中文
Announcement
More
Progress in Chemistry 2021, Vol. 33 Issue (1): 78-86 DOI: 10.7536/PC200675 Previous Articles   Next Articles

• Review •

Droplet Self-Propulsion Based on Heterogeneous Surfaces

Luanluan Xue1,2, Huizeng Li1,*(), An Li1,2, Zhipeng Zhao1,2, Yanlin Song1,2,*()   

  1. 1 Institute of Chemistry, Chinese Academy of Sciences,Beijing 100190, China
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Contact: Huizeng Li, Yanlin Song
  • Supported by:
    the National Natural Science Foundation of China(51773206,); the National Natural Science Foundation of China(51903240); the China Postdoctoral Innovative Talent Support Program(BX20180313); the China Postdoctoral Science Foundation(2018M641682)
Richhtml ( 37 ) PDF ( 1225 ) Cited
Export

EndNote

Ris

BibTeX

Actuating droplets for various dynamic behaviors has significant applications in the fields of biomedicine, microfluidics, and trace detection. The droplet movement depends on the adjustment of the forces on different positions of the droplets. Droplet self-propulsion based on heterogeneous surfaces shows advantages such as easy operation and energy conversation, which has been one of the research hotspots in droplet propulsion. In this article, recent research of droplet propulsion based on heterogeneous surfaces is reviewed. Firstly, the general principle of droplet self-propulsion based on surface heterogeneity is discussed. According to the different preparation methods, heterogeneous surfaces are divided into three categories: the heterogeneous wettability surface, the anisotropic structure surface and the synergistic surface. Their fabrications and applications are summarized, respectively. Finally, the limitations and the developments of heterogeneous surface are prospected and discussed.

Contents

1 Introduction

2 Droplet self-propulsion based on heterogeneous wettability

2.1 Gradient wettability

2.2 Patterned wettability

3 Droplet self-propulsion based on anisotropic structure

3.1 Static anisotropic structure

3.2 Dynamic anisotropic structure

4 Droplet self-propulsion based on synergetic effects

5 Conclusion and outlook

Fig. 1 Apparent contact angle models. (a) Young’s equation;(b) Wenzel model; (c) Cassie model
Fig. 2 Principle of droplet self-propulsion based on heterogeneous wettability
Fig. 3 Droplet self-propulsion based on gradient wettability. (a) Gradient wettability induced by microstructures[32] ; (b) gradient wettability induced by chemical properties[33]
Fig. 4 Droplet self-propulsion based on gradient wettability induced by synergetic effects of microstructures and chemical properties[34]
Fig. 5 Droplet self-propulsion based on patterned wettability induced by physical microstructures[35]
Fig. 6 Droplet self-propulsion based on patterned wettability induced by chemical properties. (a) wettability patterned prepared by selective grafting[37] ; (b) wettability pattern prepared by selective degrafting[39]
Fig. 7 Principle of droplet self-propulsion based on anisotropic structures
Fig. 8 Droplet self-propulsion based on static anisotropic structures. (a) Conical structure mimicking cactus[80] ; (b) groove structure mimicking pitcher plants[66] ; (c) raised bump structure[71]
Fig. 9 Droplet self-propulsion based on dynamic anisotropic structures. (a) Droplet movement driven by opening and closing of aquatic birds’ beak[70] ; (b) magnetic-responsive tubular structure[79]
Fig. 10 Principle of droplet self-propulsion based on synergetic effects
Fig. 11 Droplet self-propulsion based on synergetic effects. (a) Bioinspired cactus spine[68] ; (b) bioinspired spider silk[86] ; (c) stimuli-responsive spider silk[87]
[1]
Wang S, Wang T, Ge P, Xue P, Ye S, Chen H, Li Z, Zhang J, Yang B. Langmuir , 2015, 31: 4032.
[2]
Ni C , Jiang D , Xu Y L , Tang W L. Progress in Chemistry , 2020, 32( 5): 519.
倪陈, 姜迪, 徐幼林, 唐文来. 化学进展, 2020, 32( 5): 519.
[3]
Olceroglu E, McCarthy M. ACS Appl. Mater. Interfaces , 2016, 8: 5729.
[4]
Schutzius T M, Jung S, Maitra T, Graeber G, Köhme M, Poulikakos D. Nature , 2015, 527: 82.
[5]
Xi H D, Zheng H, Guo W, Gañán-Calvo A M, Ai Y, Tsao C W, Zhou J, Li W, Huang Y, Nguyen N T. Lab Chip , 2017, 17: 751.
[6]
Kaminski T, Garstecki P. Chem. Soc. Rev., 2017, 46: 6210.
[7]
Irajizad P, Ray S, Farokhnia N, Hasnain M, Baldelli S, Ghasemi H. Adv. Mater. Interfaces , 2017, 4: 1700009.
[8]
Brochard F. Langmuir , 1989, 5: 432.
[9]
Li J, Ha N S, Liu T L, van Dam R M, Kim C. Nature , 2019, 572: 507.
[10]
Zhan Y Y , Liu Y Y , Lv J A , Zhao Y , Yu Y L. Progress in Chemistry , 2015, 27( 2/3): 157.
詹媛媛, 刘玉云, 吕久安, 赵勇, 俞燕蕾. 化学进展, 2015, 27( 2/3): 157.
[11]
Ben S, Zhou T, Ma H, Yao J, Ning Y, Tian D, Liu K, Jiang L. Adv. Sci., 2019, 6: 1900834.
[12]
Wu L, Dong Z, Li N, Li F, Jiang L, Song Y. Small , 2015, 11: 4837.
[13]
Parker A R, Lawrence C R. Nature , 2001, 414: 33.
[14]
Bush J W, Hu D L. Annu. Rev. Fluid Mech., 2006, 38: 339.
[15]
Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. Nat. Commun., 2012, 3: 1247.
[16]
Zhao Y, Gu H, Xie Z, Shum H C, Wang B, Gu Z. J. Am. Chem. Soc., 2013, 135: 54.
[17]
Wang J, Sun L, Zou M, Gao W, Liu C, Shang L, Gu Z, Zhao Y. Sci. Adv., 2017, 3: e1700004.
[18]
Cao M, Jin X, Peng Y, Yu C, Li K, Liu K, Jiang L. Adv. Mater., 2017, 29: 1606869.
[19]
Greenspan H P. J. Fluid Mech., 1978, 84: 125.
[20]
Chaudhury M K, Whitesides G M. Science , 1992, 256: 1539.
[21]
Young T. Philos. T. R. Soc., 1805, 95: 65.
[22]
De Gennes P-G, Brochard-Wyart F, QuÉrÉ D. Capillarity and Wetting Phenomena : Drops , Bubbles , Pearls , Waves . Springer Science & Business Media . 2013.
[23]
QuÉrÉ D. Physica A , 2002, 313: 32.
[24]
Wenzel R N. Ind. Eng. Chem., 1936, 28: 988.
[25]
Cassie A, Baxter S. Trans. Faraday Soc., 1944, 40: 546.
[26]
Zhang Y , Pi P H , Wen X F , Zheng D F , Cai Z Q , Cheng J. Progress in Chemistry , 2011, 23( 12): 2457.
张勇, 皮丕辉, 文秀芳, 郑大锋, 蔡智奇, 程江. 化学进展, 2011, 23( 12): 2457.
[27]
Li A, Li H, Li Z, Zhao Z, Li K, Li M, Song Y. Sci. Adv., 2020, 6: eaay5808.
[28]
Sommers A, Brest T, Eid K. Langmuir , 2013, 29: 12043.
[29]
QuÉrÉ D. Annu. Rev. Mater. Res., 2008, 38: 71.
[30]
Li J, Guo Z. Nanoscale , 2018, 10: 13814.

doi: 10.1039/C8NR04354J
[31]
Li J, Li J, Sun J, Feng S, Wang Z. Adv. Mater., 2019, 31: e1806501.
[32]
Liu C R, Sun J, Zhuang Y, Wei J, Li J, Dong L X, Yan D F, Hu A, Zhou X F, Wang Z K. Nanoscale , 2018, 10: 23164.
[33]
Feng S, Wang S, Gao L, Li G, Hou Y, Zheng Y. Angew. Chem. Int. Ed., 2014, 53: 6163.
[34]
Liu C, Sun J, Li J, Xiang C, Che L, Wang Z, Zhou X. Sci. Rep., 2017, 7: 7552.
[35]
Wang S, Li H L, Duan H, Cui Y T, Sun H, Zhang M J, Zheng X F, Song M R, Li H, Dong Z C, Ding H, Jiang L. J. Mater. Chem. A , 2020, 8: 7889.
[36]
Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K, Yao S, Wang Z. Nat. Phys., 2016, 12: 606.
[37]
Sun J, Bao B, Jiang J, He M, Zhang X, Song Y. RSC Adv., 2016, 6: 31470.
[38]
Zhao Z, Li H, Hu X, Li A, Cai Z, Huang Z, Su M, Li F, Li M, Song Y. Adv. Mater. Interfaces , 2019, 6: 1901033.
[39]
Li H, Fang W, Li Y, Yang Q, Li M, Li Q, Feng X Q, Song Y. Nat. Commun., 2019, 10: 950.
[40]
Kwon M H, Shin H S, Chu C N. Appl. Surf. Sci., 2014, 288: 222.
[41]
Jagdheesh R, García-Ballesteros J, Ocaña J. Appl. Surf. Sci., 2016, 374: 2.
[42]
Roach P, Shirtcliffe N J, Newton M I. Soft Matter , 2008, 4: 224.
[43]
Li G X, Liu Y, Wang B, Song X-M, Li E, Yan H. Appl. Surf. Sci., 2008, 254: 5299.
[44]
Li X M, Reinhoudt D, Crego-Calama M. Chem. Soc. Rev. , 2007, 36: 1350.
[45]
Terrill R H, Balss K M, Zhang Y, Bohn P W. J. Am. Chem. Soc. , 2000, 122: 988.
[46]
Lee S W, Laibinis P E. J. Am. Chem. Soc., 2000, 122: 5395.
[47]
Ito Y, Heydari M, Hashimoto A, Konno T, Hirasawa A, Hori S, Kurita K, Nakajima A. Langmuir , 2007, 23: 1845.
[48]
Hernandez S C, Bennett C J, Junkermeier C E, Tsoi S D, Bezares F J, Stine R, Robinson J T, Lock E H, Boris D R, Pate B D. ACS Nano , 2013, 7: 4746.
[49]
Xu Q F, Wang J N, Smith I H, Sanderson K D. Appl. Phys. Lett., 2008, 93: 233112.
[50]
Yang X, Liu X, Li J, Huang S, Song J, Xu W. Micro & Nano Lett. , 2015, 10: 343.
[51]
Bai H, Wang L, Ju J, Sun R, Zheng Y, Jiang L. Adv. Mater. , 2014, 26: 5025.
[52]
Hou Y, Yu M, Chen X, Wang Z, Yao S. ACS Nano , 2015, 9: 71.
[53]
Mishchenko L, Khan M, Aizenberg J, Hatton B D. Adv. Funct. Mater., 2013, 23: 4577.
[54]
Song D, Bhushan B. Philos. T. R. Soc. A , 2019, 377: 20180335.
[55]
Liu J, Guo H, Zhang B, Qiao S, Shao M, Zhang X, Feng X Q, Li Q, Song Y, Jiang L, Wang J. Angew. Chem. Int. Ed., 2016, 55: 4265.
[56]
Cho Y, Shim T S, Yang S. Adv. Mater., 2016, 28: 1433.
[57]
Berthier J. Micro-drops and Digital Microfluidics . William Andrew . 2012.
[58]
Wang X, Cai X, Guo Q, Zhang T, Kobe B, Yang J. Chem. Commun. , 2013, 49: 10064.
[59]
Song M, Liu Z, Ma Y, Dong Z, Wang Y, Jiang L. NPG Asia Mater., 2017, 9: e415.
[60]
Yong J, Chen F, Yang Q, Hou X. Soft Matter , 2015, 11: 8897.
[61]
Ma C, Bai S, Peng X, Meng Y. Appl. Surf. Sci., 2013, 284: 930.
[62]
Yong J, Yang Q, Chen F, Zhang D, Farooq U, Du G, Hou X. J. Mater. Chem. A , 2014, 2: 5499.
[63]
Florian C, Skoulas E, Puerto D, Mimidis A, Stratakis E, Solis J, Siegel J. ACS Appl. Mater. Interfaces , 2018, 10: 36564.
[64]
Geyer F L, Ueda E, Liebel U, Grau N, Levkin P A. Angew. Chem. Int. Ed., 2011, 50: 8424.
[65]
Liu C, Ju J, Zheng Y, Jiang L. ACS Nano , 2014, 8: 1321.
[66]
Li J, Zheng H, Yang Z, Wang Z. Commun. Phys., 2018, 1: 35.
[67]
Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L. Nature , 2016, 532: 85.
[68]
Ju J, Xiao K, Yao X, Bai H, Jiang L. Adv. Mater. , 2013, 25: 5937.
[69]
Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature , 2010, 463: 640.
[70]
Prakash M, QuÉrÉ D, Bush J W. Science , 2008, 320: 931.
[71]
Jiang J, Gao J, Zhang H, He W, Zhang J, Daniel D, Yao X. Proc. Natl. Acad. Sci. U. S. A. , 2019, 116: 2482.
[72]
Comanns P, Buchberger G, Buchsbaum A, Baumgartner R, Kogler A, Bauer S, Baumgartner W. J. R. Soc. Interface , 2015, 12: 20150415.
[73]
Wang Q, Yao X, Liu H, QuÉrÉ D, Jiang L. Proc. Natl. Acad. Sci. U. S. A. , 2015, 112: 9247.
[74]
Noblin X, Yang S, Dumais J. J. Exp. Biol., 2009, 212: 2835.
[75]
Cui Y, Li D, Bai H. Ind. Eng. Chem. Res., 2017, 56: 4887.
[76]
Lorenceau É, QuÉrÉ D. J. Fluid Mech., 2004, 510: 29.
[77]
Lagubeau G, Le Merrer M, Clanet C, QuÉrÉ D. Nat. Phys., 2011, 7: 395.
[78]
Lv J, Liu Y, Wei J, Chen E, Qin L, Yu Y. Nature , 2016, 537: 179.
[79]
Lei W, Hou G, Liu M, Rong Q, Xu Y, Tian Y, Jiang L. Sci. Adv., 2018, 4: eaau8767.
[80]
Lv C, Chen C, Chuang Y C, Tseng F G, Yin Y, Grey F, Zheng Q. Phys. Rev. Lett. , 2014, 113: 026101.
[81]
Li J, Zhou X, Li J, Che L, Yao J, McHale G, Chaudhury M K, Wang Z. Sci. Adv. , 2017, 3: eaao3530.
[82]
Shang L, Yu Y, Gao W, Wang Y, Qu L, Zhao Z, Chai R, Zhao Y. Adv. Funct. Mater., 2018, 28: 1705802.
[83]
Zhang X, Sun L, Wang Y, Bian F, Wang Y, Zhao Y. Proc. Natl. Acad. Sci. U. S. A. , 2019, 116: 20863.
[84]
Atencia J, Beebe D J. Nature , 2005, 437: 648.
[85]
Timonen J V, Latikka M, Leibler L, Ras R H, Ikkala O. Science , 2013, 341: 253.
[86]
Bai H, Ju J, Sun R, Chen Y, Zheng Y, Jiang L. Adv. Mater., 2011, 23: 3708.
[87]
Ju J, Zheng Y, Jiang L. Acc. Chem. Res., 2014, 47: 2342.
[88]
Wang D, Sun Q, Hokkanen M J, Zhang C, Lin F Y, Liu Q, Zhu S P, Zhou T, Chang Q, He B, Zhou Q, Chen L, Wang Z, Ras R H A, Deng X. Nature , 2020, 582: 55.
[89]
Sun L, Bian F, Wang Y, Wang Y, Zhang X, Zhao Y. Proc. Natl. Acad. Sci. U. S. A. , 2020, 117: 4527.
[90]
Xu W, Zheng H, Liu Y, Zhou X, Zhang C, Song Y, Deng X, Leung M, Yang Z, Xu R X, Wang Z L, Zeng X C, Wang Z. Nature , 2020, 578: 392.
[1] Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang. Selective Oil/Water Separation Materials [J]. Progress in Chemistry, 2019, 31(1): 134-143.
[2] Xinjuan Zeng, Li Wang, Pihui Pi, Jiang Cheng, Xiufang Wen, Yu Qian. Development and Research of Special Wettability Materials for Oil/Water Separation [J]. Progress in Chemistry, 2018, 30(1): 73-86.
[3] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[4] Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong. Research and Development of Functional Superhydrophobic Materials [J]. Progress in Chemistry, 2016, 28(12): 1774-1787.
[5] Chen Yu, Xu Jiansheng, Guo Zhiguang. Recent Advances in Application of Biomimetic Superhydrophobic Surfaces [J]. Progress in Chemistry, 2012, 24(05): 696-708.
[6] Si Fangfang, Zhang Liang, Zhao Ning, Chen Li, Xu Jian. Superhydrophilic Surfaces: Progress in Preparation Method and Application [J]. Progress in Chemistry, 2011, 23(9): 1831-1840.
[7] Zhu Ying, Liu Mingjie, Wan Meixiang, Jiang Lei. 3D-Micro/Nanostructures of Conducting Polymers Assembled from 1D-Nanostructures and Their Controlling Wettability [J]. Progress in Chemistry, 2011, 23(5): 819-828.
[8] Zhang Yong, Pi Pihui, Wen Xiufang, Zheng Dafeng, Cai Zhiqi, Cheng Jiang. Construction and Application of Wettability Gradient Surfaces [J]. Progress in Chemistry, 2011, 23(12): 2457-2465.
[9] . Progress in Fluorinated (meth)Acrylate Polymers Structures and Surface Wettability [J]. Progress in Chemistry, 2010, 22(06): 1133-1141.