu R, Niu S Y, Wang P. Surf. Coat. Technol., 2017, 330:102.

doi: 10.1016/j.surfcoat.2017.09.053
[148]
Qiu R, Zhang Q, Wang P, Jiang L N, Hou J, Guo W M, Zhang H X. Colloids Surfaces A: Physicochem. Eng. Aspects, 2014, 453:132.

doi: 10.1016/j.colsurfa.2014.04.035
[149]
Zhang S H. Master Dissertation of Nanchang University, 2019.
(张思鸿. 南昌大学硕士论文, 2019.).
[150]
Chen J H. Master Dissertation of Shandong University, 2019.
(陈靖桦. 山东大学硕士论文, 2019.).
[151]
Lee C, Kim A, Kim J. Surf. Coat. Tech., 2015, 264:127.

doi: 10.1016/j.surfcoat.2015.01.004
[152]
Luo H, Yin S H, Huang S, Chen F J, Tang Q C, Li X J. Appl. Surf. Sci., 2019, 470:1139.

doi: 10.1016/j.apsusc.2018.10.174
[153]
Sun J, Wang C, Song J L, Huang L, Sun Y K, Liu Z A, Zhao C L, Li Y X. J. Mater. Sci., 2018, 53(23):16099.

doi: 10.1007/s10853-018-2760-z
[154]
Zhang J L. Master Dissertation of Shandong Jianzhu University, 2019.
(张金龙. 山东建筑大学硕士论文, 2019.).
[155]
Zhang F D. Master Dissertation of Dalian University of Technology, 2014.
(张方东. 大连理工大学学位论文, 2014.).
[156]
Wang N, Yuan Y H, Wu Y W, Hang T, Li M. Langmuir, 2015, 31(39):10807.

doi: 10.1021/acs.langmuir.5b02535
[157]
Ouyang Y B, Zhao J, Qiu R, Hu S G, Chen M, Wang P. Surf. Coat. Technol., 2019, 367:148.

doi: 10.1016/j.surfcoat.2019.03.067
[158]
Qiu Z H, Qiu R, Xiao Y M, Zheng J Y, Lin C G. Appl. Surf. Sci., 2018, 457:468.

doi: 10.1016/j.apsusc.2018.06.139
[159]
Zhang J Q. Master Dissertation of Harbin Institute of Technology, 2019.
(张建清. 哈尔滨工业大学硕士论文, 2019.).
[160]
Ai S H. Master Dissertation of Dalian University of Technology, 2019.
(艾少华. 大连理工大学硕士论文, 2019.).
[161]
Sun Y H, Guo Z G. Chem. Eng. J, 2020,381.
[162]
Geraldi N R, Guan J H, Dodd L E, Maiello P, Xu B B, Wood D, Newton M I, Wells G G, McHale G. Sci. Rep., 2019, 9:13280.

doi: 10.1038/s41598-019-49887-3
[163]
Zhang M L, Chen R R, Liu Q, Liu J Y, Yu J, Song D L, Liu P L, Gao L T, Wang J. ChemElectroChem, 2019, 6(15):3911.

doi: 10.1002/celc.v6.15
[164]
Huang J. Master Dissertation of Beijing University of Technology, 2018.
(黄杰. 北京工业大学硕士论文, 2018.).
[165]
Li D W. Doctoral Dissertation of Jilin University, 2019.
(李大伟. 吉林大学博士论文, 2019.).
[166]
Phan N, Moronuki N. J. Adv. Mech. Des. Syst. Manuf., 2017, 11(2):JAMDSM0013.

doi: 10.1299/jamdsm.2017jamdsm0013
[167]
Wang G Y, Shen Y Z, Tao J, Luo X Y, Zhang L Q, Xia Y P. RSC Adv., 2017, 7(16):9981.

doi: 10.1039/C6RA28298A
[168]
Barthwal S, Lee B, Lim S H. Appl. Surf. Sci., 2019, 496:143677.

doi: 10.1016/j.apsusc.2019.143677
[169]
Li J, Guo Z G. Research, 2019,2019: 1.
[170]
Nguyen T B, Park S, Jung Y, Lim H. J. Ind. Eng. Chem., 2019, 69:99.

doi: 10.1016/j.jiec.2018.09.003
[171]
Zhang M L, Liu Q, Chen R R, Chen H L, Song D L, Liu J Y, Zhang H S, Li R M, Wang Y L, Wang J. J Alloy Compd., 2018, 764:730.

doi: 10.1016/j.jallcom.2018.06.029
[172]
Li X. Master Dissertation of Changchun University of Science and Technology, 2019.
(李旭. 长春理工大学硕士论文, 2019.).
[173]
Zhang S L. Master Dissertation of Shanghai Jiao Tong University, 2014.
(张沈莉. 上海交通大学硕士论文, 2014.).
[174]
Amadei C A, Lai C Y, Heskes D, Chiesa M. J. Chem. Phys., 2014, 141(8):084709.

doi: 10.1063/1.4893711
[175]
Dou R M, Chen J, Zhang Y F, Wang X P, Cui D P, Song Y L, Jiang L, Wang J J. ACS Appl. Mater. Interfaces, 2014, 6(10):6998.

doi: 10.1021/am501252u
[176]
Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS Appl. Mater. Interfaces, 2014, 6(15):13299.

doi: 10.1021/am503150y
[177]
Bixler G D, Theiss A, Bhushan B, Lee S C. J. Colloid Interface Sci., 2014, 419:114.

doi: 10.1016/j.jcis.2013.12.019
[178]
Wei Q, Schlaich C, Prévost S, Schulz A, Böttcher C, Gradzielski M, Qi Z H, Haag R, Schalley C A. Adv. Mater., 2014, 26(43):7358.

doi: 10.1002/adma.v26.43
[179]
Lu Z. Master Dissertation of Chinese Academy of Sciences University, 2015.
(陆洲. 中国科学院大学硕士论文, 2015.).
[180]
He W Q, Liu P, Zhang J Q, Yao X. Chem. Eur. J., 2018, 24(56):14864.

doi: 10.1002/chem.v24.56
[181]
Villegas M, Zhang Y X, Abu Jarad N, Soleymani L, Didar T F. ACS Nano, 2019, 13(8):8517.

doi: 10.1021/acsnano.9b04129 pmid: 31373794
[182]
Wang X Q, Gu C D, Wang L Y, Zhang J L, Tu J P. Chem. Eng. J., 2018, 343:561.

doi: 10.1016/j.cej.2018.03.045
[183]
Goodband S J, Armstrong S, Kusumaatmaja H, Voı¨tchovsky K. Langmuir, 2020, 36(13):3461.

doi: 10.1021/acs.langmuir.0c00059 pmid: 32164408
[184]
Zhang M L, Chen R R, Liu Q, Liu J Y, Yu J, Song D L, Liu P L, Gao L T, Wang J. ChemElectroChem, 2019, 6(15):3840.

doi: 10.1002/celc.v6.15
[185]
Xiang T F, Zhang M, Sadig H R, Li Z C, Zhang M X, Dong C D, Yang L, Chan W M, Li C. Chem. Eng. J., 2018, 345:147.

doi: 10.1016/j.cej.2018.03.137
[186]
Wang N, Xiong D S, Pan S, Wang K, Shi Y, Deng Y L. New J. Chem., 2017, 41(4):1846.

doi: 10.1039/C6NJ02824A
[187]
Latthe S S, Sutar R S, Bhosale A K, Nagappan S, Ha C, Sadasivuni K K, Liu S H, Xing R M. Prog. Org. Coat., 2019..
[188]
Heale F L, Parkin I P, Carmalt C J. ACS Appl. Mater. Interfaces, 2019, 11(44):41804.

doi: 10.1021/acsami.9b14160
[189]
Kim P, Wong T S, Alvarenga J, Kreder M J, Adorno-Martinez W E, Aizenberg J. ACS Nano, 2012, 6(8):6569.

doi: 10.1021/nn302310q
[190]
Juuti P, Haapanen J, Stenroos C, Niemelä-Anttonen H, Harra J, Koivuluoto H, Teisala H, Lahti J, Tuominen M, Kuusipalo J, Vuoristo P, Mäkelä J M. Appl. Phys. Lett., 2017, 110(16):161603.

doi: 10.1063/1.4981905
[191]
Zhang J L, Gu C D, Yan W, Tu J P, Ding X D. Surf. Coat. Technol., 2018, 344:702.

doi: 10.1016/j.surfcoat.2018.04.004
[192]
Lian Z X, Xu J K, Wang Z B, Yu H D. J. Bionic Eng., 2020, 17(1):1.

doi: 10.1007/s42235-020-0002-y
[193]
Inoue T, Koyama A, Kowalski D, Zhu C Y, Aoki Y, Habazaki H. Phys. Status Solidi A, 2020, 217(13):2070042.

doi: 10.1002/pssa.v217.13
[194]
Ouyang Y B, Zhao J, Qiu R, Hu S G, Niu H L, Zhang Y, Chen M. Surf. Coat. Technol., 2020, 381:125143.

doi: 10.1016/j.surfcoat.2019.125143
[195]
Basu S, Hanh B M, Isaiah Chua J Q, Daniel D, Ismail M H, Marchioro M, Amini S, Rice S A, Miserez A. J. Colloid Interface Sci., 2020, 568:185.

doi: 10.1016/j.jcis.2020.02.049
[196]
Bus T, Dale M L, Reynolds K J, Bastiaansen C W M. Biofouling, 2020, 36(2):138.

doi: 10.1080/08927014.2020.1734576
[197]
Yin J L, Mei M L, Li Q L, Xia R, Zhang Z H, Chu C H. Sci. Rep., 2016, 6:25924.

doi: 10.1038/srep25924
[198]
Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. J. Colloid Interface Sci., 2015, 444:81.

doi: 10.1016/j.jcis.2014.12.043
[199]
Xue Z X, Lei J. Acta Polym. Sin., 2012, 12(10):1091.

doi: 10.3724/SP.J.1105.2012.12101
[200]
Ouyang Y B, Zhao J, Qiu R, Shi Z Q, Hu S G, Zhang Y, Chen M, Wang P. Prog. Org. Coat., 2019, 136:105216.
[201]
Ouyang Y B, Zhao J, Qiu R, Hu S G, Niu H L, Chen M, Wang P. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 583:124006.

doi: 10.1016/j.colsurfa.2019.124006
[202]
He X Y, Tian F, Bai X Q, Yuan C Q. Colloids Surfaces B: Biointerfaces, 2019, 184:110502.

doi: 10.1016/j.colsurfb.2019.110502
[203]
Doll K, Yang I, Fadeeva E, Kommerein N, Szafrański S P, Bei der Wieden G B, Greuling A, Winkel A, Chichkov B N, Stumpp N S, Stiesch M. ACS Appl. Mater. Interfaces, 2019, 11(26):23026.

doi: 10.1021/acsami.9b06817
[204]
Lee J, Jiang Y H, Hizal F, Ban G H, Jun S, Choi C H. J. Colloid Interface Sci., 2019, 553:734.

doi: 10.1016/j.jcis.2019.06.068
[205]
Kharraz J A, Farid M U, Khanzada N K, Deka B J, Arafat H A, An A K. Water Res., 2020, 174:115600.

doi: S0043-1354(20)30136-6 pmid: 32088385
[206]
Yu C M, Sasic S, Liu K, Salameh S, van Ommen J R. Chem. Eng. Res. Des., 2020, 155:48.

doi: 10.1016/j.cherd.2019.11.038
[207]
Ma Q, Wang W, Dong G N. Colloids Surfaces A: Physicochem. Eng. Aspects, 2019, 577:17.

doi: 10.1016/j.colsurfa.2019.05.008
[208]
Liu M M, Hou Y Y, Li J, Tie L, Guo Z G. Chem. Eng. J., 2018, 337:462.

doi: 10.1016/j.cej.2017.12.118
[209]
Gulfam R, Orejon D, Choi C H, Zhang P. ACS Appl. Mater. Interfaces, 2020, 12(30):34306.

doi: 10.1021/acsami.0c06441
[210]
Chen X S, Wen G, Guo Z G. Mater. Horiz., 2020, 7(7):1697.

doi: 10.1039/D0MH00088D
[1] Sicheng Yuan, Dan Lin, Xiguang Zhang, Huaiyuan Wang. Fabrication and Application of Slippery Liquid Infused Porous Functional Surface [J]. Progress in Chemistry, 2021, 33(1): 87-96.
[2] Xiaoli Zhan, Biyu Jin, Qinghua Zhang*, Fengqiu Chen. Design and Applications of Multifunctional Super-Wetting Materials [J]. Progress in Chemistry, 2018, 30(1): 87-100.
[3] Xie Xiang, Lv Wenzhen, Chen Runfeng, Huang Wei. Micro/Nano Structure Regulation of Donor/Acceptor Interface for High-Performance Organic Solar Cells [J]. Progress in Chemistry, 2016, 28(11): 1591-1600.
[4] Wei Cunqian, Yan Jie, Tang Hao, Zhang Qinghua, Zhan Xiaoli, Chen Fengqiu. Fabrication and Application of Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2016, 28(1): 9-17.
[5] An Guangming, Ling Shiquan, Wang Zhiwei, Luan Lin, Wu Tianzhun. Fabrication and Application of Ultra-Slippery Surfaces Based on Liquid Infusion in Micro/Nano Structure [J]. Progress in Chemistry, 2015, 27(12): 1705-1713.
[6] . Preparation of Nanoparticles with Multi-Functional Water-Soluble Polymer Ligands [J]. Progress in Chemistry, 2010, 22(05): 953-961.
[7]

Fan Xi'an|Guan Jianguo**|Wang Wei|Wang Yilong|Tong Guoxiu|Mou Fangzhi

. Preparation, Microstructure Control and Magnetic Properties of 1D Ferromagnetic Metal Nanomaterials [J]. Progress in Chemistry, 2009, 21(01): 143-151.