中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (1): 112-123 DOI: 10.7536/PC171008 Previous Articles   Next Articles

• Review •

Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine

Changlu Zhou, Zhong Xin*   

  1. Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21776091, 21506062) and the Program of Leading Talents (2013).
PDF ( 1037 ) Cited
Export

EndNote

Ris

BibTeX

Polybenzoxazines are well known to be advanced thermoset resin with many unique properties. More specially, the last decade has witnessed active research on various polybenzoxazines based functional surfaces due to their ability of low surface free energy, which can be lower than the widely regarded low surface energy polymer, Teflon, without having fluorine atoms. Nowadays, researches on polybenzoxazine-based functional surfaces have aroused attention in many fields of applications, such as anticorrosion, anti-ice, anti-sticking, liquid manipulation, oil/water separation, and self-cleaning. It is evident that the performance of polybenzoxazine based composites is determined by the chemical structures and constitution. The relationship between structures and surface properties in composites based on polybenzoxazines plays a vital role in the development of advanced surface materials. Herein, the advances in fabricating and investigating performance of functional surfaces based on polybenzoxazines and their composites is reviewed, focusing on the molecule design and fabricating principals of the surfaces with controllable structure, wettability, adhesion, and other fascinating functionality. Current progress from the research database are also summarized along with challenges in the development of polybenzoxazine based functional surface, in order to provide guidelines for designing and developing of materials based on polybenzoxazines with desired properties.
Contents
1 Introduction
2 Fabrication and properties of functional surface based on polybenzoxazine
2.1 Polybenzoxazines chemical structure and surface properties
2.2 Composites' chemical constitution and surface properties
3 Applications of functional surface based on polybenzoxazine
3.1 Anti-corrosion
3.2 Anti-ice
3.3 Anti-sticking
3.4 Liquid manipulation
3.5 Water/oil separation
3.6 Self-cleaning
4 Conclusion

CLC Number: 

[1] Ishida H, Agag T. Handbook of Benzoxazine Resins. Amsterdam:Elsevier, 2011. 1.
[2] Kiskan B, Ghosh N N, Yagci Y. Polym. Int., 2011, 60(2):167.
[3] Ishida H, Froimowicz P. Advanced and Emerging Polybenzoxazine Science and Technology. Amsterdam:Elsevier, 2017. 1.
[4] Wang C F, Su Y C, Kuo S W, Huang C F, Sheen Y C, Chang F C. Angew. Chem.Int. Ed., 2006, 45(14):2248.
[5] 董会杰(Dong H J). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2010.
[6] 曲丽(Qu L). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2011.
[7] Wang S, Liu K, Yao X, Jiang L. Chem. Rev., 2015, 115(16):8230.
[8] Kuo S W, Wu Y C, Wang C F, Jeong K U. J.Phys. Chem. C, 2009, 113(48):20666.
[9] Chen K C, Li H T, Chen W B, Liao C H, Sun K W, Chang F C. Polym. Int., 2011, 60(3):436.
[10] Chen K C, Li H T, Huang S C, Chen W B, Sun K W, Chang F C. Polym. Int., 2011, 60(7):1089.
[11] Dong H, Xin Z, Lu X, Lv Y H. Polymer, 2011, 52(4):1092.
[12] Liu J, Lu X, Xin Z, Zhou C L. Chinese J. Polym. Sci., 2016, 34(8):919.
[13] 刘娟(Liu J). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2015.
[14] 曲丽(Qu L). 华东理工大学学报:自然科学版(Journal of East China University of Science and Technology:Natural Science Edition), 2011, 37(6):659.
[15] 曲丽(Qu L), 周长路(Zhou C L), 辛忠(Xin Z), 刘娟(Liu J). 化工学报(Journal of Chemical Industry and Engineering), 2012, 63(6):1934.
[16] Ishida H, Low H Y. Macromolecules, 1997, 30(4):1099.
[17] Qu L, Xin Z. Langmuir, 2011, 27(13):8365.
[18] Liu J, Lu X, Xin Z, Zhou C L. Langmuir, 2013, 29(1):411.
[19] Rimdusit S, Kunopast P, Dueramae I. Polym. Eng. Sci., 2011, 51(9):1797.
[20] Grishchuk S, Schmitt S, Vorster O, Karger-Kocsis J. J. Appl. Polym. Sci., 2012, 124(4):2824.
[21] Zhou C L, Lin J, Lu X, Xin Z. RSC Adv., 2016, 6(34):28428.
[22] Zhou C L, Lu X, Xin Z, Zhang Y F. Prog. Org. Coat., 2013, 76(9):1178.
[23] Patil D M, Phalak G A, Mhaske S T. Prog. Org. Coat., 2017, 105:18.
[24] Liao C S, Wu J S, Wang C F, Chang F C. Macromol. Rapid. Commun., 2008, 29(1):52.
[25] Lin S C, Wu C S, Yeh J M, Liu Y L. Polym. Chem., 2014, 5(14):4235.
[26] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Adv. Mater., 2002, 14(24):1857.
[27] Gao L, Mccarthy T J. Langmuir, 2006, 22(7):2966.
[28] Zhang W F, Lu X, Xin Z, Zhou C L, Liu J. RSC Adv., 2015, 5(68):55513.
[29] Wang C F, Wang Y T, Tung P H, Kuo S W, Lin C H, Sheen Y C, Chang F C. Langmuir, 2006, 22(20):8289.
[30] Zhang W F, Lu X, Xin Z, Zhou C L. RSC Adv., 2016, 6(108):106054.
[31] Zhang W, Lu X, Xin Z, Zhou C L. Nanoscale, 2015, 7(46):19476.
[32] Tang X, Si Y, Ge J, Ding B, Liu L F, Zheng G, Luo W J, Yu J Y. Nanoscale, 2013, 5(23):11657.
[33] Yang L, Raza A, Si Y, Mao X, Shang Y W, Ding B, Yu J Y, Al-Deyab S S. Nanoscale, 2012, 4(20):6581.
[34] Liu J, Lu X, Xin Z, Zhou C L. Appl. Surf. Sci., 2015, 353:1137.
[35] Zhou C L, Lu X, Xin Z, Zhang Y F. Corros. Sci., 2014, 80:269.
[36] Raza A, Si Y, Ding B, Yu J Y, Sun G. J. Colloid Interface Sci., 2013, 395:256.
[37] Caldona E B, De Leon A C C, Thomas P G, Naylor D F, Pajarito B B, Advincula R C. Ind.Eng. Chem. Res., 2017, 56(6):1485.
[38] Wang C F, Chiou S F, Ko F H, Chen J K, Chou C T, Huang C F, Kuo S W, Chang F C. Langmuir, 2007, 23(11):5868.
[39] Zhou C L, Lu X, Xin Z, Zhang Y F. Corros. Sci., 2013, 70:145.
[40] Riaz U, Nwaoha C, Ashraf S M. Prog. Org. Coat., 2014, 77(4):743.
[41] Schmitt G, Schutze M, Hays G F, Burns W, Han E H, Pourbaix A, Jacobson G. Global Needs for Knowledge Dissemination, Research, and Development in Materials Deterioration and Corrosion Control. (2009-05). http://corrosion.org/Publications.html
[42] Wei H, Wang Y, Guo J, Shen N Z, Jiang D, Zhang X, Yan X R, Zhu J H, Wang Q, Shao L, Lin H F, Wei S Y, Guo Z H. J. Mater. Chem. A, 2015, 3(2):469.
[43] Fernández-Seara J, Diz R, Uhía FJ.Appl. Thermal Eng., 2013, 51:502.
[44] Krishnadevi K, Selvaraj V. Appl. Surf. Sci., 2016, 366:148.
[45] Li W, Tian H, Hou B. Mater. Corros., 2012, 63(1):44.
[46] Weng C J, Chang C H, Peng C W, Chen S W, Yeh J M, Hsu C L, Wei Y. Chem. Mater., 2011, 23(8):2075.
[47] 周长路(Zhou C L). 华东理工大学博士论文(Doctoral Dissertation of East China University of Science and Technology), 2014.
[48] Bǎlǎnucǎ B, Raicopol M, Maljusch A, Garea S, Hanganu A, Schuhmann W, Andronescu C. ChemPlusChem, 2015, 80(7):1170.
[49] Escobar J, Poorteman M, Dumas L, Bonnaud L, Dubois P, Olivier M G. Prog. Org.Coat., 2015, 79:53.
[50] Poorteman M, Renaud A, Escobar J, Dumas L, Bonnaud L, Dubois P, Olivier M G. Prog. Org. Coat., 2016, 97:99.
[51] Raicopol M, Bǎlǎnucǎ B, Sliozberg K, Schluter B, Garea S A, Chira N, Schuhmann W, Andronescu C. Corros. Sci., 2015, 100:386.
[52] Zhou C L, Lu X, Xin Z, Zhang Y F. J.Coat. Technol. Res., 2016, 13(1):63.
[53] Patil D M, Phalak G A, Mhaske S T. J. Coat. Technol. Res., 2017, 14(3):517.
[54] Lu X, Liu Y, Zhou C L, Zhang W F, Xin Z. RSC Adv., 2016, 6(7):5805.
[55] Cao L, Jones A K, Sikka V K, Wu J Z, Gao D. Langmuir, 2009, 25(21):12444.
[56] Wang H, Tang L M, Wu X M, Dai W T, Qiu Y P. Appl. Surf. Sci., 2007, 253(22):8818.
[57] 秦涛(Qin T). 中国科技成果(Chinese Science and Technology Achievements), 2004(6):48.
[58] 曲丽(Qu L), 辛忠(Xin Z), 陆馨(Lu X), 董会杰(Dong H J). 微纳电子技术(Micronanoelectronic Technology), 2010(09):537.
[59] Erbil H Y, Demirel A L, Avci Y, Mert O. Science, 2003, 299(5611):1377.
[60] Jung Y C, Bhushan B. Nanotechnology, 2006, 17(19):4970.
[61] Lai Y K, Pan F, Xu C, Fuchs H, Chi L F. Adv. Mater., 2013, 25(12):1682.
[62] Tuteja A, Choi W, Ma M L, Mabry J M, Mazzella S A, Rutledge G C, Mckinley G H, Cohen R E. Science, 2007, 318(5856):1618.
[63] Xue Z, Liu M, Jiang L. J. Polym.Sci. B:Polym. Phys., 2012, 50(17):1209.
[64] Liu K, Jiang L. ACS Nano, 2011, 5(9):6786.
[65] Lu Y, Sathasivam S, Song J L, Crick C R, Carmalt C J, Parkin L P. Science, 2015, 347(6226):1132.
[66] Wang C F, Chen H Y, Kuo S W, Lai Y S, Yang P F. RSC Adv., 2013, 3(25):9764.
[67] Zhang T, Yan H Q, Fang Z P, Yuping E, Wu T, Chen F. Appl. Surf. Sci., 2014, 309:218.
[1] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[2] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[3] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[4] Yonggang Guo, Yachao Zhu, Xin Zhang, Bingpeng Luo. Effects of Superhydrophobic Surface on Tribological Properties: Mechanism, Status and Prospects [J]. Progress in Chemistry, 2020, 32(2/3): 320-330.
[5] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[6] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[7] Qu Mengnan*, Hou Lingang, He Jinmei*, Ma Xuerui, Yuan Mingjuan, Liu Xiangrong. Research and Development of Functional Superhydrophobic Materials [J]. Progress in Chemistry, 2016, 28(12): 1774-1787.
[8] Tian Miaomiao, Li Xuemei, Yin Yong, He Tao, Liu Jindun. Preparation of Superhydrophobic Membranes and Their Application in Membrane Distillation [J]. Progress in Chemistry, 2015, 27(8): 1033-1041.
[9] Zhan Yuanyuan, Liu Yuyun, Lv Jiuan, Zhao Yong, Yu Yanlei. Photoresponsive Surfaces with Controllable Wettability [J]. Progress in Chemistry, 2015, 27(2/3): 157-167.
[10] Zhang Kaiqiang, Li Bo, Zhao Yunhui, Li Hui, Yuan Xiaoyan. Functional POSS-Containing Polymers and Their Applications [J]. Progress in Chemistry, 2014, 26(0203): 394-402.
[11] Yan Yingdi, Luo Nengzhen, Xiang Xiangao, Xu Yiming, Zhang Qinghua, Zhan Xiaoli. Fabricating Mechanism and Preparation of Anti-Icing & Icephobic Coating [J]. Progress in Chemistry, 2014, 26(01): 214-222.
[12] Li Hui, Zhao Yunhui, Yuan Xiaoyan. Anti-Icing Coatings: From Surface Chemistry to Functional Surfaces [J]. Progress in Chemistry, 2012, 24(11): 2087-2096.
[13] Chen Yu, Xu Jiansheng, Guo Zhiguang. Recent Advances in Application of Biomimetic Superhydrophobic Surfaces [J]. Progress in Chemistry, 2012, 24(05): 696-708.
[14] Si Fangfang, Zhang Liang, Zhao Ning, Chen Li, Xu Jian. Superhydrophilic Surfaces: Progress in Preparation Method and Application [J]. Progress in Chemistry, 2011, 23(9): 1831-1840.
[15] Li Guanglu, He Tao, Li Xuemei. Preparation and Applications of Core-Shell Structured Nanocomposite Materials: the State-of-the-Art [J]. Progress in Chemistry, 2011, 23(6): 1081-1089.